首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一株好氧反硝化菌的分离及特性研究   总被引:3,自引:0,他引:3  
从土壤中分离得到一株好氧反硝化细菌CY1, 该菌株在厌氧和好氧条件下均具有反硝化能力。硝酸盐氮初始浓度为137.25 mg/L, 30 h内硝酸盐氮去除率分别为99.98%(厌氧)和60.16%(好氧)。通过形态学特征、生理生化特性及16S rDNA同源性比较对菌株CY1进行鉴定, 初步判断CY1为泛养副球菌(Paracoccus pantotrophus)。  相似文献   

2.
反硝化除磷菌筛选及其特性研究   总被引:1,自引:0,他引:1  
【目的】研究反硝化除磷菌特性。【方法】通过微生物筛选和生物学特性研究方法,从对虾养殖池塘中筛选出多株可在有氧条件下同时具有反硝化除磷功能的菌种。【结果】菌株LY-1可在18 h内将初始量为10 mg/L的亚硝酸盐氮降低至0.04 mg/L,PO43?-P降低至0.05 mg/L。在DO浓度为5.0?5.9 mg/L时,该菌反硝化除磷率近100%。试验选取具有反硝化除磷功能的枯草芽孢杆菌为阳性对照菌,大肠杆菌为阴性对照菌,比较研究了菌株LY-1在不同pH、温度、盐度、PO43?-P浓度、亚硝酸盐浓度时反硝化除磷的强弱,在pH为5?9范围时,该菌亚硝酸盐氮去除率近99%,PO43?-P去除率86%;温度为30°C时,该菌反硝化除磷率近100%;盐度为5‰?15‰、PO43?-P浓度为10 mg/L、亚硝酸盐氮浓度为20 mg/L时,该菌亚硝酸盐氮和PO43?-P去除率均可达99%。【结论】菌株LY-1反硝化除磷性能显著高于对照菌(P<0.05)。通过菌株LY-1形态学观察、生理生化及16S rRNA基因序列分析,初步鉴定为蜡样芽孢杆菌(Bacillus cereus)。  相似文献   

3.
一株海洋好氧反硝化细菌的鉴定及其好氧反硝化特性   总被引:5,自引:1,他引:4  
【目的】从处理海洋养殖循环水的生物滤器生物膜中分离到1株具有好氧反硝化活性的细菌(菌株2-8),并进一步研究了该菌的分类地位及反硝化特性。【方法】采用16S rRNA基因序列分析对菌株进行初步鉴定,采用好氧培养技术,探讨了碳源种类、起始pH、NaCl浓度、C/N、温度和摇床转速对菌株2-8好氧反硝化活性的影响。【结果】该菌株的16S rRNA基因序列与Pseudomonas segetis FR1439T(AY770691)的相似性最高,达到99.9%,因此初步鉴定菌株2-8属于假单胞菌属(Pseudomonas sp.2-8)。碳源类型和C/N对其好氧反硝化作用的影响最为显著,以柠檬酸钠为唯一碳源,C/N为15时脱氮效率最高,低C/N导致亚硝酸盐的积累;其好氧反硝化的最适温度和pH分别为30℃和7.5;菌株2-8在摇床转速为160r/min下脱氮效果最好;NaCl浓度对其反硝化活性的影响不明显。【结论】在初始硝酸氮浓度为140mg/L,以柠檬酸钠为唯一碳源、C/N为15、pH为7.5、NaCl浓度为30g/L,30℃以及160r/min摇床培养的条件下,菌株2-8在48h内脱氮率可达92%且无亚硝酸盐积累。  相似文献   

4.
Two kinds of phenol-degrading denitrifying bacteria, Azoarcus sp. strain CC-11 and spiral bacterial strain CC-26, were isolated from the same enrichment culture after 1 and 3 years of incubation, respectively. Both strains required ferrous ions for growth, but strain CC-26 grew better than strain CC-11 grew under iron-limited conditions, which may have resulted in the observed change in the phenol-degrading bacteria during the enrichment process. Strain CC-26 grew on phenol, benzoate, and other aromatic compounds under denitrifying conditions. Phylogenetic analysis of 16S ribosomal DNA sequences revealed that this strain is most closely related to a Magnetospirillum sp., a member of the alpha subclass of the class Proteobacteria, and is the first strain of a denitrifying aromatic compound-degrading bacterium belonging to this group. Unlike previously described Magnetospirillum strains, however, this strain did not exhibit magnetotaxis. It grew on phenol only under denitrifying conditions. Other substrates, such as acetate, supported aerobic growth, and the strain exhibited microaerophilic features.  相似文献   

