首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 80 毫秒
1.
Polo-like kinases (PLKs) have been reported to be essential components of anti-viral pathways. However, the role of PLKs in the production of pro-inflammatory cytokines induced by TLR activation is uncertain. We report here that monocytic THP-1 cells expressed PLK1, PLK2, PLK3 and PLK4. When THP-1 cells were treated with GW843682X, an inhibitor of PLK1 and PLK3, the results showed that GW843682X down-regulated Pam3CSK4- and LPS-induced TNF-α at both the gene and protein levels. GW843682X did not impact Pam3CSK4-induced IL-1β and IL-8 or LPS-induced IL-1β, but it down-regulated LPS-induced IL-8 significantly. Moreover, western blot results showed that TLRs activated PLK1, and PLK1 inhibition by RNA interference down-regulated Pam3CSK4-induced TNF-α production, suggesting the involvement of PLK1 in TNF-α up-regulation. In addition, GW843682X treatment for 12 to 24 h induced cell death and down-regulated MyD88, but neither of these roles contributed to the down-regulation of TNF-α, as TNF-α gene expression was up-regulated at 1 h. Furthermore, GW843682X inhibited Pam3CSK4-induced activation of ERK and NF-κB, which contributed to Pam3CSK4-induced up-regulation of TNF-α. GW843682X also inhibited LPS-induced activation of ERK, p38 and NF-κB, which contributed to LPS-induced up-regulation of TNF-α. Taken together, these results suggested that PLK1 is involved in TLR2- and TLR4-induced inflammation, and GW843682X may be valuable for the regulation of the inflammatory response.  相似文献   

2.
Prostaglandin E2 (PGE2) is induced in vivo by bacterial products including TLR agonists. To determine whether PGE2 is induced directly or via IL-1β, human monocytes and macrophages were cultured with LPS or with Pam3CSK4 in presence of caspase-1 inhibitor, ZVAD, or IL-1R antagonist, Kineret. TLR agonists induced PGE2 in macrophages exclusively via IL-1β-independent mechanisms. In contrast, ZVAD and Kineret reduced PGE2 production in LPS-treated (but not in Pam3CSK4-treated) monocytes, by 30–60%. Recombinant human IL-1β augmented COX-2 and mPGES-1 mRNA and PGE2 production in LPS-pretreated monocytes but not in un-primed or Pam3CSK4-primed monocytes. This difference was explained by the finding that LPS but not Pam3CSK4 induced phosphorylation of IRF3 in monocytes suggesting activation of the TRIF signaling pathway. Knocking down TRIF, TRAM, or IRF3 genes by siRNA inhibited IL-1β-induced COX-2 and mPGES-1 mRNA. Blocking of TLR4 endocytosis during LPS priming prevented the increase in PGE2 production by exogenous IL-1β. Our data showed that TLR2 agonists induce PGE2 in monocytes independently from IL-1β. In the case of TLR4, IL-1β augments PGE2 production in LPS-primed monocytes (but not in macrophages) through a mechanism that requires TLR4 internalization and activation of the TRIF/IRF3 pathway. These findings suggest a key role for blood monocytes in the rapid onset of fever in animals and humans exposed to bacterial products and some novel adjuvants.  相似文献   

3.
Chicken macrophages express several receptors for recognition of pathogens, including Toll-like receptors (TLRs). TLRs bind to pathogen-associated molecular patterns (PAMPs) derived from bacterial or viral pathogens leading to the activation of macrophages. Macrophages play a critical role in immunity against viruses, including influenza viruses. The present study was designed to test the hypothesis that treatment of chicken macrophages with TLR ligands reduces avian influenza replication. Furthermore, we sought to study the expression of some of the key mediators involved in the TLR-mediated antiviral responses of macrophages. Chicken macrophages were treated with the TLR2, 3, 4, 7 and 21 ligands, Pam3CSK4, poly(I:C), LPS, R848 and CpG ODN, respectively, at different doses and time points pre- and post-H4N6 avian influenza virus (AIV) infection. The results revealed that pre-treatment of macrophages with Pam3CSK4, LPS and CpG ODN reduced the replication of AIV in chicken macrophages. In addition, the relative expression of genes involved in inflammatory and antiviral responses were quantified at 3, 8 and 18 hours post-treatment with the TLR2, 4 and 21 ligands. Pam3CSK4, LPS and CpG ODN increased the expression of interleukin (IL)-1β, interferon (IFN)-γ, IFN-β and interferon regulatory factor (IFR) 7. The expression of these genes correlated with the reduction of viral replication in macrophages. These results shed light on the process of immunity to AIV in chickens.  相似文献   

4.

