首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 709 毫秒
1.
Zong Z  Lü X 《PloS one》2010,5(11):e14016

Background

Many SCCmec elements of coagulase-negative staphylococci (CoNS) could not be typed using multiplex PCR. Such a ‘non-typable’ SCCmec was encountered in a Staphylococcus cohnii isolate.

Methodology/Principal Findings

The SCCmec type of methicillin-resistant S. cohnii clinical isolate WC28 could not be assigned using multiplex PCR. Newly-designed primers were used to amplify ccrA and ccrB genes. The whole SCCmec was obtained by three overlapping long-range PCR, targeting regions from left-hand inverted repeat (IRL) to ccrA/B, from ccrA/B to mecA and from mecA to orfX. The region abutting IRL was identified using inverse PCR with self-ligated enzyme-restricted WC28 fragments as the template. WC28 SCCmec had a class A mec gene complex (mecI-mecR1-mecA). The ccrA and ccrB genes were closest (89.7% identity) to ccrA SHP of Staphylococcus haemolyticus strain H9 and to ccrB3 (90% identity) of Staphylococcus pseudintermedius strain KM241, respectively. Two new genes potentially encoding AAA-type ATPase were found in J1 region and a ψTn554 transposon was present in J2 region, while J3 region was the same as many SCCmec of Staphylococcus aureus. WC28 SCCmec abutted an incomplete SCC element with a novel allotype of ccrC, which was closest (82% identity) to ccrC1 allele 9 in Staphylococcus saprophyticus strain ATCC 15305. Only two direct target repeat sequences, one close to the 3′-end of orfX and the other abutting the left end of WC28 SCCmec, could be detected.

Conclusions/Significance

A new 35-kb SCCmec was characterized in a S. cohnii isolate, carrying a class A mec gene complex, new variants of ccrA5 and ccrB3 and two novel genes in the J1 region. This element is flanked by 8-bp perfect inverted repeats and is similar to type III SCCmec in S. aureus and a SCCmec in S. pseudintermedius but with different J1 and J3 regions. WC28 SCCmec was arranged in tandem with an additional SCC element with ccrC, SCCWC28, but the two elements might have integrated independently rather than constituted a composite. This study adds new evidence of the diversity of SCCmec in CoNS and highlights the need for characterizing the ‘non-typable’ SCCmec to reveal the gene pool associated with mecA.  相似文献   

2.
Zong Z  Peng C  Lü X 《PloS one》2011,6(5):e20191

Background

Methicillin-resistant coagulase-negative staphylococci (MR-CoNS) are opportunistic pathogens and serve as a large reservoir of staphylococcal cassette chromosome mec (SCCmec). Characterization of SCCmec in MR-CoNS can generate useful information on the mobilization and evolution of this element.

Methodology/Principal Findings

Non-repetitive MR-CoNS clinical isolates (n = 84; 39 S. epidermidis, 19 S. haemolyticus, 9 S. hominis, 6 S. capitis, 4 S. warneri, 2 S. cohnii, 2 S. saprophyticus, 1 S. kloosii, 1 S. simulans and 1 S. massiliensis) were collected. All isolates could grow on plates with 4 mg/L cefoxitin and all had mecA as detected by PCR. Strain typing using RAPD and ERIC-PCR revealed that almost all isolates were of different strains. SCCmec typing was performed using multiplex PCR published previously. For isolates in which SCCmec could not be typed, the mec complex classes were determined by additional PCR and the ccr genes were amplified with published or newly-designed primers and then sequenced. SCCmec types were assigned for 63 isolates by multiplex PCR and were assigned for 14 other isolates by PCR targeting mec and ccr. Among 77 isolates with determined SCCmec types, 54 had a single type, including type III (n = 19), IV (n = 14), V (n = 10), II (n = 2), I (n = 1), VIII (n = 1) and five unnamed types (n = 7), while 23 isolates had two types, III+V (n = 12), II+V (n = 8), II+IV (n = 2) or IV+V (n = 1). The five unnamed types were assigned UT1 (class A mec, ccrA1/ccrB4), UT2 (class C1 mec, ccrA4/ccrB4), UT3 (class A mec, ccrA5/ccrB3), UT4 (class C2 mec, ccrA2/ccrB2 plus ccrC1) and UT5 (class A mec, ccrA1/ccrB1 plus ccrC1).