5.
A bacterium that uses 2-chloroethanol as sole energy and carbon source coupled to denitrification was isolated from 1,2-dichloroethane-contaminated soil. Its 16 S rDNA sequence showed 98% similarity with the type strain of Pseudomonas stutzeri (DSM 5190) and the isolate was tentatively identified as Pseudomonas stutzeri strain JJ. Strain JJ oxidized 2-chloroethanol completely to CO(2) with NO(3)(- )or O(2) as electron acceptor, with a preference for O(2) if supplied in combination. Optimum growth on 2-chloroethanol with nitrate occurred at 30 degrees C with a mu(max) of 0.14 h(-1) and a yield of 4.4 g protein per mol 2-chloroethanol metabolized. Under aerobic conditions, the mu(max) was 0.31 h(-1). NO(2)(-) also served as electron acceptor, but reduction of Fe(OH)(3), MnO(2), SO(4)(2-), fumarate or ClO(3)(-) was not observed. Another chlorinated compound used as sole energy and carbon source under aerobic and denitrifying conditions was chloroacetate. Various different bacterial strains, including some closely related Pseudomonas stutzeri strains, were tested for their ability to grow on 2-chloroethanol as sole energy and carbon source under aerobic and denitrifying conditions, respectively. Only three strains, Pseudomonas stutzeri strain LMD 76.42, Pseudomonas putida US2 and Xanthobacter autotrophicus GJ10, grew aerobically on 2-chloroethanol. This is the first report of oxidation of 2-chloroethanol under denitrifying conditions by a pure bacterial culture.  相似文献   

6.
Herein we describe a novel and effective screening method for aerobic denitrifying bacteria. For this procedure, we utilized KCN to inhibit the electron transference from Cytaa3 to oxygen in the bacteria respiratory chain. We employed a 3-h aeration operation cycle and intermittent rotations. The resultant bacterial suspensions were plated on a KCN-screening medium and incubated aerobically. Single colonies were selected and incubated in an aerobic culture medium. Culture nitrate and nitrite levels were determined over time, and ultimately four bacterial strains that performed denitrifying under aerobic conditions were identified by this method. Of these, strain Y2-1-1 demonstrated the best aerobic denitrifying ability. In a 5-day test, the NO3--N of the aerobic culture medium was reduced from 282.0+/-8.3 mg L(-1) to 149.2+/-17.1 mg L(-1), with little nitrite or N2O production. The morphological, physiological and biochemical characteristics and the 16S rRNA gene sequence homology comparison data for this strain were consistent with the classification of the genus Pseudomonas. We named this strain Pseudomonas sp. Y2-1-1.  相似文献   

7.
A strain D3 of denitrifying bacterium was isolated from an anammox reactor,and identi-fied as Pseudomonas mendocina based on the morphological and physiological assay,Vitek test,Biolog test,(G C) mol% content,and 16S rDNA phylogenetic analysis.As a typical denitrifying bac-terium,strain D3 achieved the maximal nitrate reduction rate of 26.2 mg/(L·d) at the nitrate concen-tration of 88.5 mg N/L.The optimal pH and growth temperature were 7.84 and 34.9℃,respectively.Strain D3 was able to oxidize ammonia under anaerobic condition.The maximum nitrate and ammo-nium utilization rates were 6.37 mg/(L·d) and 3.34 mg/(L·d) ,respectively,and the consumption ratio of ammonia to nitrate was 1:1.91.Electron microscopic observation revealed peculiar cell inclusions in strain D3.Because of its relation to anammox activity,strain D3 was presumed to be anammoxosome.The present investigation proved that denitrifying bacteria have the anammox ability,and the results have engorged the range of anammox populations.  相似文献   