Background

Type I interferons (IFNs), including IFN-alpha (IFNA) and IFN-beta (IFNB), have anti-inflammatory properties and are used to treat patients with autoimmune and inflammatory disorders. However, little is known of the role of IFN-tau (IFNT), a type I IFN produced by ruminant animals for inflammation. Because IFNB has recently been shown to inhibit nucleotide-binding oligomerization domain-like receptor, pyrin domain-containing 3 (NLRP3) inflammasome activation and subsequent secretion of the potent inflammatory cytokine interleukin (IL)-1β, we examined the effects of ruminant IFNT on NLRP3 inflammasome-mediated IL-1β secretion in human THP-1 macrophages.

Methods and Results

IFNT dose-dependently inhibited IL-1β secretion induced by nano-silica, a well-known activators of NLRP3 inflammasomes, in human macrophages primed with lipopolysaccharide (LPS, TLR4 agonist) and Pam3CSK4 (TLR1/2 agonist). IFNT also suppressed phagocytosis of nano-silica and reactive oxygen species (ROS) generation. Western blot analysis showed that IFNT inhibited both pro-IL-1β and mature IL-1β. In addition, real-time RT-PCR analysis showed that IFNT suppressed IL-1β mRNA expression induced by LPS and Pam3CSK4. Although nano-silica particles did not induce IL-10 secretion, IFNT induced IL-10 secretion in a dose-dependent manner. Furthermore, IFNT-suppressed IL-1β secretion was restored by anti-IL-10 neutralizing antibody.

Conclusions

Ruminant IFNT inhibits NLRP3 inflammasome-driven IL-1β secretion in human macrophages via multiple pathways, including the uptake of nano-silica particles, generation of ROS, and IL-10-mediated inhibition of pro-IL-1β induction. It may be a therapeutic alternative to IFNA and IFNB.  相似文献   

5.
Mast cells are pivotal in the pathogenesis of allergy and inflammation. In addition to the classical IgE-dependent mechanism involving crosslinking of the high-affinity receptor for IgE (FcεRI), mast cells are also activated by Toll-like receptors (TLRs) which are at the center of innate immunity. In this study, we demonstrated that the response of LAD2 cells (a human mast cell line) to anti-IgE was altered in the presence of the TLR2 agonists peptidoglycan (PGN) and tripalmitoyl-S-glycero-Cys-(Lys)4 (Pam3CSK4). Pretreatment of PGN and Pam3CSK4 inhibited anti-IgE induced calcium mobilization and degranulation without down-regulation of FcεRI expression. Pam3CSK4 but not PGN acted in synergy with anti-IgE for IL-8 release when the TLR2 agonist was added simultaneously with anti-IgE. Studies with inhibitors of key enzymes implicated in mast cell signaling revealed that the synergistic release of IL-8 induced by Pam3CSK4 and anti-IgE involved ERK and calcineurin signaling cascades. The differential modulations of anti-IgE induced mast cell activation by PGN and Pam3CSK4 suggest that dimerization of TLR2 with TLR1 or TLR6 produced different modulating actions on FcεRI mediated human mast cell activation.  相似文献   

6.
7.

Background

The recognition of microbial molecular patterns via Toll-like receptors (TLRs) is critical for mucosal defenses.

Methods

Using well-differentiated primary cultures of human airway epithelia, we investigated the effects of exposure of the cells to cytokines (TNF-α and IFN-γ) and dexamethasone (dex) on responsiveness to the TLR2/TLR1 ligand Pam3CSK4. Production of IL-8, CCL20, and airway surface liquid antimicrobial activity were used as endpoints.