Conclusions/Significance

SCCmec types III, IV and V were prevalent in MR-CoNS and many isolates could harbor more than one type. Several new types of SCCmec were identified, highlighting the great genetic diversity and the need of developing classification schemes for SCCmec in MR-CoNS.  相似文献   

3.
Coagulase-negative staphylococci (CoNS) are the microorganisms most frequently isolated from clinical samples and are commonly found in neonatal blood cultures. Oxacillin is an alternative treatment of choice for CoNS infections; however, resistance to oxacillin can have a substantial impact on healthcare by adversely affecting morbidity and mortality. The objective of this study was to detect and characterise oxacillin-resistant CoNS strains in blood cultures of newborns hospitalised at the neonatal ward of the University Hospital of the Faculty of Medicine of Botucatu. One hundred CoNS strains were isolated and the mecA gene was detected in 69 of the CoNS strains, including 73.2% of Staphylococcus epidermidis strains, 85.7% of Staphylococcus haemolyticus strains, 28.6% of Staphylococcus hominis strains and 50% of Staphylococcus lugdunensis strains. Among these oxacillin-resistant CoNS strains, staphylococcal cassette chromosome mec (SCCmec) type I was identified in 24.6%, type II in 4.3%, type III in 56.5% and type IV in 14.5% of the strains. The data revealed an increase in the percentage of CoNS strains isolated from blood cultures from 1991-2009. Furthermore, a predominant SCCmec profile of the oxacillin-resistant CoNS strains isolated from neonatal intensive care units was identified with a prevalence of SCCmec types found in hospital-acquired strains.  相似文献   

4.
This study compares the characteristics of Staphylococcus epidermidis (SE) and Staphylococcus haemolyticus (SH) isolates from epidemiologically unrelated infections in humans (Hu) (28 SE-Hu; 8 SH-Hu) and companion animals (CpA) (12 SE-CpA; 13 SH-CpA). All isolates underwent antimicrobial susceptibility testing, multilocus sequence typing and DNA microarray profiling to detect antimicrobial resistance and SCCmec-associated genes. All methicillin-resistant (MR) isolates (33/40 SE, 20/21 SH) underwent dru and mecA allele typing. Isolates were predominantly assigned to sequence types (STs) within a single clonal complex (CC2, SE, 84.8%; CC1, SH, 95.2%). SCCmec IV predominated among MRSE with ST2-MRSE-IVc common to both Hu (40.9%) and CpA (54.5%). Identical mecA alleles and nontypeable dru types (dts) were identified in one ST2-MRSE-IVc Hu and CpA isolate, however, all mecA alleles and 2/4 dts detected among 18 ST2-MRSE-IVc isolates were closely related, sharing >96.5% DNA sequence homology. Although only one ST-SCCmec type combination (ST1 with a non-typeable [NT] SCCmec NT9 [class C mec and ccrB4]) was common to four MRSH-Hu and one MRSH-CpA, all MRSH isolates were closely related based on similar STs, SCCmec genes (V/VT or components thereof), mecA alleles and dts. Overall, 39.6% of MR isolates harbored NT SCCmec elements, and ACME was more common amongst MRSE and CpA isolates. Multidrug resistance (MDR) was detected among 96.7% of isolates but they differed in the prevalence of specific macrolide, aminoglycoside and trimethoprim resistance genes amongst SE and SH isolates. Ciprofloxacin, rifampicin, chloramphenicol [fexA, cat-pC221], tetracycline [tet(K)], aminoglycosides [aadD, aphA3] and fusidic acid [fusB] resistance was significantly more common amongst CpA isolates. SE and SH isolates causing infections in Hu and CpA hosts belong predominantly to STs within a single lineage, harboring similar but variable SCCmec genes, mecA alleles and dts. Host and staphylococcal species-specific characteristics were identified in relation to antimicrobial resistance genes and phenotypes, SCCmec and ACME.  相似文献   

5.

Background

We describe coagulase-negative staphylococci (CoNS) isolates collected from ducklings exhibiting tremor in South Korea over the period of 2010 to 2011. Screening of antimicrobial susceptibility and analysis of SCCmec elements of CoNS were also investigated.

Results

Staphylococcus cohnii was the most frequent staphylococcus (9 isolates) and S. sciuri (4 isolates), S. lentus (3 isolate), S. simulans (1 isolate) and S. epidermidis (1 isolate) were also detected. Among the 15 antimicrobials tested in this study, resistance against oxacillin (15 isolates, 83.3%) was most frequently observed, but only one isolate (SNUDS-1) possessed mecA. This isolate was shown to possess SCCmec type III; the type 3 ccr complex and the class A mec complex.

