首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Sesquiterpenes are important materials in pharmaceuticals and industry. Metabolic engineering has been successfully used to produce these valuable compounds in microbial hosts. However, the microbial potential of sesquiterpene production is limited by the poor heterologous expression of plant sesquiterpene synthases and the deficient FPP precursor supply. In this study, we engineered E. coli to produce α-farnesene using a codon-optimized α-farnesene synthase and an exogenous MVA pathway. Codon optimization of α-farnesene synthase improved both the synthase expression and α-farnesene production. Augmentation of the metabolic flux for FPP synthesis conferred a 1.6- to 48.0-fold increase in α-farnesene production. An additional increase in α-farnesene production was achieved by the protein fusion of FPP synthase and α-farnesene synthase. The engineered E. coli strain was able to produce 380.0 mg/L of α-farnesene, which is an approximately 317-fold increase over the initial production of 1.2 mg/L.  相似文献   

2.
解脂耶氏酵母是一种重要的产油酵母,由于其能利用多种疏水性底物,具有良好的耐酸、耐盐等胁迫耐受性,具有高通量的三羧酸循环,可提供充足的乙酰辅酶A前体等特点,被认为是生产萜类、聚酮类和黄酮类等天然产物的理想宿主,在代谢工程领域有着广泛的应用。近年来,越来越多的基因编辑、表达和调控工具被逐渐开发,这促进了解脂耶氏酵母合成各种天然产物的研究。文中综述了近年来解脂耶氏酵母中基因表达和天然产物合成方面的研究进展,并探讨了在该酵母中异源合成天然产物所面临的挑战和可能的解决方案。  相似文献   

3.
The sesquiterpene bisabolene was recently identified as a biosynthetic precursor to bisabolane, an advanced biofuel with physicochemical properties similar to those of D2 diesel. High-titer microbial bisabolene production was achieved using Abies grandis α-bisabolene synthase (AgBIS). Here, we report the structure of AgBIS, a three-domain plant sesquiterpene synthase, crystallized in its apo form and bound to five different inhibitors. Structural and biochemical characterization of the AgBIS terpene synthase Class I active site leads us to propose a catalytic mechanism for the cyclization of farnesyl diphosphate into bisabolene via a bisabolyl cation intermediate. Further, we describe the nonfunctional AgBIS Class II active site whose high similarity to?bifunctional diterpene synthases makes it an important link in understanding terpene synthase evolution. Practically, the AgBIS crystal structure is important in future protein engineering efforts to increase the microbial production of bisabolene.  相似文献   

4.
5.
Enabling xylose catabolism is challenging, especially for unconventional yeasts and previously engineered background strains. In this study, the efficacy of a yeast mating approach with Yarrowia lipolytica that can combine a previously engineering and evolved xylose phenotype with a metabolite overproduction phenotype is demonstrated. Specifically, several engineered Y. lipolytica strains that produce α‐linolenic acid (ALA), riboflavin, and triacetic acid lactone (TAL) with an engineered and adapted xylose‐utilizing strain to obtain three diploid strains that rapidly produce these molecules directly from xylose are mated. Titers of 0.52 g L?1 ALA, 96.6 mg L?1 riboflavin, and 2.9 g L?1 TAL, are obtained from xylose in flask cultures and 1.42 g L?1 production of ALA is obtained using bioreactor condition. This total production level is generally on par or higher than the parental strain cultivated on glucose, although specific productivities decreased as a result of improved overall cell growth by the diploid strains. In the case of ALA, this lipid content reached similar levels to that of flaxseed oil. This result showcases the first study using strain mating in Y. lipolytica for producing biomolecules from xylose, and thus demonstrates the utility of this approach as a routine tool for metabolic engineering.  相似文献   

6.
Microbial synthesis of wax esters (WE) from low-cost renewable and sustainable feedstocks is a promising path to achieve cost-effectiveness in biomanufacturing. WE are industrially high-value molecules, which are widely used for applications in chemical, pharmaceutical, and food industries. Since the natural WE resources are limited, the WE production mostly rely on chemical synthesis from rather expensive starting materials, and therefore solution are sought from development of efficient microbial cell factories. Here we report to engineer the yeast Yarrowia lipolytica and bacterium Escherichia coli to produce WE at the highest level up to date. First, the key genes encoding fatty acyl-CoA reductases and wax ester synthase from different sources were investigated, and the expression system for two different Y. lipolytica hosts were compared and optimized for enhanced WE production and the strain stability. To improve the metabolic pathway efficiency, different carbon sources including glucose, free fatty acid, soybean oil, and waste cooking oil (WCO) were compared, and the corresponding pathway engineering strategies were optimized. It was found that using a lipid substrate such as WCO to replace glucose led to a 60-fold increase in WE production. The engineered yeast was able to produce 7.6 g/L WE with a yield of 0.31 (g/g) from WCO within 120 h and the produced WE contributed to 57% of the yeast DCW. After that, E. coli BL21(DE3), with a faster growth rate than the yeast, was engineered to significantly improve the WE production rate. Optimization of the expression system and the substrate feeding strategies led to production of 3.7–4.0 g/L WE within 40 h in a 1-L bioreactor. The predominant intracellular WE produced by both Y. lipolytica and E. coli in the presence of hydrophobic substrates as sole carbon sources were C36, C34 and C32, in an order of decreasing abundance and with a large proportion being unsaturated. This work paved the way for the biomanufacturing of WE at a large scale.  相似文献   