Results

Microarray expression profiling in human airway epithelia revealed that first response cytokines markedly induced TLR2 expression. Real-time PCR confirmed that cytokines (TNF-α and IFN-γ), dexamethasone (dex), or cytokines + dex increased TLR2 mRNA abundance. A synergistic increase was seen with cytokines + dex. To assess TLR2 function, epithelia pre-treated with cytokines ± dex were exposed to the TLR2/TLR1 ligand Pam3CSK4 for 24 hours. While cells pre-treated with cytokines alone exhibited significantly enhanced IL-8 and CCL20 secretion following Pam3CSK4, mean IL-8 and CCL20 release decreased in Pam3CSK4 stimulated cells following cytokines + dex pre-treatment. This marked increase in inflammatory gene expression seen after treatment with cytokines followed by the TLR2 ligand did not correlate well with NF-κB, Stat1, or p38 MAP kinase pathway activation. Cytokines also enhanced TLR2 agonist-induced beta-defensin 2 mRNA expression and increased the antimicrobial activity of airway surface liquid. Dex blocked these effects.

Conclusion

While dex treatment enhanced TLR2 expression, co-administration of dex with cytokines inhibited airway epithelial cell responsiveness to TLR2/TLR1 ligand over cytokines alone. Enhanced functional TLR2 expression following exposure to TNF-α and IFN-γ may serve as a dynamic means to amplify epithelial innate immune responses during infectious or inflammatory pulmonary diseases.  相似文献   

8.
9.
Intestinal barrier dysfunction is associated with chronic gastrointestinal tract inflammation and diseases such as IBD and IBS. Serum-derived bovine immunoglobulin/protein isolate (SBI) is a specially formulated protein preparation (>90%) for oral administration. The composition of SBI is greater than 60% immunoglobulin including contributions from IgG, IgA, and IgM. Immunoglobulin within the lumen of the gut has been recognized to have anti-inflammatory properties and is involved in maintaining gut homeostasis. The binding of common intestinal antigens (LPS and Lipid A) and the ligand Pam3CSK4, by IgG, IgA, and IgM in SBI was shown using a modified ELISA technique. Each of these antigens stimulated IL-8 and TNF-α cytokine production by THP-1 monocytes. Immune exclusion occurred as SBI (≤50 mg/mL) bound free antigen in a dose dependent manner that inhibited cytokine production by THP-1 monocytes in response to 10 ng/mL LPS or 200 ng/mL Lipid A. Conversely, Pam3CSK4 stimulation of THP-1 monocytes was unaffected by SBI/antigen binding. A co-culture model of the intestinal epithelium consisted of a C2BBe1 monolayer separating an apical compartment from a basal compartment containing THP-1 monocytes. The C2BBe1 monolayer was permeabilized with dimethyl palmitoyl ammonio propanesulfonate (PPS) to simulate a damaged epithelial barrier. Results indicate that Pam3CSK4 was able to translocate across the PPS-damaged C2BBe1 monolayer. However, binding of Pam3CSK4 by immunoglobulins in SBI prevented Pam3CSK4 translocation across the damaged C2BBe1 barrier. These results demonstrated steric exclusion of antigen by SBI which prevented apical to basal translocation of antigen due to changes in the physical properties of Pam3CSK4, most likely as a result of immunoglobulin binding. This study demonstrates that immunoglobulins in SBI can reduce antigen-associated inflammation through immune and steric exclusion mechanisms and furthers the mechanistic understanding of how SBI might improve immune status and reduce inflammation in various intestinal disease states.  相似文献   

10.
The spread of methicillin-resistant Staphylococcus aureus (MRSA) is a critical health issue that has drawn greater attention to the potential use of immunotherapy. Toll-like receptor 2 (TLR2), a pattern recognition receptor, is an essential component in host innate defense system against S. aureus infection. However, little is known about the innate immune response, specifically TLR2 activation, against MRSA infection. Here, we evaluate the protective effect and the mechanism of MRSA murine pneumonia after pretreatment with Pam3CSK4, a TLR2 agonist. We found that the MRSA-pneumonia mouse model, pretreated with Pam3CSK4, had reduced bacteria and mortality in comparison to control mice. As well, lower protein and mRNA levels of TNF-α, IL-1β and IL-6 were observed in lungs and bronchus of the Pam3CSK4 pretreatment group. Conversely, expression of anti-inflammatory cytokine IL-10, but not TGF-β, increased in Pam3CSK4-pretreated mice. Our additional studies showed that CXCL-2 and CXCL1, which are necessary for neutrophil recruitment, were less evident in the Pam3CSK4-pretreated group compared to control group, whereas the expression of Fcγ receptors (FcγⅠ/Ⅲ) and complement receptors (CR1/3) increased in murine lungs. Furthermore, we found that increased survival and improved bacterial clearance were not a result of higher levels of neutrophil infiltration, but rather a result of enhanced phagocytosis and bactericidal activity of neutrophils in vitro and in vivo as well as increased robust oxidative activity and release of lactoferrin. Our cumulative findings suggest that Pam3CSK4 could be a novel immunotherapeutic candidate against MRSA pneumonia.  相似文献   