Conclusions

Based on these results, isolate SNUDS-1 was shown to possess SCCmec type III; the type 3 ccr complex and the class A mec complex. Although the SCCmec type III is not predominant in human, MR-CoNS (Methicillin resistance Coagulase-negative staphylococci) in food animals should be monitored to prevent the dissemination of antimicrobial resistance genes and resistant pathogens to the community.
  相似文献   

6.
Aims:  To type the staphylococcal cassette chromosome (SCC) in coagulase-negative staphylococci (CoNS) from animal sources.
Methods and Results:  A total of 92 CoNS isolates recovered from farm animals was analysed. The top three staphylococcal species were Staphylococcus lentus (34), S. sciuri (31), and S. xylosus (13). The presence of the cassette chromosome recombinase (ccr) genes ccrA1 , ccrB1 , ccrA2 , ccrB2 , ccrA3 , ccrB3 and ccrC , the mec regulatory genes mecI and mecR1 , and Tn 554 was used to differentiate the SCC. A total of 60 of the 92 isolates were methicillin resistant. Among the 60 methicillin-resistant Staphylococcus spp. isolates, SCC mec ( mecA -carrying SCC) types I, III, IV and V were identified in 24 isolates based on the combinations of the ccr genes and the mec regulatory genes, with type III being predominant. The single S. epidermidis carried SCC mec type IV. SCC type III was also identified in two of 32 methicillin-susceptible isolates. Identical SCC mec types were present in different species of CoNS. Pulsed-field gel electrophoresis (PFGE) generated 64 patterns out of 81 PFGE typeable isolates. Indistinguishable clones were detected in animals from different farms.
Conclusions:  Heterogeneous SCC existed in CoNS of diverse genetic background. Both clonal transmission of methicillin-resistant CoNS and horizontal transfer of SCC mec occurred in the animal production environment.
Significance and Impact of the Study:  This study adds to our knowledge of SCC mec type and the diversity of SCC in CoNS.  相似文献   

7.
Staphylococci are one of the most prevalent microorganisms in bovine mastitis. Staphylococcus spp. are widespread in the environment, and can infect animals and humans as opportunistic pathogens. The objective of this study was to determine the frequency of methicillin-resistance (MR) among coagulase-negative staphylococci (CoNS) previously obtained from milk of mastitic cows in Brazil and to characterize the antimicrobial resistance phenotype/genotype and the SCCmec type of MRCoNS isolates. Identification of MRCoNS was based on both biochemical and molecular methods. Susceptibility testing for eleven antimicrobials was performed by disk-diffusion agar. Antimicrobial resistance genes and SCCmec were investigated by specific PCRs. Twenty-six MRCoNS were detected (20 % of total CoNS), obtained from 24 animals, and were identified as follows: S. epidermidis (7 isolates), S. chromogenes (7), S. warneri (6), S. hyicus (5) and S. simulans (1). All MRCoNS isolates carried mecA while the mecC gene was not detected in any CoNS. The SCCmec IVa was demonstrated in nine MRCoNS, while the remaining 17 isolates harbored non-typeable SCCmec cassettes. In addition to oxacillin and cefoxitin resistance, MRCoNS showed resistance to tetracycline (n = 7), streptomycin (n = 6), tobramycin (n = 6), and gentamicin (n = 4), and harbored the genes tet(K) (n = 7), str (n = 3), ant(4′) (n = 6) and aac(6′)-aph(2″) (n = 4), respectively. In addition, seven strains showed intermediate resistance to clindamycin and two to streptomycin, of which two harboured the lnu(B) and lsa(E) genes and two the aad(E) gene, respectively. One isolate presented intermediate erythromycin and clindamycin resistance and harbored an erm(C) gene with an uncommon 89-bp deletion rendering a premature stop codon. MRCoNS can be implicated in mastitis of cows and they constitute a reservoir of resistance genes that can be transferred to other pathogenic bacteria.  相似文献   

