首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To avoid misinterpretation of allometric exponents determined from interspecific allometric comparisons, specific conditions must be met with respect to the common reference variable. Body weight is considered to be the best general indication of overall size and is hence widely acknowledged to be the most suitable reference variable. However, because of the paucity of recorded body weights for museum specimens, various comparative studies have used other size indicators as intervening variables, although the allometric relationships to body size/weight were often unknown and possibly differed between species. Because of differences in the scaling properties of alternative intervening variables across the species investigated, conflicting conclusions may be drawn if different variables are chosen as substitutes for overall size. This is illustrated with two examples. In this study, series of skeletons with associated body weights of Gorilla, Pan, Pongo, and Homo were investigated. Both ontogenetic and static adult allometric relationships between several widely used reference variables and body weight were determined. Neither these variables nor additional estimators investigated in this study displayed allometric exponents and coefficients similar enough across species to justify direct interspecific comparison. To generate an alternative size estimator for both ontogenetic and static interspecific investigations, equations for combined sexes were derived to predict body weight from various long bone dimensions for individual hominoid species. From a total of 25 predictors, 12 prediction equations per species (six for nonadults and six for adults) were selected according to their relative suitability for reliable prediction of body weight. It is shown that the derived reference variable "predicted body weight" avoids problems of intervening variables, is valid for any interspecific ontogenetic and static allometric comparison, and displays less fluctuation in comparison to actual body weight.  相似文献   

2.
The role of photoperiod in adult testicular maintenance and body weight and juvenile development was assessed in male Mongolian gerbils (Meriones unguiculatus). Gerbils were raised on a 14L (14 hr of light) photoperiod. In the first study, adult gerbils with functional testes were transferred to thirteen different photoperiods (0L, 2L, 4L, 6L, 8L, 10L, 12L, 14L, 16L, 18L, 20L, 22L, or 24L) and body weights and testicular size were measured every week for 10 weeks. Body weights were similar in all groups. Testicular regression had occurred in animals housed on 0L, 2L, 4L, 6L, 8L, and 24L by week 10. In the second study, 14L-born prepubertal gerbils were transferred to thirteen different photoperiods as in the first study. Body weights and testicular development were examined for 10 weeks. At the end of 10 weeks the body weights of animals in all groups except 24L were similar to those of adults. Animals in 24L had a lower body weight gain. Exposure to 0L, 2L, and 24L inhibited testicular development and testes weights were significantly different from those of the other groups. These results demonstrate that maintenance of body weight in adult gerbils appears to be independent of photoperiodic signal. Exposure to very long (24L) and short photoperiods (< 10 hr) causes testicular regression in adult gerbils. Moreover, different photoperiods experienced in early life can influence prepubertal testis growth and body weight gain.  相似文献   

3.
Water contents of various body compartments were estimated within 9 h of birth in eight baboon neonates and at a mean of 29 days (27-32 days) in seven baboons. All animals were normally grown and delivered spontaneously at term. There was no difference in mean antipyrine space, corrected bromide space, intracellular water, interstitial water, and plasma and blood volumes observed on day 1 and day 29. Mean estimate of red cell volume was lower on day 29 than on day 1.  相似文献   

4.
Abstract Aim Bergmann's rule, one of the most studied and controversial ecogeographical generalizations, has rarely been tested with observations from high latitudes. We tested the rule using cranial measurements of the muskox [Ovibos moschatus (Zimmerman)], a homeotherm with an extremely northern distribution. We also used these data to describe geographical patterns in the species' dental architecture, an extension of the framework developed from interspecific comparisons. Location Specimens were compiled from arctic Canada, Alaska and Greenland, a latitudinal range of 60° N?83° N. Methods Body size was estimated from principal components analysis (PCA) of five cranial characters from 128 specimens. Mean scores on the first principal component from each locality were regressed against latitude and mean temperature to identify geographical variation in body size; scores on the second principal component were regressed against latitude to assess patterns in dental architecture. Regression analyses of the individual characters were performed as a complement to PCA. Results No latitudinal or climatic trend in body size was observed in either sex. On the other hand, for males, significant latitudinal variation was found for the second PCA axis (r = ?0.434), and the feature which loaded most heavily on it, maxillary tooth row length (r = 0.429). For females, this dental structure also tended to increase with latitude (r = 0.423), but the trend was only marginally significant (P=0.12), perhaps owing to a smaller sample size. Main conclusions The geographically invariant body size of muskoxen failed to support current hypotheses of size variation. Behavioural and physiological adaptations may exempt the muskox from selective pressures underlying these hypotheses. We interpret latitudinal variation in dental architecture as a reflection of a cline in diet, dominated by graminoids at the expense of willows at higher latitudes. This intraspecific geographical trend is a recapitulation of the interspecific framework for large mammalian herbivores.  相似文献   