11.
Endotoxin tolerance reprograms Toll-like receptor (TLR) 4-mediated macrophage responses by attenuating induction of proinflammatory cytokines while retaining expression of anti-inflammatory and antimicrobial mediators. We previously demonstrated deficient TLR4-induced activation of IL-1 receptor-associated kinase (IRAK) 4, IRAK1, and TANK-binding kinase (TBK) 1 as critical hallmarks of endotoxin tolerance, but mechanisms remain unclear. In this study, we examined the role of the E3 ubiquitin ligase Pellino-1 in endotoxin tolerance and TLR signaling. LPS stimulation increased Pellino-1 mRNA and protein expression in macrophages from mice injected with saline and in medium-pretreated human monocytes, THP-1, and MonoMac-6 cells, whereas endotoxin tolerization abrogated LPS inducibility of Pellino-1. Overexpression of Pellino-1 in 293/TLR2 and 293/TLR4/MD2 cells enhanced TLR2- and TLR4-induced nuclear factor κB (NF-κB) and expression of IL-8 mRNA, whereas Pellino-1 knockdown reduced these responses. Pellino-1 ablation in THP-1 cells impaired induction of myeloid differentiation primary response protein (MyD88), and Toll-IL-1R domain-containing adapter inducing IFN-β (TRIF)-dependent cytokine genes in response to TLR4 and TLR2 agonists and heat-killed Escherichia coli and Staphylococcus aureus, whereas only weakly affecting phagocytosis of heat-killed bacteria. Co-expressed Pellino-1 potentiated NF-κB activation driven by transfected MyD88, TRIF, IRAK1, TBK1, TGF-β-activated kinase (TAK) 1, and TNFR-associated factor 6, whereas not affecting p65-induced responses. Mechanistically, Pellino-1 increased LPS-driven K63-linked polyubiquitination of IRAK1, TBK1, TAK1, and phosphorylation of TBK1 and IFN regulatory factor 3. These results reveal a novel mechanism by which endotoxin tolerance re-programs TLR4 signaling via suppression of Pellino-1, a positive regulator of MyD88- and TRIF-dependent signaling that promotes K63-linked polyubiquitination of IRAK1, TBK1, and TAK1.  相似文献   

12.
Lysophosphatidic acid (LPA) is an important phospholipid mediator in inflammation and immunity. However, the mechanism of LPA regulation during inflammatory response is largely unknown. Autotaxin (ATX) is the key enzyme to produce extracellular LPA from lysophosphatidylcholine (LPC). In this study, we found that ATX was induced in monocytic THP-1 cells by TLR4 ligand lipopolysaccharide (LPS), TLR9 ligand CpG oligonucleotide, and TLR3 ligand poly(I:C), respectively. The ATX induction by TLR ligand was abolished by the neutralizing antibody against IFN-β or the knockdown of IFNAR1, indicating that type I IFN autocrine loop is responsible for the ATX induction upon TLR activation. Both IFN-β and IFN-α were able to induce ATX expression via the JAK-STAT and PI3K-AKT pathways but with different time-dependent manners. The ATX induction by IFN-β was dramatically enhanced by IFN-γ, which had no significant effect on ATX expression alone, suggesting a synergy effect between type I and type II IFNs in ATX induction. Extracellular LPA levels were significantly increased when THP-1 cells were treated with IFN-α/β or TLR ligands. In addition, the type I IFN-mediated ATX induction was identified in human monocyte-derived dendritic cells (moDCs) stimulated with LPS or poly(I:C), and IFN-α/β could induce ATX expression in human peripheral blood mononuclear cells (PBMCs) and monocytes isolated form blood samples. These results suggest that, in response to TLR activation, ATX is induced through a type I INF autocrine-paracrine loop to enhance LPA generation.  相似文献   