8.
We analyzed the occurrence and mechanisms of fusidic acid resistance present in staphylococci isolated from 59 healthy volunteers. The fingers of the volunteers were screened for the presence of staphylococci, and the collected isolates were tested for resistance to fusidic acid. A total of 34 fusidic acid resistant staphylococcal strains (all were coagulase-negative) were isolated from 22 individuals (22/59, 37.3%). Examination of the resistance genes revealed that acquired fusB or fusC was present in Staphylococcus epidermidis, Staphylococcus capitis subsp. urealyticus, Staphylococcus hominis subsp. hominis, Staphylococcus warneri and Staphylococcus haemolyticus. Resistance islands (RIs) carrying fusB were found in S. epidermidis and S. capitis subsp. urealyticus, while staphylococcal chromosome cassette (SCC)-related structures harboring fusC were found in S. hominis subsp. hominis. Genotypic analysis of S. epidermidis and S. hominis subsp. hominis indicated that the fus elements were disseminated in diverse genetic strain backgrounds. The fusC elements in S. hominis subsp. hominis strains were highly homologous to SCCfusC in the epidemic sequence type (ST) 239/SCCmecIII methicillin-resistant S. aureus (MRSA) or the pseudo SCCmec in ST779 MRSA. The presence of acquired fusidic acid resistance genes and their genetic environment in commensal staphylococci suggested that the skin commensal staphylococci may act as reservoir for fusidic acid resistance genes.  相似文献   

9.
Staphylococcus aureus becomes resistant to methicillin by acquiring a genomic island, known as staphylococcal chromosome cassette mec (SCCmec), which contains the methicillin resistance determinant, mecA. SCCmec is site-specifically integrated into the staphylococcal chromosome at a locus known as the SCCmec attachment site (attB). In an effort to gain a better understanding of the potential that methicillin-sensitive S. aureus (MSSA) isolates have for acquiring SCCmec, the nucleotide sequences of attB and surrounding DNA regions were examined in a diverse collection of 42 MSSA isolates. The chromosomal region surrounding attB varied among the isolates studied and appears to be a common insertion point for acquired foreign DNA. Insertions of up to 15.1 kb were found containing open reading frames with homology to enterotoxin genes, restriction-modification systems, transposases, and several sequences that have not been previously described in staphylococci. Two groups, containing eight and four isolates, had sequences found in known SCCmec elements, suggesting SCCmec elements may have evolved through repeated DNA insertions at this locus. In addition, the attB sequences of the majority of MSSA isolates in this collection differ from the attB sequences of strains for which integrase-mediated SCCmec insertion or excision has been demonstrated, suggesting that some S. aureus isolates may lack the ability to site-specifically integrate SCCmec into their chromosomes.  相似文献   

10.
Staphylococcus aureus is a commensal gram positive bacteria which causes severe and non severe infections in humans and livestock. In India, ST772 is a dominant and ST672 is an emerging clone of Staphylococcus aureus. Both cause serious human diseases, and carry type V SCCmec elements. The objective of this study was to characterize SCCmec type V elements of ST772 and ST672 because the usual PCR methods did not amplify all primers specific to the type. Whole genome sequencing analysis of seven ST772 and one ST672 S. aureus isolates revealed that the SCCmec elements of six of the ST772 isolates were the smallest of the extant type V elements and in addition have several other novel features. Only one ST772 isolate and the ST672 isolate carried bigger SCCmec cassettes which were composites carrying multiple ccrC genes. These cassettes had some similarities to type V SCCmec element from M013 isolate (ST59) from Taiwan in certain aspects. SCCmec elements of all Indian isolates had an inversion of the mec complex, similar to the bovine SCCmec type X. This study reveals that six out of seven ST772 S. aureus isolates have a novel type V (5C2) SCCmec element while one each of ST772 and ST672 isolates have a composite SCCmec type V element (5C2&5) formed by the integration of type V SCCmec into a MSSA carrying a SCC element, in addition to the mec gene complex inversions and extensive recombinations.  相似文献   

11.

Background

Among Coagulase-Negative Staphylococci (CoNS), Staphylococcus hominis represents the third most common organism recoverable from the blood of immunocompromised patients. The aim of this study was to characterize biofilm formation, antibiotic resistance, define the SCCmec (Staphylococcal Chromosomal Cassette mec) type, and genetic relatedness of clinical S. hominis isolates.

Methodology

S. hominis blood isolates (n = 21) were screened for biofilm formation using crystal violet staining. Methicillin resistance was evaluated using the cefoxitin disk test and the mecA gene was detected by PCR. Antibiotic resistance was determined by the broth microdilution method. Genetic relatedness was determined by pulsed-field gel electrophoresis (PFGE) and SCCmec typed by multiplex PCR using two different methodologies described for Staphylococcus aureus.