7.
Yarrowia lipolytica is a dimorphic oleaginous non-conventional yeast widely used as a powerful host for expressing heterologous proteins, as well as a promising source of engineered cell factories for various applications. This microorganism has a documented use in Feed and Food and a GRAS (generally recognized as safe) status. Moreover, in vivo studies demonstrated a beneficial effect of this yeast on animal health. However, despite the focus on Y. lipolytica for the industrial manufacturing of heterologous proteins and for probiotic effects, its potential for oral delivery of recombinant therapeutic proteins has seldom been evaluated in mammals. As the first steps towards this aim, we engineered two Y. lipolytica strains, a dairy strain and a laboratory strain, to produce the model fluorescent protein mCherry. We demonstrated that both Y. lipolytica strains transiently persisted for at least 1 week after four daily oral administrations and they maintained the active expression of mCherry in the mouse intestine. We used confocal microscopy to image individual Y. lipolytica cells of freshly collected intestinal tissues. They were found essentially in the lumen and they were rarely in contact with epithelial cells while transiting through the ileum, caecum and colon of mice. Taken as a whole, our results have shown that fluorescent Y. lipolytica strains constitute novel tools to study the persistence and dynamics of orally administered yeasts which could be used in the future as oral delivery vectors for the secretion of active therapeutic proteins in the gut.  相似文献   

8.
Yarrowia lipolytica has recently emerged as a prominent microbial host for production of terpenoids. Its robust metabolism and growth in wide range of substrates offer several advantages at industrial scale. In the present study, we investigate the metabolic potential of Y. lipolytica to produce isoprene. Sustainable production of isoprene has been attempted through engineering several microbial hosts; however, the engineering studies performed so far are challenged with low titers. Engineering of Y. lipolytica, which have inherent high acetyl-CoA flux could fuel precursors into the biosynthesis of isoprene and thus is an approach that would offer sustainable production opportunities. The present work, therefore, explores this opportunity wherein a codon-optimized IspS gene (single copy) of Pueraria montana was integrated into the Y. lipolytica genome. With no detectable isoprene level during the growth or stationary phase of modified strain, attempts were made to overexpress enzymes from MVA pathway. GC-FID analyses of gas collected during stationary phase revealed that engineered strains were able to produce detectable isoprene only after overexpressing HMGR (or tHMGR). The significant role of HMGR (tHMGR) in diverting the pathway flux toward DMAPP is thus highlighted in our study. Nevertheless, the final recombinant strains overexpressing HMGR (tHMGR) along with Erg13 and IDI showed isoprene titers of ~500 μg/L and yields of ~80 μg/g. Further characterization of the recombinant strains revealed high lipid and squalene content compared to the unmodified strain. Overall, the preliminary results of our laboratory-scale studies represent Y. lipolytica as a promising host for fermentative production of isoprene.  相似文献   

9.
解脂耶氏酵母是一种具有独特生理代谢特征的非常规酵母.它具有可以利用多种廉价碳源、低pH值耐受性好、分泌能力强等优点,因此非常适合用于各种工业产品的微生物发酵.目前,解脂耶氏酵母已被证实具有高效生产多种(同源或异源)有机羧酸的能力.本文对近年来利用代谢工程及合成生物学技术改造解脂耶氏酵母生产羧酸的实例进行了总结,并重点介...  相似文献   

10.
The request for new flavourings increases every year. Consumer perception that everything natural is better is causing an increase demand for natural aroma additives. Biotechnology has become a way to get natural products. γ-Decalactone is a peach-like aroma widely used in dairy products, beverages and others food industries. In more recent years, more and more studies and industrial processes were endorsed to cost-effect this compound production. One of the best-known methods to produce γ-decalactone is from ricinoleic acid catalyzed by Yarrowia lipolytica, a generally regarded as safe status yeast. As yet, several factors affecting γ-decalactone production remain to be fully understood and optimized. In this review, we focus on the aromatic compound γ-decalactone and its production by Y. lipolytica. The metabolic pathway of lactone production and degradation are addressed. Critical analysis of novel strategies of bioprocess engineering, metabolic and genetic engineering and other strategies for the enhancement of the aroma productivity are presented.  相似文献   

11.