5.
Male golden hamsters underfed for 11-16 weeks showed a 30% decrease in body weight accompanied by significant testicular regression. Pinealectomy did not prevent underfeeding-induced gonadal regression. Resumption of ad-libitum feeding restored body weights to near control levels and permitted testicular redevelopment in animals with previously regressed tests. These data indicate that chronic food restriction can affect the reproductive status of hamsters and that this effect does not depend on an intact pineal gland. Body weight changes may serve as a secondary proximate cue in addition to photoperiod for timing the hamster seasonal breeding cycle.  相似文献   

6.
Dental eruption schedules previously used to age wild baboons have in the past derived from studies of captive animals housed under standard conditions and fed standard laboratory diets. This paper reports for the first time eruption schedules derived from wild baboons, the yellow baboons (Papio hamadryas cynocephalus) of Mikumi National Park, Tanzania, and compares these schedules with those of other baboon subspecies inhabiting both similar and dissimilar environments. Eighteen males and twelve females from the Viramba groups, ranging in age from 21 to 103 months, were trapped, and dental impressions and notes were made of the state of eruption of each tooth. Eruption of all teeth were delayed at Mikumi relative to the baboon standards derived from the captive animals at the Southwest Foundation for Biomedical Research, San Antonio, Texas. Teeth of the canine-premolar 3 complex and third molars were most delayed, erupting up to a year and a half later than their counterparts from captive animals. Comparison with data on hamadryas baboons from Erer-Gota in Ethiopia revealed that both the hamadryas and yellow subspecies of baboons, with different genetic backgrounds and living under markedly different environmental conditions, followed the same schedule. This constancy of developmental schedules suggests that these Mikumi data may reasonably be used as standards for other wild baboon populations and that acceleration of dental maturation, as well us maturation of other somatic systems in captivity, is another manifestation of the short-term adaptive plasticity of the baboon species as a whole.  相似文献   

7.
Estimating body mass/size/weight remains a crucial precursor to the evaluation of relative brain size and to achieving an understanding of brain evolution in fossil species. Despite the obvious close association between the metrics of postcranial elements and body mass a number of factors combine to reduce their utility. This study examines the feasibility of cranial variables for predicting body mass. The use of traditional regression procedures, independent contrasts analysis, and variance partitioning all support the hypothesis that cranial variables are correlated with body mass even when taking phylogeny into account, with r values typically ranging between 0.52 and 0.98. Body mass estimates derived for fossil hominins using cranial variables are similar to those obtained from previous studies using either cranial or postcranial elements. In particular, upper facial breadth and orbital height display strong predictive capability. Average body masses derived from Least Squares Regression (LSR) equations were used to calculate estimates of body mass for three hominin species. This resulted in estimates of between 30 kg and 47 kg for Australopithecus africanus, 48 kg and 52 kg for Paranthropus robustus, and 75 kg for Homo neanderthalensis. It is proposed that regression equations derived for the order primates are used to estimate body mass for archaic hominins, while hominoid based equations are most suited for Homo.  相似文献   

8.
Baboons (genus Papio) are an interesting phylogeographical primate model for the evolution of savanna species during the Pleistocene. Earlier studies, based on partial mitochondrial sequence information, revealed seven major haplogroups indicating multiple para‐ and polyphylies among the six baboon species. The most basal splits among baboon lineages remained unresolved and the credibility intervals for divergence time estimates were rather large. Assuming that genetic variation within the two studied mitochondrial loci so far was insufficient to infer the apparently rapid early radiation of baboons we used complete mitochondrial sequence information of ten specimens, representing all major baboon lineages, to reconstruct a baboon phylogeny and to re‐estimate divergence times. Our data confirmed the earlier tree topology including the para‐ and polyphyletic relationships of most baboon species; divergence time estimates are slightly younger and credibility intervals narrowed substantially, thus making the estimates more precise. However, the most basal relationships could not be resolved and it remains open whether (1) the most southern population of baboons diverged first or (2) a major split occurred between southern and northern clades. Our study shows that complete mitochondrial genome sequences are more effective to reconstruct robust phylogenies and to narrow down estimated divergence time intervals than only short portions of the mitochondrial genome, although there are also limitations in resolving phylogenetic relationships. Am J Phys Anthropol, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Estimating body weights for fossil primates is an important step in reconstructing aspects of their behavior and ecology. To date, the body size of Eocene euprimates—the Adapidae and Omomyidae—has been estimated only from molar area. Studies on other primates and mammals demonstrate that body weights estimated from teeth are not always concordant with those estimated from postcranial variables. We derive estimates for Eocene primates based on tarsal bone variables to compare with previously published values derived from dental measures. Stepsirhine-wide, family-level, and subfamily-level models are developed and compared. We also compare the accuracy and precision of dental- and tarsal-based regression models for predicting weight in extant species. Tarsal bone and dental area measures prove to be equally robust in predicting body weight; however, highly disparate estimates are often obtained from different variables. Equations based on lower-level taxonomic groups perform better than more widely based models. However, all equations considered yield fairly large errors, which can affect interpretations of paleoecology. The choice of the more robust prediction is not straightforward.  相似文献   