Results

Of the S. hominis isolates screened, 47.6% (10/21) were categorized as strong biofilm producers and 23.8% (5/21) as weak producers. Furthermore, 81% (17/21) of the isolates were methicillin resistant and mecA gene carriers. Resistance to ampicillin, erythromycin, and trimethoprim was observed in >70% of isolates screened. Each isolate showed a different PFGE macrorestriction pattern with similarity ranging between 0–95%. Among mecA-positive isolates, 14 (82%) harbored a non-typeable SCCmec type: eight isolates were not positive for any ccr complex; four contained the mec complex A ccrAB1 and ccrC, one isolate contained mec complex A, ccrAB4 and ccrC, and one isolate contained the mec complex A, ccrAB1, ccrAB4, and ccrC. Two isolates harbored the association: mec complex A and ccrAB1. Only one strain was typeable as SCCmec III.

Conclusions

The S. hominis isolates analyzed were variable biofilm producers had a high prevalence of methicillin resistance and resistance to other antibiotics, and high genetic diversity. The results of this study strongly suggested that S. hominis isolates harbor new SCCmec structural elements and might be reservoirs of ccrC1 in addition to ccrAB1 and mec complex A.  相似文献   

12.

Background

The mecA gene, encoding methicillin resistance in staphylococci, is located on a mobile genetic element called Staphylococcal Cassette Chromosome mec (SCCmec). Horizontal, interspecies transfer of this element could be an important factor in the dissemination of methicillin-resistant S. aureus (MRSA). Previously, we reported the isolation of a closely related methicillin-susceptible Staphylococcus aureus (MSSA), MRSA and potential SCCmec donor Staphylococcus epidermidis isolate from the same patient. Based on fingerprint techniques we hypothesized that the S. epidermidis had transferred SCCmec to the MSSA to become MRSA. The aim of this study was to show that these isolates form an isogenic pair and that interspecies horizontal SCCmec transfer occurred.

Methodology/Results

Whole genome sequencing of both isolates was performed and for the MSSA gaps were closed by conventional sequencing. The SCCmec of the S. epidermidis was also sequenced by conventional methods. The results show no difference in nucleotide sequence between the two isolates except for the presence of SCCmec in the MRSA. The SCCmec of the S. epidermidis and the MRSA are identical except for a single nucleotide in the ccrB gene, which results in a valine to alanine substitution. The main difference with the closely related EMRSA-16 is the presence of SaPI2 encoding toxic shock syndrome toxin and exfoliative toxin A in the MSSA-MRSA pair. No transfer of SCCmec from the S. epidermidis to the MSSA could be demonstrated in vitro.

Conclusion

The MSSA and MRSA form an isogenic pair except for SCCmec. This strongly supports our hypothesis that the MRSA was derived from the MSSA by interspecies horizontal transfer of SCCmec from S. epidermidis O7.1.  相似文献   