Background

Recently, there have been several attempts to produce long-chain dicarboxylic acids (DCAs) in various microbial hosts. Of these, Yarrowia lipolytica has great potential due to its oleaginous characteristics and unique ability to utilize hydrophobic substrates. However, Y. lipolytica should be further engineered to make it more competitive: the current approaches are mostly intuitive and cumbersome, thus limiting its industrial application.

Results

In this study, we proposed model-guided metabolic engineering strategies for enhanced production of DCAs in Y. lipolytica. At the outset, we reconstructed genome-scale metabolic model (GSMM) of Y. lipolytica (iYLI647) by substantially expanding the previous models. Subsequently, the model was validated using three sets of published culture experiment data. It was finally exploited to identify genetic engineering targets for overexpression, knockout, and cofactor modification by applying several in silico strain design methods, which potentially give rise to high yield production of the industrially relevant long-chain DCAs, e.g., dodecanedioic acid (DDDA). The resultant targets include (1) malate dehydrogenase and malic enzyme genes and (2) glutamate dehydrogenase gene, in silico overexpression of which generated additional NADPH required for fatty acid synthesis, leading to the increased DDDA fluxes by 48% and 22% higher, respectively, compared to wild-type. We further investigated the effect of supplying branched-chain amino acids on the acetyl-CoA turn-over rate which is key metabolite for fatty acid synthesis, suggesting their significance for production of DDDA in Y. lipolytica.

Conclusion

In silico model-based strain design strategies allowed us to identify several metabolic engineering targets for overproducing DCAs in lipid accumulating yeast, Y. lipolytica. Thus, the current study can provide a methodological framework that is applicable to other oleaginous yeasts for value-added biochemical production.
  相似文献   

12.
13.

Recent progress in synthetic and systems metabolic engineering technologies has explored the potential of microbial cell factories for the production of industrially relevant bulk and fine chemicals from renewable biomass resources in an eco-friendly manner. Corynebacterium glutamicum, a workhorse for industrial amino acid production, has currently evolved into a promising microbial platform for bioproduction of various natural and non-natural chemicals from renewable feedstocks. Notably, it has been recently demonstrated that metabolically engineered C. glutamicum can overproduce several commercially valuable aromatic and related chemicals such as shikimate, 4-hydroxybenzoate, and 4-aminobenzoate from sugars at remarkably high titer suitable to commercial application. On the other hand, overexpression and/or extension of its endogenous metabolic pathways by integrating heterologous metabolic pathways enabled production of structurally intricate and valuable natural chemicals like plant polyphenols, carotenoids, and fatty acids. In this review, we summarize recent advances in metabolic engineering of C. glutamicum for production of those value-added aromatics and other natural products, which highlights high potential and the versatility of this microbe for bioproduction of diverse chemicals.

  相似文献   

14.
Signal peptide (SP) is an important factor and biobrick in the production and secretion of recombinant proteins. The aim of this study was in silico and in vivo analysis of SPs effect on the production of recombinant glucose oxidase (GOX) in Yarrowia lipolytica. Several in silico softwares, namely SignalP4, Signal-CF, Phobius, WolfPsort 0.2, SOLpro and ProtParam, were used to analyse the potential of 15 endogenous and exogenous SPs for the secretion of recombinant GOX in Y. lipolytica. According to in silico results, the SP of GOX was predicted as suitable in terms of high secretory potential and of protein solubility and stability which is chosen for in vivo analysis. The recombinant Y. lipolytica strain produced 280 U/L of extracellular GOX after 7 days in YPD medium. The results show that the SP of GOX can be applied to efficient production of extracellular heterologous proteins and metabolic engineering in Y. lipolytica.  相似文献   

15.
Lignocellulosic biomass shows high potential as a renewable feedstock for use in biodiesel production via microbial fermentation. Yarrowia lipolytica, an emerging oleaginous yeast, has been engineered to efficiently convert xylose, the second most abundant sugar in lignocellulosic biomass, into lipids for lignocellulosic biodiesel production. Yet, the lipid yield from xylose or lignocellulosic biomass remains far lower than that from glucose. Here we developed an efficient xylose‐utilizing Y. lipolytica strain, expressing an isomerase‐based pathway, to achieve high‐yield lipid production from lignocellulosic biomass. The newly developed xylose‐utilizing Y. lipolytica, YSXID, produced 12.01 g/L lipids with a maximum yield of 0.16 g/g, the highest ever reported, from lignocellulosic hydrolysates. Consequently, this study shows the potential of isomerase‐based xylose‐utilizing Y. lipolytica for economical and sustainable production of biodiesel and oleochemicals from lignocellulosic biomass.  相似文献   