13.
14.
RP105 is a member of the toll-like receptor family of proteins that transmits an activation signal in B cells, playing a role in regulation of B cell growth and death; in macrophages and dendritic cells, RP105 is a specific inhibitor of TLR4 signaling. RP105 is uniquely important for regulating TLR4-dependent signaling. It also proved that RP105 is closely related to TLR2 in macrophage activation by Mycobacterium tuberculosis lipoproteins. The aim of our study is to investigate the role of RP105 in mouse macrophages activation of TLR4 and TLR2 signaling by lipopolysaccharides (LPS) and Pam3CysSerLys4 (Pam3CSK4) alone or in combination, and the interaction between TLR2 and TLR4 signaling through RP105. Our results indicate that besides exhibiting negative regulation of TNF-α and IL12-p40 secretion in macrophage activated by LPS, RP105 is also involved in macrophages activation by Pam3CSK4 through TLR2 signaling and exhibited regulation to IL-10 and RANTES production by mouse peritoneal macrophage activated by Pam3CSK4. In macrophages activation by LPS and Pam3CSK4 in combination, TLR2 signaling can overcome RP105-mediated regulation of TLR4 signaling. Thus, our data demonstrate that not only TLR4 signaling, but also RP105 appears to be an essential accessory for immune responses through TLR2 signaling. The function of TLR2 and TLR4 in response to TLR ligands could be associated with each other by RP105. These results can help us understanding the unique role of RP105 in macrophages response to TLR ligands.  相似文献   

15.
The role of Interleukin(IL)-6 in the pathogenesis of joint and systemic inflammation in rheumatoid arthritis (RA) and systemic juvenile idiopathic arthritis (s-JIA) has been clearly demonstrated. However, the mechanisms by which IL-6 contributes to the pathogenesis are not completely understood. This study investigates whether IL-6 affects, alone or upon toll like receptor (TLR) ligand stimulation, the production of inflammatory cytokines and chemokines in human peripheral blood mononuclear cells (PBMCs), synovial fluid mononuclear cells from JIA patients (SFMCs) and fibroblast-like synoviocytes from rheumatoid arthritis patients (RA synoviocytes) and signalling pathways involved. PBMCs were pre-treated with IL-6 and soluble IL-6 Receptor (sIL-6R). SFMCs and RA synoviocytes were pre-treated with IL-6/sIL-6R or sIL-6R, alone or in combination with Tocilizumab (TCZ). Cells were stimulated with LPS, S100A8-9, poly(I-C), CpG, Pam2CSK4, MDP, IL-1β. Treatment of PBMCs with IL-6 induced production of TNF-α, CXCL8, and CCL2, but not IL-1β. Addition of IL-6 to the same cells after stimulation with poly(I-C), CpG, Pam2CSK4, and MDP induced a significant increase in IL-1β and CXCL8, but not TNF-α production compared with TLR ligands alone. This enhanced production of IL-1β and CXCL8 paralleled increased p65 NF-κB activation. In contrast, addition of IL-6 to PBMCs stimulated with LPS or S100A8-9 (TLR-4 ligands) led to reduction of IL-1β, TNF-α and CXCL8 with reduced p65 NF-κB activation. IL-6/IL-1β co-stimulation increased CXCL8, CCL2 and IL-6 production. Addition of IL-6 to SFMCs stimulated with LPS or S100A8 increased CXCL8, CCL2 and IL-1β production. Treatment of RA synoviocytes with sIL-6R increased IL-6, CXCL8 and CCL2 production, with increased STAT3 and p65 NF-κB phosphorylation. Our results suggest that IL-6 amplifies TLR-induced inflammatory response. This effect may be relevant in the presence of high IL-6 and sIL-6R levels, such as in arthritic joints in the context of stimulation by endogenous TLR ligands.  相似文献   

16.
17.

Background

Angiogenesis is a critical early event in inflammatory arthritis, facilitating leukocyte migration into the synovium resulting in invasion and destruction of articular cartilage and bone. This study investigates the effect of TLR2 on angiogenesis, EC adhesion and invasion using microvascular endothelial cells and RA whole tissue synovial explants ex-vivo.