8.
A strain D3 of denitrifying bacterium was isolated from an anammox reactor, and identified as Pseudomonas mendocina based on the morphological and physiological assay, Vitek test, Biolog test, (G+C) mol% content, and 16S rDNA phylogenetic analysis. As a typical denitrifying bacterium, strain D3 achieved the maximal nitrate reduction rate of 26.2 mg/(L·d) at the nitrate concentration of 88.5 mg N/L. The optimal pH and growth temperature were 7.84 and 34.9°C, respectively. Strain D3 was able to oxidize ammonia under anaerobic condition. The maximum nitrate and ammonium utilization rates were 6.37 mg/(L·d) and 3.34 mg/(L·d), respectively, and the consumption ratio of ammonia to nitrate was 1:1.91. Electron microscopic observation revealed peculiar cell in clusions in strain D3. Because of its relation to anammox activity, strain D3 was presumed to be anammoxosome. The present investigation proved that denitrifying bacteria have the anammox ability, and the results have engorged the range of anammox populations.  相似文献   

9.
10.
Aerobic granules effectively degrade phenol at high concentrations. This work cultivated aerobic granules that can degrade phenol at a constant rate of 49 mg-phenol/g x VSS/h up to 1,000 mg/L of phenol. Fluorescent staining and confocal laser scanning microscopy (CLSM) tests demonstrated that an active biomass was accumulated at the granule outer layer. A strain with maximum ability to degrade phenol and a high tolerance to phenol toxicity isolated from the granules was identified as Candida tropicalis via 18S rRNA sequencing. This strain degrades phenol at a maximum rate of 390 mg-phenol/g x VSS/h at pH 6 and 30 degrees C, whereas inhibitory effects existed at concentrations >1,000 mg/L. The Haldane kinetic model elucidates the growth and phenol biodegradation kinetics of the C. tropicalis. The fluorescence in situ hybridization (FISH) and CLSM test suggested that the Candida strain was primarily distributed throughout the surface layer of granule; hence, achieving a near constant reaction rate over a wide range of phenol concentration. The mass transfer barrier provided by granule matrix did not determine the reaction rates for the present phenol-degrading granule.  相似文献   

11.
The supernatant from mesophilic anaerobic digestion of piggery wastewater is characterised by a high amount of COD (4.1 g COD L(-1)), ammonium (2.3g NH(4)(+)-NL(-1)) and suspended solids (2.5 g SS L(-1)). This effluent can be efficiently treated by means of a Sequencing Batch Reactor (SBR) strategy for biological COD, SS and nitrogen removal including a Coagulation/Flocculation step. Total COD and SS reduction yields higher than 66% and 74%, respectively, and a total nitrogen removal (via nitrite) of more than 98% were reached when working with HRT 2.7 days, SRT 12 days, temperature 32 degrees C, three aerobic/anoxic periods, without external control of pH and under limited aeration flow. The inhibition of nitrite oxidizing biomass was achieved by the working free ammonia concentration and the restricted air supply (dissolved oxygen concentration below 1 mg O(2)L(-1)). Since a part of the total COD was colloidal and/or refractory, a Coagulation/Flocculation step was implemented inside the SBR operating strategy to meet a suitable effluent quality to be discharged. Several Jar-Tests demonstrated that the optimal concentration of FeCl(3) was 800 mg L(-1). A respirometric assay showed that this coagulant dosage did not affect the biological activity of nitrifying/denitrifying biomass.  相似文献   