16.
Yarrowia lipolytica is widely used as a microbial producer of lipids and lipid derivatives. Here, we exploited this yeast’s potential to generate aromatic amino acids by developing chassis strains optimized for the production of phenylalanine, tyrosine and tryptophan. We engineered the shikimate pathway to overexpress a combination of Y. lipolytica and heterologous feedback-insensitive enzyme variants. Our best chassis strain displayed high levels of de novo Ehrlich metabolite production (up to 0.14 g l−1 in minimal growth medium), which represented a 93-fold increase compared to the wild-type strain (0.0015 g l−1). Production was further boosted to 0.48 g l−1 when glycerol, a low-cost carbon source, was used, concomitantly to high secretion of phenylalanine precursor (1 g l−1). Among these metabolites, 2-phenylethanol is of particular interest due to its rose-like flavour. We also established a production pathway for generating protodeoxyviolaceinic acid, a dye derived from tryptophan, in a chassis strain optimized for chorismate, the precursor of tryptophan. We have thus demonstrated that Y. lipolytica can serve as a platform for the sustainable de novo bio-production of high-value aromatic compounds, and we have greatly improved our understanding of the potential feedback-based regulation of the shikimate pathway in this yeast.  相似文献   

17.
Yarrowia lipolytica is an important oleaginous industrial microorganism used to produce biofuels and other value-added compounds. Although several genetic engineering tools have been developed for Y. lipolytica, there is no efficient method for genomic integration of large DNA fragments. In addition, methods for constructing multigene expression libraries for biosynthetic pathway optimization are still lacking in Y. lipolytica. In this study, we demonstrate that multiple and large DNA fragments can be randomly and efficiently integrated into the genome of Y. lipolytica in a homology-independent manner. This homology-independent integration generates variation in the chromosomal locations of the inserted fragments and in gene copy numbers, resulting in the expression differences in the integrated genes or pathways. Because of these variations, gene expression libraries can be easily created through one-step integration. As a proof of concept, a LIP2 (producing lipase) expression library and a library of multiple genes in the β-carotene biosynthetic pathway were constructed, and high-production strains were obtained through library screening. Our work demonstrates the potential of homology-independent genome integration for library construction, especially for multivariate modular libraries for metabolic pathways in Y. lipolytica, and will facilitate pathway optimization in metabolic engineering applications.  相似文献   