10.
Summary This study examined whether cold, short day or melatonin causes reproductive regression and stimulates nonshivering thermogenesis in a subarctic rodentClethrionomys rutilus. Red-backed voles born and raised at 23°C and 22 h light per day (LD 22: 2) at Fairbanks, Alaska (65°N) were exposed in one of six groups to: 1) long day (LD 22:2), 23°C, injected daily with melatonin or saline 2 h before lights out, 2) long day, 3°C, injected daily with melatonin or saline, 3) short day (LD 8:16), 23°C or 3°C. Voles were tested for nonshivering thermogenesis (NST) prior to and after 8 wk exposure. Body weight, testes weight and female reproductive tract weight were assessed after 8 wk in long day and 12 wk in short day.NST was not altered by short day or melatonin but cold (3°C) caused an increase in NST which was similar in long day and short day.Body weight of males and females was not affected by short day but was decreased by melatonin.Short day did not alter mean testes weight (about 20% voles regressed) but reduced mean female reproductive tract weight (more than 40% voles regressed). Melatonin reduced testes weight and female reproductive tract weight (more than 50% of voles of both sexes regressed).The results suggest that in northern red-backed voles: 1) the pineal does not mediate seasonal changes in thermogenic capacity, 2) the pineal may mediate reduction of body weight and regression of reproductive organs but, in addition to daylength, other cues or factors may be important, 3) populations may exhibit variability in sensitivity of reproduction to photoperiod which could allow for opportunistic breeding.Abbreviations NST nonshivering thermogenesis - NE norepinephrine - RMR resting metabolic rate  相似文献   

11.
Body weight, cranial capacity, linear and joint area data from ten free-ranging adult chimpanzees from Gombe National Park, Tanzania with known life histories allow study of variation in a local population and comparison to other populations ofPan troglodytes and toPan paniscus. Because individuals in the Gombe population are small compared to other common chimpanzees, they provide a useful comparison toPan paniscus. Body weight and some linear dimensions overlap withPan paniscus. However, cranial capacity, tooth size, and body proportions of Gombe individuals lie within the range of otherPan troglodytes and are distinct fromPan paniscus.  相似文献   

