首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Many RNA viruses, which replicate predominantly in the cytoplasm, have nuclear components that contribute to their life cycle or pathogenesis. We investigated the intracellular localization of the multifunctional nonstructural protein 2 (nsP2) in mammalian cells infected with Venezuelan equine encephalitis virus (VEE), an important, naturally emerging zoonotic alphavirus. VEE nsP2 localizes to both the cytoplasm and the nucleus of mammalian cells in the context of infection and also when expressed alone. Through the analysis of a series of enhanced green fluorescent protein fusions, a segment of nsP2 that completely localizes to the nucleus of mammalian cells was identified. Within this region, mutation of the putative nuclear localization signal (NLS) PGKMV diminished, but did not obliterate, the ability of the protein to localize to the nucleus, suggesting that this sequence contributes to the nuclear localization of VEE nsP2. Furthermore, VEE nsP2 specifically interacted with the nuclear import protein karyopherin-alpha1 but not with karyopherin-alpha2, -3, or -4, suggesting that karyopherin-alpha1 transports nsP2 to the nucleus during infection. Additionally, a novel nuclear export signal (NES) was identified, which included residues L526 and L528 of VEE nsP2. Leptomycin B treatment resulted in nuclear accumulation of nsP2, demonstrating that nuclear export of nsP2 is mediated via the CRM1 nuclear export pathway. Disruption of either the NLS or the NES in nsP2 compromised essential viral functions. Taken together, these results establish the bidirectional transport of nsP2 across the nuclear membrane, suggesting that a critical function of nsP2 during infection involves its shuttling between the cytoplasm and the nucleus.  相似文献   

2.
3.
Although alphaviruses have been extensively studied as model systems for the structural organization of enveloped viruses, no structures exist for the phylogenetically distinct eastern equine encephalomyelitis (EEE)-Venezuelan equine encephalomyelitis (VEE) lineage of New World alphaviruses. Here we report the 25-A structure of VEE virus, obtained from electron cryomicroscopy and image reconstruction. The envelope spike glycoproteins of VEE virus have a T=4 icosahedral arrangement, similar to that observed in Old World Sindbis, Semliki Forest, and Ross River alphaviruses. However, VEE virus has pronounced differences in its nucleocapsid structure relative to nucleocapsid structures repeatedly observed in Old World alphaviruses.  相似文献   

4.
Venezuelan equine encephalitis (VEE) virus is a mosquito-borne alphavirus associated with sporadic outbreaks in human and equid populations in the Western Hemisphere. After the bite of an infected mosquito, the virus initiates a biphasic disease: a peripheral phase with viral replication in lymphoid and myeloid tissues, followed by a neurotropic phase with infection of central nervous system (CNS) neurons, causing neuropathology and in some cases fatal encephalitis. The mechanisms allowing VEE virus to enter the CNS are currently poorly understood. Previous data have shown that the virus gains access to the CNS by infecting olfactory sensory neurons in the nasal mucosa of mice. However, at day 5 after inoculation, the infection of the brain is multifocal, indicating that virus particles are able to cross the blood-brain barrier (BBB). To better understand the role of the BBB during VEE virus infection, we used a well-characterized mouse model system. Using VEE virus replicon particles (VRP), we modeled the early events of neuroinvasion, showing that the replication of VRP in the nasal mucosa induced the opening of the BBB, allowing peripherally administered VRP to invade the brain. Peripheral VEE virus infection was characterized by a biphasic opening of the BBB. Further, inhibition of BBB opening resulted in a delayed viral neuroinvasion and pathogenesis. Overall, these results suggest that VEE virus initially enters the CNS through the olfactory pathways and initiates viral replication in the brain, which induces the opening of the BBB, allowing a second wave of invading virus from the periphery to enter the brain.  相似文献   

5.
We have identified a cellular protein from a continuous mosquito cell line (C6/36) that appears to play a significant role in the attachment of Venezuelan equine encephalitis (VEE) virus to these cells. VEE virus bound to a 32-kDa polypeptide present in the C6/36 plasma membrane fraction, and binding to this polypeptide was dose dependent and saturable and competed with homologous and heterologous alphaviruses. These observations suggest that this polypeptide binds virus via a receptor-ligand interaction. The 32-kDa polypeptide was expressed on the surfaces of C6/36 cells, and monoclonal antibodies directed against either this cell polypeptide or the VEE virus E2 glycoprotein, which is thought to be the viral attachment protein, interfered with virus attachment. Collectively, these data provide evidence suggesting that the 32-kDa polypeptide serves as a receptor for VEE virus infection of cells. We have characterized this cell polypeptide as a laminin-binding protein on the basis of its ability to interact directly with laminin as well as its immunologic cross-reactivity with the high-affinity human laminin receptor.  相似文献   