Methods

Microvascular endothelial cells (HMVEC) and RA synovial explants ex vivo were cultured with the TLR2 ligand, Pam3CSK4 (1 µg/ml). Angiopoietin 2 (Ang2), Tie2 and TLR2 expression in RA synovial tissue was assessed by immunohistology. HMVEC tube formation was assessed using Matrigel matrix assays. Ang2 was measured by ELISA. ICAM-1 cell surface expression was assessed by flow cytometry. Cell migration was assessed by wound repair scratch assays. ECM invasion, MMP-2 and -9 expression were assessed using transwell invasion chambers and zymography. To examine if the angiopoietin/Tie2 signalling pathway mediates TLR2 induced EC tube formation, invasion and migration assays were performed in the presence of a specific neutralising anti-Tie2mAb (10 ug/ml) and matched IgG isotype control Ab (10 ug/ml).

Results

Ang2 and Tie2 were localised to RA synovial blood vessels, and TLR2 was localised to RA synovial blood vessels, sub-lining infiltrates and the lining layer. Pam3CSK4 significantly increased angiogenenic tube formation (p<0.05), and upregulated Ang2 production in HMVEC (p<0.05) and RA synovial explants (p<0.05). Pam3CSK4 induced cell surface expression of ICAM-1, from basal level of 149±54 (MFI) to 617±103 (p<0.01). TLR-2 activation induced an 8.8±2.8 fold increase in cell invasion compared to control (p<0.05). Pam3CSK4 also induced HMVEC cell migration and induced MMP-2 and -9 from RA synovial explants. Neutralisation of the Ang2 receptor, Tie2 significantly inhibited Pam3CSK4-induced EC tube formation and invasion (p<0.05).

Conclusion

TLR2 activation promotes angiogenesis, cell adhesion and invasion, effects that are in part mediated through the Tie2 signalling pathway, key mechanisms involved in the pathogenesis of RA.  相似文献   

18.
19.
Rapid β2-integrin activation is indispensable for leukocyte adhesion and recruitment to sites of infection and is mediated by chemokine- or P-selectin glycoprotein ligand-1–induced inside-out signaling. Here we uncovered a novel pathway for rapid activation of integrin-dependent leukocyte adhesion, triggered by toll-like receptor (TLR)–mediated signaling. TLR2 or TLR5 ligation rapidly activated integrin-dependent leukocyte adhesion to immobilized ICAM-1 and fibronectin. Consistently, in vivo administration of the TLR2-ligand Pam3CSK4 increased integrin-dependent slow rolling and adhesion to endothelium within minutes, as identified by intravital microscopy in the cremaster model. TLR2 and TLR5 ligation increased β2-integrin affinity, as assessed by the detection of activation-dependent neoepitopes. TLR2- and TLR5-triggered integrin activation in leukocytes required enhanced Rap1 GTPase activity, which was mediated by Rac1 activation and NADPH oxidase-2–dependent reactive oxygen species production. This novel direct pathway linking initial pathogen recognition by TLRs to rapid β2-integrin activation may critically regulate acute leukocyte infiltration to sites of pathogen invasion.  相似文献   

20.
Innate immunomodulation via induction of innate memory is one mechanism to alter the host’s innate immune response to reduce or prevent disease. Microbial products modulate innate responses with immediate and lasting effects. Innate memory is characterized by enhanced (training) or depressed (tolerance) innate immune responses, including pro-inflammatory cytokine production, to secondary exposure following a priming event. To investigate the ability of β-glucans and bacillus Calmette-Guerin to induce innate training or tolerance in pig cells, porcine monocytes were cultured with priming agonist (β-glucans or bacillus Calmette-Guerin) then re-stimulated 5 d later with a heterologous microbial agonist to determine induction of innate memory. Priming with β-glucan from Saccharomyces cerevisiae depressed IL-1β and TNF-α cytokine responses to re-stimulation with LPS, indicative of a tolerized state. However, bacillus Calmette-Guerin priming induced a trained state in porcine monocytes, as LPS re-stimulation enhanced IL-1β and TNF-α gene expression and protein production. We present the first evidence of innate memory in pig monocytes, with bacillus Calmette-Guerin (training) or Saccharomyces cerevisiae β-glucan (tolerance). Induction of a trained or tolerized state in vitro is a first step to identify agonists to alter the innate immune system at the animal level with the intent of enhancing disease resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号