18.
To facilitate enzyme and pathway engineering, a selection was developed for improved sesquiterpene titers in Saccharomyces cerevisiae. α-Bisabolene, a candidate advanced biofuel, was found to protect yeast against the disruptive action of nonionic surfactants such as Tween 20 (T20). An experiment employing competition between two strains of yeast, one of which makes twice as much bisabolene as the other, demonstrated that growth in the presence of T20 provided sufficient selective pressure to enrich the high-titer strain to form 97% of the population. Following this, various methods were used to mutagenize the bisabolene synthase (BIS) coding sequence, coupled with selection by subculturing in the presence of T20. Mutagenesis targeting the BIS active site did not yield an improvement in bisabolene titers, although mutants were found which made a mixture of α-bisabolene and β-farnesene, another candidate biofuel. Based on evidence that the 3′ end of the BIS mRNA may be unstable in yeast, we randomly recoded the last 20 amino acids of the enzyme and, following selection in T20, found a variant which increased specific production of bisabolene by more than 30%. Since T20 could enrich a mixed population, efficiently removing strains that produced little or no bisabolene, we investigated whether it could also be applied to sustain high product titers in a monoculture for an extended period. Cultures grown in the presence of T20 for 14 days produced bisabolene at titers up to 4-fold higher than cultures grown with an overlay of dodecane, used to sequester the terpene product, and 20-fold higher than cultures grown without dodecane.Terpenes, being a large family of natural products with interesting biological and chemical properties, have found a multitude of applications ranging from flavors and fragrances to medicines and advanced biofuels (1, 2). Microbial production presents an attractive route for industrial terpene biosynthesis, as evidenced by the successful engineering of yeast to provide a stable supply of the antimalarial drug artemisinin (2,4). We have recently investigated the sesquiterpene olefin α-bisabolene (Fig. 1) as a candidate biodiesel, achieving moderate titers through expression of a codon-optimized bisabolene synthase (BIS) gene from Abies grandis in an engineered strain of Saccharomyces cerevisiae (5). Our ability to further increase bisabolene titers through engineering of metabolic pathways or individual enzymes is most limited by the growth and product quantitation phase of this iterative process. To facilitate high-throughput engineering of metabolic networks, pathways, and enzymes for improvement of terpene titers, we undertook a search for a chemical agent that could act as a selection agent for higher sesquiterpene levels in yeast cells.Open in a separate windowFIG 1Structures of the nonionic surfactant, Tween 20, yeast membrane component, ergosterol, and sesquiterpenes α-bisabolene and β-farnesene.Considering that sesquiterpenes such as bisabolene are predominantly cell associated in yeast when cultured in the absence of an organic overlay such as dodecane (6), we reasoned that an altered membrane composition may result in an increased tolerance of membrane-disrupting agents. Modification of yeast sterol or fatty acid composition has led to differences in growth rates and has also altered susceptibility to drugs or ethanol as a result of changes in membrane fluidity (7,10). Of various groups of candidates evaluated as agents for selection of higher bisabolene levels in S. cerevisiae, nonionic surfactants were found to be the most promising.Although surfactants may be used to improve extraction of olefins and pigments from microbial cultures, their use as a selective agent has not to our knowledge been investigated previously (11, 12). To initially evaluate candidates, we utilized two strains of S. cerevisiae, one of which makes twice as much bisabolene as the other, initially comparing growth levels of these strains in the presence of inhibitory concentrations of nonionic surfactants. Tween 20 (T20) was the most promising of the surfactants tested and is this focus of this work, but other candidates such as Brij 35 were also found to be effective. A proof-of-concept study was undertaken to investigate if T20 could be used to enrich for a strain that makes more bisabolene in a mixed population. Following this, we targeted the bisabolene synthase gene from A. grandis, taking various approaches to improve the kinetics or stability of the enzyme though mutagenesis with a goal of enhancing bisabolene production in yeast.In addition to demonstrating that T20 could be used as a selection agent for higher terpene production in a mixed population, we also investigated whether it might be used to improve production titers as well as strain stability in a monoculture. We considered that an agent which selects for the metabolic product of an engineered pathway, rather than just for the biosynthetic genes, may help to address strain stability issues associated with the larger-scale and longer-duration industrial production process. Overall, the use of nonionic surfactants such as T20 presents an attractive approach for both pathway and enzyme engineering and also for stabilizing and enhancing industrial production.  相似文献   

19.
Yarrowia lipolytica is an oleaginous yeast that is recognized for its ability to accumulate high levels of lipids, which can serve as precursors to biobased fuels and chemicals. Polyketides, such as triacetic acid lactone (TAL), can also serve as a precursor for diverse commodity chemicals. This study used Y. lipolytica as a host organism for the production of TAL via expression of the 2‐pyrone synthase gene from Gerbera hybrida. Induction of lipid biosynthesis by nitrogen‐limited growth conditions increased TAL titers. We also manipulated basal levels of TAL production using a DNA cut‐and‐paste transposon to mobilize and integrate multiple copies of the 2‐pyrone synthase gene. Strain modifications and batch fermentation in nitrogen‐limited medium yielded TAL titers of 2.6 g/L. Furthermore, we show that minimal medium allows TAL to be readily concentrated at >94% purity and converted at 96% yield to pogostone, a valuable antibiotic. Modifications of this reaction scheme yielded diverse related compounds. Thus, oleaginous organisms have the potential to be flexible microbial biofactories capable of economical synthesis of platform chemicals and the generation of industrially relevant molecules.  相似文献   

20.
Advances in synthetic biology and metabolic engineering have proven the potential of introducing metabolic by-passes within cell factories. These pathways can provide a more efficient alternative to endogenous counterparts due to their insensitivity to host's regulatory mechanisms. In this work, we replaced the endogenous essential 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis in the industrially relevant bacterium Rhodobacter sphaeroides by an orthogonal metabolic route. The native 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway was successfully replaced by a heterologous mevalonate (MVA) pathway from a related bacterium. The functional replacement was confirmed by analysis of the reporter molecule amorpha-4,11-diene after cultivation with [4-13C]glucose. The engineered R. sphaeroides strain relying exclusively on the MVA pathway was completely functional in conditions for sesquiterpene production and, upon increased expression of the MVA enzymes, it reached even higher sesquiterpene yields than the control strain coexpressing both MEP and MVA modules. This work represents an example where substitution of an essential biochemical pathway by an alternative, heterologous pathway leads to enhanced biosynthetic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号