12.
产1,3-丙二醇新型重组大肠杆菌的构建   总被引:9,自引:1,他引:8  
利用PCR技术从大肠杆菌(Escherichia coli )中扩增出1.16 kb的编码1,3-丙二醇氧化还原酶同工酶的基因yqhD,将其连接到表达载体pEtac,得到重组载体pEtac-yqhD,重组载体在大肠杆菌JM109中得到高效表达。SDS_PAGE分析显示融合表达产物的分子量均为43 kD,同核酸序列测定所推导的值相符。对含有yqh-D的基因工程菌进行表达研究表明:37 ℃,以1.0 mmol /L IPTG诱导4 h,1,3-丙二醇氧化还原酶同工酶的酶活力达到120 u/mg蛋白,而对照菌株的酶活力为0.5 u/mg蛋白。再将含甘油脱水酶基因dhaB和含1,3-丙二醇氧化还原酶同工酶基因yqhD的重组质粒共转化大肠杆菌JM109得到重组大肠杆菌JM109(pUCtac-dhaB, pEtac-yqhD),该菌株在好氧条件下,以1.0mmol/L IPTG诱导可将50 g/L甘油转化为38.0 g/L 1,3-丙二醇。首次发现1,3-丙二醇氧化还原酶同工酶在好氧条件下表现出较高的活性。  相似文献   

13.
Herein, a denitrifying bacterium that produced greenish fluorescent pigment under aerobic conditions was accidentally isolated from municipal sewage sludge. Using 16S-rDNA sequence analysis, we identified the isolate as Pseudomonas aeruginosa R12, with 100% similarity. We achieved the highest pigment production rate (1.36 mg/L/h) in a 1-L bioreactor under aerobic conditions, using the optimal culture parameters determined in this study: 37°C, pH 8.0, 200 rpm, 5 wm aeration, and medium containing succinate and (NH4)2SO4. The pigment was not a secondary metabolite and had no antibacterial activity on its co-isolates. Under anaerobic conditions, the isolate produced mainly N2 and behaved as a strong denitrifier, displaying synergistic denitrification with co-isolated denitrifiers. To our knowledge, herein we have described the first instance in which P. aeruginosa R12 produces a fluorescent pigment under aerobic conditions. This newly-isolated strain therefore shows potential as a commercial resource for natural pigment.  相似文献   

14.
15.
Four samples of natural ecosystems and one sample from an activated sludge treatment plant were mixed together and progressively adapted to alternating aerobic/anoxic phases in the presence of nitrate in order to enrich the microflora in aerobic denitrifiers. Aerobic denitrifying performances of this mixed ecosystem at various dissolved oxygen concentrations and various carbon–nitrogen loads were evaluated and compared to those obtained with the aerobic denitrifier Microvirgula aerodenitrificans. The consortium and the pure strain exhibited an aerobic denitrifying activity at air saturation conditions (7 mg dissolved oxygen l–1), i.e. there was co-respiration of the two electron acceptors with significant specific nitrate reduction rates. Dissolved oxygen concentrations had no influence on denitrifying performances above a defined threshold: 0.35 mg l–1 for the consortium and 4.5 mg l–1 for M. aerodenitrificans respectively. Under these thresholds, decreasing the dissolved oxygen concentrations enhanced the denitrifying activity of each culture. The higher the carbon and nitrogen loads, the higher the performance of the aerobic denitrifying ecosystem. However, for M. aerodenitrificans, the nitrate reduction percentage was affected more by variations in nitrogen load than in carbon load. Received: 6 December 1999 / Received revision: 8 March 2000 / Accepted: 10 March 2000  相似文献   

16.
Phenol degradation by Candida tropicalis and its fusant, which is produced using protoplast fusion as a selective technique, is evaluated under batch and high concentration conditions. The respirometric data show that oxygen uptake activities of both yeast strains peak at pH 7.0 and 32 degrees C, but the fusant is more active than the control strain. Although the data show that both yeast strains are capable of sustaining discernible degradation in the presence of phenol inhibition, however, the C. tropicalis fusant is capable of attaining better phenol degradation than the control strain and it is less susceptible to phenol inhibition. Under the conditions tested, C. tropicalis is completely inhibited at phenol concentrations >/=3,300 mg/L, whereas for the C. tropicalis fusant complete inhibition is absent until phenol concentrations are >/=4, 000 mg/L. The observed cell yields of both yeast strains are virtually identical and remain fairly constant at approximately 0.5 mg MLVSS/mg C6H5OH (MLVSS: mixed liquor volatile suspended solids). Copyright 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 391-395, 1998.  相似文献   