6.
Alphaviruses present serious health threats as emerging and re-emerging viruses. Venezuelan equine encephalitis virus (VEEV), a New World alphavirus, can cause encephalitis in humans and horses, but there are no therapeutics for treatment. To date, compounds reported as anti-VEEV or anti-alphavirus inhibitors have shown moderate activity. To discover new classes of anti-VEEV inhibitors with novel viral targets, we used a high-throughput screen based on the measurement of cell protection from live VEEV TC-83-induced cytopathic effect to screen a 340,000 compound library. Of those, we identified five novel anti-VEEV compounds and chose a quinazolinone compound, CID15997213 (IC50 = 0.84 µM), for further characterization. The antiviral effect of CID15997213 was alphavirus-specific, inhibiting VEEV and Western equine encephalitis virus, but not Eastern equine encephalitis virus. In vitro assays confirmed inhibition of viral RNA, protein, and progeny synthesis. No antiviral activity was detected against a select group of RNA viruses. We found mutations conferring the resistance to the compound in the N-terminal domain of nsP2 and confirmed the target residues using a reverse genetic approach. Time of addition studies showed that the compound inhibits the middle stage of replication when viral genome replication is most active. In mice, the compound showed complete protection from lethal VEEV disease at 50 mg/kg/day. Collectively, these results reveal a potent anti-VEEV compound that uniquely targets the viral nsP2 N-terminal domain. While the function of nsP2 has yet to be characterized, our studies suggest that the protein might play a critical role in viral replication, and further, may represent an innovative opportunity to develop therapeutic interventions for alphavirus infection.  相似文献   

7.
Venezuelan equine encephalitis virus (VEEV) is one of the most pathogenic members of the Alphavirus genus in the Togaviridae family. This genus is divided into the Old World and New World alphaviruses, which demonstrate profound differences in pathogenesis, replication, and virus-host interactions. VEEV is a representative member of the New World alphaviruses. The biology of this virus is still insufficiently understood, particularly the function of its nonstructural proteins in RNA replication and modification of the intracellular environment. One of these nonstructural proteins, nsP3, contains a hypervariable domain (HVD), which demonstrates very low overall similarity between different alphaviruses, suggesting the possibility of its function in virus adaptation to different hosts and vectors. The results of our study demonstrate the following. (i) Phosphorylation of the VEEV nsP3-specific HVD does not play a critical role in virus replication in cells of vertebrate origin but is important for virus replication in mosquito cells. (ii) The VEEV HVD is not required for viral RNA replication in the highly permissive BHK-21 cell line. In fact, it can be either completely deleted or replaced by a heterologous protein sequence. These variants require only one or two additional adaptive mutations in nsP3 and/or nsP2 proteins to achieve an efficiently replicating phenotype. (iii) However, the carboxy-terminal repeat in the VEEV HVD is indispensable for VEEV replication in the cell lines other than BHK-21 and plays a critical role in formation of VEEV-specific cytoplasmic protein complexes. Natural VEEV variants retain at least one of the repeated elements in their nsP3 HVDs.  相似文献   

8.
Venezuelan equine encephalitis virus (VEEV) is an important, naturally emerging zoonotic virus. VEEV was a significant human and equine pathogen for much of the past century, and recent outbreaks in Venezuela and Colombia (1995), with about 100,000 human cases, indicate that this virus still poses a serious public health threat. The live attenuated TC-83 vaccine strain of VEEV was developed in the 1960s using a traditional approach of serial passaging in tissue culture of the virulent Trinidad donkey (TrD) strain. This vaccine presents several problems, including adverse, sometimes severe reactions in many human vaccinees. The TC-83 strain also retains residual murine virulence and is lethal for suckling mice after intracerebral (i.c.) or subcutaneous (s.c.) inoculation. To overcome these negative effects, we developed a recombinant, chimeric Sindbis/VEE virus (SIN-83) that is more highly attenuated. The genome of this virus encoded the replicative enzymes and the cis-acting RNA elements derived from Sindbis virus (SINV), one of the least human-pathogenic alphaviruses. The structural proteins were derived from VEEV TC-83. The SIN-83 virus, which contained an additional adaptive mutation in the nsP2 gene, replicated efficiently in common cell lines and did not cause detectable disease in adult or suckling mice after either i.c. or s.c. inoculation. However, SIN-83-vaccinated mice were efficiently protected against challenge with pathogenic strains of VEEV. Our findings suggest that the use of the SINV genome as a vector for expression of structural proteins derived from more pathogenic, encephalitic alphaviruses is a promising strategy for alphavirus vaccine development.  相似文献   