12.
The mean body weight of a species is often used as a summary measure of size in evolutionary and functional studies. Additionally, body weight is often used to assess the health of captive animals. Contrasts of the captive and wild body weights of a species can be used to examine the effects of captivity on the species. We provide an analysis of adult body weight in nine taxa of Malagasy lemurs. We compare weights of wild and captive lemurs and provide analyses of relationships between captive weight variation and management actions. Body weights are derived from a number of sources, the majority from the Duke University Primate Center (DUPC) capture and husbandry records. Captive animals are, on average, heavier than wild conspecifics. However, the difference is significant in only three taxa (Hapalemur griseus griseus, Eulemur coronatus, E. macaco flavifrons). Based on a retrospective analysis of DUPC records, we assess patterns of adult weight relative to caging conditions and evaluate changes in mean weight over a period of approximately 20 years. Cage type appears to have no effect on body weight. Mean weight has decreased for some taxa housed at the DUPC over time. We calculate a weight-based criterion for identifying obese animals and demonstrate that obesity is not currently a prevalent condition in DUPC lemurs. Examinations of the physiological correlates of excessive weight, and especially relationships between weight and reproductive success, await further analysis. These analyses need to be based, in part, on reliable measures of body weight. We suggest that systematic weighing of wild and captive animals is important for further examinations of the overall health of captive animals as well as for studies ranging in scope from evolutionary to clinical. Zoo Biol 16:17–30, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Body shape is predicted to differ among species for functional reasons and in relation to environmental niche and phylogenetic history. We quantified morphological differences in shape and size among 98.5% of the 129 species and all 21 genera of the Australo‐Papuan endemic myobatrachid frogs to test the hypothesis that habitat type predicts body shape in this radiation. We tested this hypothesis in a phylogenetic context at two taxonomic levels: across the entire radiation and within the four largest genera. Thirty‐four external measurements were taken on 623 museum specimens representing 127 species. Data for seven key environmental variables relevant to anurans were assembled for all Australian‐distributed species based on species' distributions and 131,306 locality records. The Australo‐Papuan myobatrachid radiation showed high diversity in adult body size, ranging from minute (15 mm snout–vent length) to very large species (92 mm), and shape, particularly sin relative limb length. Five main morphological and environmental summary variables displayed strong phylogenetic signal. There was no clear relationship between body size and environmental niche, and this result persisted following phylogenetic correction. For most species, there was a better match between environment/habitat and body shape, but this relationship did not persist following phylogenetic correction. At a broad level, species fell into three broad groups based on environmental niche and body shape: 1) species in wet habitats with relatively long limbs, 2) species in arid environments with relatively short limbs (many of which are forward or backward burrowers) and 3) habitat generalist species with a conservative body shape. However, these patterns were not repeated within the four largest genera ? Crinia, Limnodynastes, Pseudophryne and Uperoleia. Each of these genera displayed a highly conservative anuran body shape, yet individual species were distributed across the full spectrum of Australian environments. Our results suggest that phylogenetic legacy is important in the evolution of body size and shape in Australian anurans, but also that the conservative body plan of many frogs works well in a wide variety of habitats.  相似文献   

14.
Variation in the mammalian dentition is highly informative of adaptations and evolutionary relationships, and consequently has been the focus of considerable research. Much of the current research exploring the genetic underpinnings of dental variation can trace its roots to Olson and Miller’s 1958 book Morphological Integration. These authors explored patterns of correlation in the post-canine dentitions of the owl monkey and Hyopsodus, an extinct condylarth from the Eocene. Their results were difficult to interpret, as was even noted by the authors, due to a lack of genetic information through which to view the patterns of correlation. Following in the spirit of Olson and Miller’s research, we present a quantitative genetic analysis of dental variation in a pedigreed population of baboons. We identify patterns of genetic correlations that provide insight to the genetic architecture of the baboon dentition. This genetic architecture indicates the presence of at least three modules: an incisor module that is genetically independent of the post-canine dentition, and a premolar module that demonstrates incomplete pleiotropy with the molar module. We then compare this matrix of genetic correlations to matrices of phenotypic correlations between the same measurements made on museum specimens of another baboon subspecies and the Southeast Asian colobine Presbytis. We observe moderate significant correlations between the matrices from these three primate taxa. From these observations we infer similarity in modularity and hypothesize a common pattern of genetic integration across the dental arcade in the Cercopithecoidea.  相似文献   

15.
Cranial form in subspecies of Papio baboons (Papio hamadryas) varies in relation to size, geography, and sex. However, knowledge about this variation is based mainly on adults, precluding direct assessments of the evolutionary factors that are ultimately responsible for adult shape variation. Consequently, this study tests hypotheses about the development of size and shape differences among subspecies of Papio baboons, anticipating limited evolutionary divergences in the ontogenetic pathways leading to adult endpoints. Geometric morphometric and bivariate allometric analyses are used to explore developmental size and shape variation. Allometric scaling in adult Papio baboons occurs because both sexes and all subspecies follow similar developmental pathways to a variety of adult forms. However, complex allometry contributes to form differences, producing potentially important shape differences that emerge during development. Modest shape differences that are statistically independent of size distinguish chacma baboons (P. h. ursinus) from other forms. A small-headed subspecies, the Kinda baboon (P. h. kindae), also presents a distinctive ontogeny, and may provide insights into the evolution of size change in this species. Variation among subspecies that is statistically independent of size involves the rostrum, zygomatic breadths, and cranial flexion. These features may be related to diet, but the precise biomechanical correlates of baboon form variation remain unclear.  相似文献   

