首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
In this study, we demonstrate a stimulatory effect of tanshinone IIA isolated from the root of Salvia miltiorrhiza on the commitment of bi-potential mesenchymal precursor C2C12 cells into osteoblasts in the presence of bone morphogenetic protein (BMP)-2. At low concentrations, tanshinone IIA enhanced BMP-2-stimulated induction of alkaline phosphatase (ALP), an early phase biomarker of osteoblast differentiation, and mRNA expression of BMPs. ALP induction was inhibited by the BMP antagonist noggin, suggesting that tanshinone IIA enhances the osteogenic activity of BMP signaling. Furthermore, considering the tanshinone IIA-mediated enhancement of BMP-2-stimulated Smad-Runx2 activities, tanshinone IIA could enhance the osteogenic activity of BMP-2 via acceleration of Smad-Runx2 activation. Additionally, pharmacologic inhibition studies suggest the possible involvement of p38 in the action of tanshinone IIA. The p38 inhibitor SB202190 strongly and dose-dependently inhibited tanshinone IIA-enhanced ALP induction. SB202190 also dose-dependently inhibited the tanshinone IIA-induced p38 activation and combined tanshinone IIA-BMP-2-induced Smad activation. In conclusion, tanshinone IIA enhances the commitment of C2C12 cells into osteoblasts and their differentiation through synergistic cross talk between tanshinone IIA-induced p38 activation and BMP-2-induced Smad activation. These activations could subsequently induce the activation of Runx2, which induces osteogenesis via regulation of the osteogenic factors BMP and ALP expression.  相似文献   

5.
6.
Understanding the molecular events that govern neural progenitor lineage commitment, mitotic arrest, and differentiation into functional progeny are germane to our understanding of neocortical development. Members of the family of bone morphogenetic proteins (BMPs) play pivotal roles in regulating neural differentiation and apoptosis during neurogenesis through combined actions involving Smad and TAK1 activation. We demonstrate that BMP signaling is required for the induction of apoptosis of neural progenitors and that NRAGE is a mandatory component of the signaling cascade. NRAGE possesses the ability to bind and function with the TAK1-TAB1-XIAP complex facilitating the activation of p38. Disruption of NRAGE or any other member of the noncanonical signaling cascaded is sufficient to block p38 activation and thus the proapoptotic signals generated through BMP exposure. The function of NRAGE is independent of Smad signaling, but the introduction of a dominant-negative Smad5 also rescues neural progenitor apoptosis, suggesting that both canonical and noncanonical pathways can converge and regulate BMP-mediated apoptosis. Collectively, these results establish NRAGE as an integral component in BMP signaling and clarify its role during neural progenitor development.  相似文献   

7.
The bone morphogenetic proteins (BMPs) are potent osteoinductive factors that accelerate osteoblast maturation, accompanied by increased cell-substrate adhesion. BMP-2 treatment of osteoblastic cells increases phosphorylation of the cytoplasmic BMP-2 signaling molecules, Smad1 and Smad5. We have previously reported that BMP-2 treatment increase cytoskeletal organization of human trabecular bone-derived osteoblast-like cells (osteoblasts), which is also accompanied by an activation of the focal adhesion kinase p125(FAK). We report here that activation of p125(FAK) occurs with the same kinetics as the phosphorylation of Smad1, suggesting that BMP-2 initiates cross-talk between Smad signaling and the adhesion-mediated signaling pathway. As an adjunct to these effects, we examined activation of mitogen-activated protein (MAP) kinase family members in response to focal adhesion contact formation. Although phosphorylated forms of all three kinases were apparent, only SAPK2alpha/p38 (p38) was activated in response to BMP-2 treatment. Inhibition of p38 kinase activity suppressed BMP-2 induced Smad1 phosphorylation, as well as its translocation to the nucleus, suggesting the integration of p38 activation with Smad1 signaling. Finally, inhibition of p38 in osteoblasts also led to the complete abrogation of BMP-2 induced osteocalcin gene expression and matrix mineralization. These findings suggest that BMP-2 must activate p38 in order to mediate osteogenic differentiation and maturation.  相似文献   

8.
Articular chondrocytes progressively undergo dedifferentiation into a spindle-shaped mesenchymal cellular phenotype in monolayers. Chondrocyte dedifferentiation is stimulated by retinoic acid. On the other hand, bone morphogenic proteins (BMPs) stimulate differentiation of chondrocytes. We examined the mechanism of effects of BMP in chondrocyte differentiation with use of a recombinant adenovirus vector system. Constitutively active forms of BMP type I receptors (BMPR-IA and BMPR-IB) and those of activin receptor-like kinase (ALK)-1 and ALK-2 maintained differentiation of chondrocytes in the presence of retinoic acid. The BMP receptor-regulated signaling substrates, Smad1/5, weakly induced chondrocyte differentiation; the effects of Smad1/5 were enhanced by BMP-7 treatment. Inhibitory Smad, Smad6, blocked increase of expression of chondrocyte markers by BMP-7 in a dose-dependent manner. SB202190, a p38 mitogen-activated protein kinase inhibitor, inhibited this effect of BMP-7; however, since SB202190 suppressed phosphorylation of Smad1/5, this may be due to blockade of BMP receptor activation. These results together strongly suggest that induction of chondrocyte differentiation by BMP-7 is regulated by Smad pathways.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
We uncovered a new regulation of thyrocyte function by bone morphogenetic protein (BMP) under the influence of thyrotropin (TSH) using primary culture of porcine thyrocytes. The BMP type I receptors, ALK-2 (ActRIA), -3 (BMPRIA), and -6 (BMPRIB), were expressed in porcine thyrocytes, while ALK-6 was not detected in human thyroid. Treatment with BMP-2, -4, -6, -7, and TGF-beta1 exhibited a dose-dependent suppression of DNA synthesis by porcine thyrocytes. BMP-2, -4, -6, -7, and TGF-beta1 suppressed TSH receptor mRNA expression on thyrocytes, which was consistent with their suppressive effect on TSH-induced cAMP synthesis and TSH-induced insulin-like growth factor-1 expression. Activin exhibited minimal suppression of thyrocyte DNA synthesis and did not exhibit suppressive effects on TSH receptor mRNA expression. Phosphorylated Smad1/5/8 was detected in the lysates of porcine thyrocytes treated with BMP-2, -4, -6, and -7. However, in the presence of TSH, BMP-6 and -7 failed to activate Smad1/5/8 phosphorylation and 3TP-reporter activity, whereas BMP-2 and -4 maintained clear activation of the BMP signaling regardless of the presence of TSH. This diverged regulation of thyroid BMP system by TSH is most likely due to the reduction of ALK-6 expression caused by TSH. Thus, the thyroid BMP system is functionally linked to TSH actions through modulating TSH receptor expression and TSH, in turn, selectively inhibits BMP signaling. Given that BMP system is present in human thyroid and the expression pattern of ALK-2 and BMPRII is different between follicular adenomas and normal thyroid tissues, the endogenous BMP system may be involved in regulating thyrocyte growth and TSH sensitivity of human thyroid adenomas.  相似文献   

17.
18.
Regulation of GDF-8 signaling by the p38 MAPK   总被引:3,自引:0,他引:3  
Philip B  Lu Z  Gao Y 《Cellular signalling》2005,17(3):365-375
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号