13.
The gene encoding resistance to methicillin and other β-lactam antibiotics in staphylococci, mecA, is carried on a genomic island, SCCmec (for staphylococcal cassette chromosome mec). The chromosomal excision and integration of types I to IV SCCmec are catalyzed by the site-specific recombinases CcrA and CcrB, the genes for which are encoded on each element. We sought to identify the relative contributions of CcrA and CcrB in the excision and integration of SCCmec. Purified CcrB but not CcrA was shown to mediate the gel shift of chromosomal target integration sequences (attB) in electrophoretic mobility shift assays. However, preincubation of CcrB-DNA complexes with increasing concentrations of CcrA blocked gel shift. The interaction of CcrB and CcrA was confirmed by Escherichia coli two-hybrid analysis. SCCmec excision mediated by plasmid-encoded and inducible ccrA, ccrB, or both genes was assessed by PCR in Staphylococcus aureus. CcrB alone could mediate excision but excision was at an alternate att site (attR2) within the right extremity of SCCmec. In contrast, both CcrB and CcrA were required to mediate excision at the chromosomal attB site (called attR when SCCmec is integrated). Insertion of a plasmid containing the SCCmec att site (attS) into the chromosome required both CcrA and CcrB, but CcrA overexpression lowered integration frequency. Thus, while CcrB binds DNA, interaction between CcrA and CcrB, in a precise ratio, is required for attB site-specific excision and SCCmec chromosomal insertion.Staphylococcus aureus is one of the most common causes of serious human bacterial infections, both in the hospital and the community (33). Therapy of these infections is made more difficult by the development of resistance to drugs with antistaphylococcal activity such as the beta-lactam antibiotics. Resistance to beta-lactam antibiotics in staphylococci is mediated by a beta-lactamase and by a beta-lactam-resistant target transpeptidase, penicillin-binding protein 2a (PBP2a) (4, 5, 8). However, while the beta-lactamase has a narrow substrate specificity, limited to penicillins, PBP2a resists inactivation by all beta-lactam antibiotics and can cross-link peptidoglycan when all other target PBPs are rendered nonfunctional by beta-lactams. The latter is called methicillin resistance and is the most important clinical resistance phenotype among staphylococci (8) The gene for PBP2a, mecA, is located on a genomic island called SCCmec (for staphylococcal cassette chromosome mec) that is integrated into the staphylococcal chromosome at a specific site. In addition to mecA, all SCCmec elements carry intact or mutant mecA regulators (mecR1/mecI) and genes that mediate the site-specific integration and excision of SCCmec (ccr genes) (14). SCCmec elements have been typed according to the sequences of the ccr and mec complexes with five cores (types I to V) being prevalent but with considerable variation in the genetic organization within each element (14-17, 22).SCCmec is presumed to be a mobile genetic element, which can integrate into and excise from the chromosome by site-specific recombination between a site on SCCmec (attS) and one on the chromosome (attB). attB comprises the last 15 bp of a highly conserved gene called orfX that is located near the S. aureus origin of replication (15, 19). When SCCmec is inserted, the attB sequence is duplicated at the other end of the element with the site in orfX now called attR and the one abutting the non-orfX end of SCCmec designated attL. When SCCmec excises, the attB site is reconstituted in the chromosome and the two ends of the element come together to form attS within a nonreplicating circular version of SCCmec.The site-specific recombination of SCCmec is catalyzed by its encoded ccr recombinases, CcrA and CcrB for types I to IV and CcrC for type V. CcrA and CcrB belong to a family of large serine invertase and resolvases which consist of resolvases, invertases, phage integrases, and transposases (6, 10, 29, 31). All of them contain a conserved catalytic motif and some contain DNA-binding domains at either the N or the C terminus. The catalytic domains can either function as both integrases and excisases or as only integrases that require additional proteins to mediate excision (6, 29, 30, 31).The ccrA and ccrB genes are part of two-gene operons of 1,350 and 1646 bp in S. aureus strain N315 encoding proteins of 52.6 and 62.7 kDa, respectively. Although there is considerable variation at the amino acid level among the CcrA and CcrB proteins found in types I to IV SCCmec, plasmid-encoded CcrA and CcrB recombinases from each type can excise SCCmec from any of the others (23). However, CcrC can only excise type V SCCmec (16). There has been little examination of the role of each of these proteins in recombination or in DNA binding. In the present study we sought to define the precise roles of CcrA and CcrB in DNA binding and in the excision and integration of SCCmec in S. aureus. This is the first step in understanding the host range of SCCmec and how it may move among staphylococcal isolates in nature.  相似文献   

14.
Development of antimicrobial resistance has been assigned to excess and misuse of antimicrobial agents. Staphylococci are part of the normal flora but are also potential pathogens that have become essentially resistant to many known antibiotics. Resistances in coagulase negative staphylococci (CoNS) are suggested to evolve due to positive selective pressure following antibiotic treatment. This study investigated the presence of the nine most commonly used antimicrobial agents in human urine from outpatients in two hospitals in Ghana in relation to CoNS resistance. Urine and CoNS were sampled (n = 246 and n = 96 respectively) from patients in two hospitals in Ghana. CoNS were identified using Gram staining, coagulase test, and MALDI-TOF/MS, and the antimicrobial susceptibility to 12 commonly used antimicrobials was determined by disk diffusion. Moreover an analytical method was developed for the determination of the nine most commonly used antimicrobial agents in Ghana by using solid-phase extraction in combination with HPLC-MS/MS using electron spray ionization. The highest frequency of resistance to CoNS was observed for penicillin V (98%), trimethoprim (67%), and tetracycline (63%). S. haemolyticus was the most common isolate (75%), followed by S. epidermidis (13%) and S. hominis (6%). S. haemolyticus was also the species displaying the highest resistance prevalence (82%). 69% of the isolated CoNS were multiple drug resistant (≧4 antibiotics) and 45% of the CoNS were methicillin resistant. Antimicrobial agents were detected in 64% of the analysed urine samples (n = 121) where the most frequently detected antimicrobials were ciprofloxacin (30%), trimethoprim (27%), and metronidazole (17%). The major findings of this study was that the prevalence of detected antimicrobials in urine was more frequent than the use reported by the patients and the prevalence of resistant S. haemolyticus was more frequent than other resistant CoNS species when antimicrobial agents were detected in the urine.  相似文献   