17.
We studied Cr isotopic fractionation during Cr(VI) reduction by Pseudomonas stutzeri strain RCH2. Despite the fact that strain RCH2 reduces Cr(VI) cometabolically under both aerobic and denitrifying conditions and at similar specific rates, fractionation was markedly different under these two conditions (ε was ~2‰ aerobically and ~0.4‰ under denitrifying conditions).  相似文献   

18.
Anaerobic phenol degradation has been shown to proceed via carboxylation of phenol to 4-hydroxybenzoate. However, in vitro the carboxylating enzyme was inactive with phenol; only phenylphosphate (phosphoric acid monophenyl ester) was readily carboxylated. We demonstrate in a denitrifying Pseudomonas strain that phenylphosphate is the first detectable product formed from phenol in whole cells and that subsequent phenylphosphate consumption parallels 4-hydroxybenzoate formation. These kinetics are consistent with phosphorylation being the first step in anaerobic phenol degradation. Various cosubstrates failed so far to act as phosphoryl donor for net phosphorylation of phenol in cell extracts. Yet, cells anaerobically grown with phenol contained an enzyme that catalyzed an isotope exchange between [U-14C]phenol and phenylphosphate. This transphosphorylation activity was anaerobically induced by phenol but was stable under aerobic conditions and required Mn2+ and polyethylene glycol. Activity was optimal at pH 5.5 and half-maximal with 0.6 mM Mn2+, 0.2 mM phenylphosphate, and 1 mM phenol. It is proposed that the phenol exchange/transphosphorylation reaction is catalyzed as partial reaction by an inducible phenol phosphorylating enzyme. The isotope exchange demands that a phosphorylated enzyme was formed in the course of the reaction, which might be similar to the phosphotransferase system of sugar transport.  相似文献   

19.
Azoreductase, an enzyme catalyzing the reductive cleavage of the azo bond of methyl red (MR) and related dyes, was purified to electrophoretic homogeneity from Enterobacter agglomerans. This bacterial strain, isolated from dye-contaminated sludge, has a higher ability to grow, under aerobic conditions, on culture medium containing 100mg/L of MR. The enzyme was purified approximately 90-fold with 20% yield by ammonium sulfate precipitation, followed by three steps of column chromatography (gel-filtration, anion-exchange, and dye-affinity). The purified enzyme is a monomer with a molecular weight of 28,000 Da. The maximal azoreductase activity was observed at pH 7.0 and at 35 degrees C. This activity was NADH dependent. The K(m) values for both NADH and MR were 58.9 and 29.4 microM, respectively. The maximal velocity (V(max)) was 9.2 micromol of NADH min(-1)mg(-1). The purified enzyme is inhibited by several metal ions including Fe(2+) and Cd(2+).  相似文献   

20.
An experiment was conducted in a saturated sand column with three bacterial strains that have different growth characteristics on toluene, Pseudomonas putida F1 which degrades toluene only under aerobic conditions, Thauera aromatica T1 which degrades toluene only under denitrifying conditions, and Ralstonia pickettii PKO1 has a facultative nature and can perform nitrate-enhanced biodegradation of toluene under hypoxic conditions (DO <2 mg/L). Steady-state concentration profiles showed that oxygen and nitrate appeared to be utilized simultaneously, regardless of the dissolved oxygen concentration and the results from fluorescent in-situ hybridization (FISH) indicated that PKO1 maintained stable cells numbers throughout the column, even when the pore water oxygen concentration was high. Since PKO1's growth rate under aerobic condition is much lower than that of F1, except under hypoxic conditions, these observations were not anticipated. Therefore these observations require a mechanistic explanation that can account for localized low oxygen concentrations under aerobic conditions. To simulate the observed dynamics, a multispecies biofilm model was implemented. This model formulation assumes the formation of a thin biofilm that is composed of the three bacterial strains. The individual strains grow in response to the substrate and electron acceptor flux from bulk fluid into the biofilm. The model was implemented such that internal changes in bacterial composition and substrate concentration can be simulated over time and space. The model simulations from oxic to denitrifying conditions compared well to the experimental profiles of the chemical species and the bacterial strains, indicating the importance of accounting for the biological activity of individual strains in biofilms that span different redox conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号