16.
Turns are essential maneuvers that sharks employ when foraging, feeding, and migrating. How well any individual performs in turning is determined, in part, by the static form and postural reconfiguration of its body. Since the importance of postural reconfiguration in determining turning performance is not well understood, our goal was to examine how body form and posture correlate with turning performance in juvenile leopard sharks, Triakis semifasciata. From videos of sharks turning laterally in yaw, performance was measured as turning radius, turning angle, angular speed of the head, and translational speed of the body along its path. Body form variables included the body's length, mass, width, second moment of area, and mass moment of inertia. Postural variables included body-bending coefficient, body flexion at different longitudinal positions, and lag time between body flexion and turning of the center of rotation. Using step-wise linear regression followed by multiple regression, each performance variable was regressed onto three pools of independent variables: (i) all form variables alone, (ii) all postural variables alone, and (iii) a combination of all form and postural variables. From these correlations, it appears that turning performance may be controlled primarily by the magnitude and timing of the flexion of the body. In other words, sharks alter how they turn by changing the pattern in which they bend their bodies; the body acts as a dynamically reconfiguring rudder.  相似文献   

17.
Access to sexually receptive baboon females has been linked to male dominance rank. An intensive 19-month field study of mate choice and mate competition among savanna baboons was undertaken in order to elucidate those factors influencing mating success. During this study, male agonistic rank was not correlated with male mating success among adult males. However, the inclusion of adolescent males into the analysis yielded significant correlations between rank and mating success. Examination of prior fieldwork revealed that no baboon field study has conclusively demonstrated a significant correlation between male rank and reproduction among adult males. Most studies reporting a correlation between male rank and reproduction have included subadult males in the analysis. It is concluded that male rank is an unreliable predictor of male reproductive activity among adult male baboons. A low agonistic rank need not reduce male mating success because adult male baboons utilize a variety of reproductive tactics in gaining access to consort females.  相似文献   

18.
Body size as an estimator of production costs in a solitary bee   总被引:3,自引:0,他引:3  
Abstract 1. Body weight is often used as an estimator of production costs in aculeate Hymenoptera; however, due to differences between sexes in metabolic rates and water content, conversion of provision weight to body weight may differ between males and females. As a result, the cost of producing female progeny may often have been overestimated.
2. Provision weight and body weight loss throughout development were measured in a solitary bee, Osmia cornuta (Latreille), to detect potential differences between sexes in food weight/body weight conversion.
3. Male O. cornuta invest a larger proportion of larval weight in cocoon spinning, and presumably have higher metabolic rates than females during the larval period; however, this is compensated by a slightly longer larval period in females.
4. Overall, body weight loss throughout the life cycle does not differ significantly between sexes. As a result, cost production ratios calculated from provision weights and from adult body weights are almost identical.
5. The validity of other weight (cocoon, faeces) and linear (head width, intertegular span, wing length, cocoon length, and cell length) measures as estimators of production costs is also discussed.
6. Valid estimators of production costs vary across species due to differences in sex weight ratio, cocoon shape, provision size in reference to cell size, and adult body size.  相似文献   

19.
To examine the interactions between age and photoperiod on reproduction and spleen weights, we exposed adult male and female rice rats of various ages to photoperiods of 16:8-h light-dark photoperiods (16L:8D) or 12L:12D. After 10 wk, animals were killed and the following data were recorded: weights of testes, seminal vesicles, uterus, ovaries, body, and spleen and, in addition, vaginal patency. Young adult males displayed a greater degree of testicular and seminal vesicle regression in short photoperiods than did older males; the testes of most older males did not regress in response to short photoperiods. Spleen weight was unresponsive to short photoperiods in all males, but was affected by age. Females, however, exhibited reproductive organ regression and decreased vaginal patency in response to short photoperiods at all ages examined. Body weights were affected by photoperiod in young females, and, as in males, photoperiod had no effect on spleen weights. These data suggest that the reproductive response to photoperiod in adult male rice rats declines with age, whereas in adult females it does not.  相似文献   

20.
Body mass estimates are integral to a wide range of inferences in paleoanthropology. Most techniques employ postcranial elements, but predictive equations based on cranial variables have also been developed. Three studies currently provide regression equations for estimating mass from cranial variables, but none of the equations has been tested on samples of known mass. Nor have the equations been compared to each other in terms of performance. Consequently, this study assessed the performance of existing cranial equations using computed tomography scans from a large, documented sample of modern humans of known body mass. Virtual models of the skull were reconstructed and measured using computer software, and the resulting variables were entered into three sets of published regression equations. Estimated and known body masses were then compared. For most equations, prediction errors were high and few individuals were estimated within ±20% of their known mass. Only one equation satisfied the accuracy criteria. In addition, variables that had been previously argued to be good predictors of mass in hominins, including humans, did not estimate mass reliably. These results have important implications for paleoanthropology. In particular, they emphasize the need to develop new equations for estimating fossil hominin body mass from cranial variables. Am J Phys Anthropol 154:201–214, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号