15.
The gene orfX is conserved among all staphylococci, and its complete sequence is maintained upon insertion of the staphylococcal chromosome cassette mec (SCCmec) genomic island, containing the gene encoding resistance to β-lactam antibiotics (mecA), into its C terminus. The function of OrfX has not been determined. We show that OrfX was constitutively produced during growth, that orfX could be inactivated without altering bacterial growth, and that insertion of SCCmec did not alter gene expression. We solved the crystal structure of OrfX at 1.7 Å and found that it belongs to the S-adenosyl-l-methionine (AdoMet)-dependent α/β-knot superfamily of SPOUT methyltransferases (MTases), with a high structural homology to YbeA, the gene product of the Escherichia coli 70 S ribosomal MTase RlmH. MTase activity was confirmed by demonstrating the OrfX-dependent methylation of the Staphylococcus aureus 70 S ribosome. When OrfX was crystallized in the presence of its AdoMet substrate, we found that each monomer of the homodimeric structure bound AdoMet in its active site. Solution studies using isothermal titration calorimetry confirmed that each monomer bound AdoMet but with different binding affinities (Kd = 52 ± 0.4 and 606 ± 2 μm). In addition, the structure shows that the AdoMet-binding pocket, formed by a deep trefoil knot, contains a bound phosphate molecule, which is the likely nucleotide methylation site. This study represents the first characterization of a staphylococcal ribosomal MTase and provides the first crystal structure of a member of the α/β-knot superfamily of SPOUT MTases in the RlmH or COG1576 family with bound AdoMet.  相似文献   

16.
Staphylococcal cassette chromosome mec (SCCmec) type VII, found in community-acquired methicillin-resistant Staphylococcus aureus belonging to multilocus sequence type (ST) 59 from Taiwan, was 41,347 bp in size and flanked by 19-bp attL and attR sequences. It was inserted into the att site at the 3′-end of orfX in the orfX-orfY (putative tRNA dihydrouridine synthase) region in ST59 S. aureus. The 5′-end side 9911-bp core region of SCCmecVII, which contained attL and the cassette chromosome recombinase gene (ccrC8), was shared by other SCC structures, SCCmercury and mosaic SCCmec from Switzerland, indicating its important role in SCC evolution. The central 21,245-bp core region contained mec complex (C2b) and another ccrC gene (ccrC2), and was highly homologous to SCCmecV, but with substitutions, insertion and replacement. The 3′-end side 10,191-bp sequence was unique. Therefore, SCCmecVII has emerged through recombination and insertion events. Multiplex and real-time PCR assays were developed for specific detection of SCCmecVII.  相似文献   

17.
This study aimed to correlate the presence of ica genes, biofilm formation and antimicrobial resistance in 107 strains of Staphylococcus epidermidis isolated from blood cultures. The isolates were analysed to determine their methicillin resistance, staphylococcal cassette chromosome mec (SCCmec) type, ica genes and biofilm formation and the vancomycin minimum inhibitory concentration (MIC) was measured for isolates and subpopulations growing on vancomycin screen agar. The mecA gene was detected in 81.3% of the S. epidermidis isolated and 48.2% carried SCCmec type III. The complete icaADBC operon was observed in 38.3% of the isolates; of these, 58.5% produced a biofilm. Furthermore, 47.7% of the isolates grew on vancomycin screen agar, with an increase in the MIC in 75.9% of the isolates. Determination of the MIC of subpopulations revealed that 64.7% had an MIC ≥ 4 μg mL-1, including 15.7% with an MIC of 8 μg mL-1 and 2% with an MIC of 16 μg mL-1. The presence of the icaADBC operon, biofilm production and reduced susceptibility to vancomycin were associated with methicillin resistance. This study reveals a high level of methicillin resistance, biofilm formation and reduced susceptibility to vancomycin in subpopulations of S. epidermidis. These findings may explain the selection of multidrug-resistant isolates in hospital settings and the consequent failure of antimicrobial treatment.  相似文献   

18.
Emergence of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative staphylococci (MR-CoNS) in bovine milk is a major public health concern. The primary purpose of this research was to determine molecular genetic characteristics and antibiotic resistance of staphylococcal isolates recovered from milk of mastitic cows in the Shaanxi Province in Northwestern China. One hundred and thirteen methicillin-susceptible Staphylococcus aureus (MSSA), one mecA-positive and phenotype-positive MRSA, seven mecA- and mecC- negative but phenotype-positive MRSA and two MR-CoNS including one oxacillin-susceptible mecA-positive Staphylococcus haemolyticus (OS-MRSH) and one mecA-positive and methicillin-resistant Staphylococcus epidermidis (MRSE) isolates were recovered from 214 quarter milk samples on 4 dairy farms. All above 123 isolates were subjected to antibiotic resistance profiling. S. aureus isolates were also genotyped using the spa typing and the multilocus sequence typing (MLST). Eight MRSA and 2 MR-CoNS isolates were additionally tested for SCCmec types. Resistance was common among isolates against ampicillin or penicillin (80.5%), kanamycin (68.3%), gentamicin (67.5%), tetracycline (43.9%) and chloramphenicol (30.1%). However, no isolate was resistant to vancomycin or teicoplanin. Twenty, 29 and 58 isolates showed resistance to 1, 2 or more than 2 antibiotics, respectively. The predominant multidrug resistance profile was penicillin/ampicillin/kanamycin/gentamicin/tetracycline (46 isolates). Most S. aureus isolates belonged to spa types t524 (n = 63), t11772 (a new type, n = 31) and t4207 (n = 15). At the same time, MLST types ST71 (n = 67) and ST2738 (a new type, n = 45) were identified as dominant sequence types. The mecA-positive and phenotype-positive MRSA isolate had a composite genotype t524-ST71-SCCmecIVa, while 7 mecA-negative but phenotype-positive MRSA isolates were all t524-ST71. The OS-MRSH isolate contained a type V SCCmec cassette, while the MRSE isolate possessed a non-typeable SCCmec. The spa-MLST types t11772-ST2738 (n = 27), t11807-ST2683 (n = 4) and t11771-ST2738 (n = 3) were newly identified genotypes of S. aureus. These new genotypes and multidrug-resistant staphylococci could pose additional threat to animal and human health.  相似文献   

19.
We sought to study antibiotic resistance and molecular epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) from lower respiratory tracts of patients in Shanghai Pulmonary Hospital. Hundred and seven strains of MRSA were isolated from the patients of nine wards. The tests for antibiotic resistance (Kirby–Bauer paper dispersion method), the Panton–Valentine Leukocidin (PVL) and Staphyloccoccal Cassette Chromosome mec (SCCmec) genes (PCR), and homology analysis (32 randomly selected MRSA strains; pulsed-field gel electrophoresis) were carried out. All 107 strains were susceptible to vancomycin, teicoplanin, and linezolid, but highly or completely resistant to tetracycline, gentamicin, clindamycin, levofloxacin, azithromycin, erythromycin, trimethoprim/sulphamethoxazole, and ciprofloxacin. All 107 strains were negative for PVL gene. Most of the strains (81.3 %) were SCCmec III type, while the SCCmec II and IV types were less frequent (15.9 and 2.8 %, respectively). No SCCmec I or V types were detected. The homology analysis test showed that 32 MRSA strains could be divided into 4 groups: type A (25 strains), type B (5 strains), type C (1 strain), and type D (1 strain). The type A included 3 subtypes: A1 (17 strains), A2 (1 strain), and A3 (7 strains). Further, most of the strains were isolated from the same wards or units (e.g., intensive care unit or tuberculosis wards) within a short period of time, indicating an outbreak status. In conclusion, the observed MRSA from low respiratory tracts from patients at Shanghai Pulmonary Hospital were multiple-resistant, with the SCCmec III being the main documented genotype.  相似文献   

20.
Bacterial virulence and antibiotic resistance have a significant influence on disease severity and treatment options during bacterial infections. Frequently, the underlying genetic determinants are encoded on mobile genetic elements (MGEs). In the leading human pathogen Staphylococcus aureus, MGEs that contain antibiotic resistance genes commonly do not contain genes for virulence determinants. The phenol-soluble modulins (PSMs) are staphylococcal cytolytic toxins with a crucial role in immune evasion. While all known PSMs are core genome-encoded, we here describe a previously unidentified psm gene, psm-mec, within the staphylococcal methicillin resistance-encoding MGE SCCmec. PSM-mec was strongly expressed in many strains and showed the physico-chemical, pro-inflammatory, and cytolytic characteristics typical of PSMs. Notably, in an S. aureus strain with low production of core genome-encoded PSMs, expression of PSM-mec had a significant impact on immune evasion and disease. In addition to providing high-level resistance to methicillin, acquisition of SCCmec elements encoding PSM-mec by horizontal gene transfer may therefore contribute to staphylococcal virulence by substituting for the lack of expression of core genome-encoded PSMs. Thus, our study reveals a previously unknown role of methicillin resistance clusters in staphylococcal pathogenesis and shows that important virulence and antibiotic resistance determinants may be combined in staphylococcal MGEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号