9.
The natural life cycle of alphaviruses, a group of plus-strand RNA viruses, involves transmission to vertebrate hosts via mosquitoes. Chronic infections are established in mosquitoes (and usually in mosquito cell cultures), but infection of susceptible vertebrate cells typically results in rapid shutoff of host mRNA translation and cell death. Using engineered Sindbis virus RNA replicons expressing puromycin acetyltransferase as a dominant selectable marker, we identified mutations allowing persistent, noncytopathic replication in BHK-21 cells. Two of these adaptive mutations involved single-amino-acid substitutions in the C-terminal portion of nsP2, the viral helicase-protease. At one of these loci, nsP2 position 726, numerous substitution mutations were created and characterized in the context of RNA replicons and infectious virus. Our results suggest a direct correlation between the level of viral RNA replication and cytopathogenicity. This work also provides a series of alphavirus replicons for noncytopathic gene expression studies (E. V. Agapov, I. Frolov, B. D. Lindenbach, B. M. Prágai, S. Schlesinger, and C. M. Rice, Proc. Natl. Acad. Sci. USA 95:12989-12994, 1998) and a general strategy for selecting RNA viral mutants adapted to different cellular environments.  相似文献   

10.
Cooper LA  Scott TW 《Genetics》2001,157(4):1403-1412
Arthropod-borne viruses (arboviruses) cycle between hosts in two widely separated taxonomic groups, vertebrate amplifying hosts and invertebrate vectors, both of which may separately or in concert shape the course of arbovirus evolution. To elucidate the selective pressures associated with virus replication within each portion of this two-host life cycle, the effects of host type on the growth characteristics of the New World alphavirus, eastern equine encephalitis (EEE) virus, were investigated. Multiple lineages of an ancestral EEE virus stock were repeatedly transferred through either mosquito or avian cells or in alternating passages between these two cell types. When assayed in both cell types, derived single host lineages exhibited significant differences in infectivity, growth pattern, plaque morphology, and total virus yield, demonstrating that this virus is capable of host-specific evolution. Virus lineages grown in alternation between the two cell types expressed intermediate phenotypes consistent with dual adaptation to both cellular environments. Both insect-adapted and alternated lineages greatly increased in their ability to infect insect cells. These results indicate that different selective pressures exist for virus replication within each portion of the two-host life cycle, and that alternation of hosts selects for virus populations well adapted for replication in both host systems.  相似文献   

11.
东部马脑脊髓炎病毒的分子生物学进展   总被引:1,自引:0,他引:1  
东部马脑脊髓炎病毒属虫媒病毒,能引起人和马发生急性脑炎。东马病毒为单股正链RNA病毒,可分为南美型和北美型,包括两个开放读码框架,分别编码结构蛋白(E1,E2,E2,C,6K)和非结构蛋白(nsp1,nsp2,nsp3,nsp4)。其中E1/E2包膜糖蛋白以异二聚体的形式病毒颗粒外刺突。非结构蛋白主要能与负链RNA的合成,近来,随着研究深入,病毒受体越来越受到广泛关注。本介绍东部马脑脊髓炎病毒结构、进化、复制、组装等方面的分子生物学进展。  相似文献   

12.
Alphavirus replication and propagation is dependent on the protease activity of the viral nsP2 protein, which cleaves the nsP1234 polyprotein replication complex into functional components. Thus, nsP2 is an attractive target for drug discovery efforts to combat highly pathogenic alphaviruses. Unfortunately, antiviral development has been hampered by a lack of structural information for the nsP2 protease. Here, we report the crystal structure of the nsP2 protease (nsP2pro) from Venezuelan equine encephalitis alphavirus determined at 2.45 A resolution. The protease structure consists of two distinct domains. The nsP2pro N-terminal domain contains the catalytic dyad cysteine and histidine residues organized in a protein fold that differs significantly from any known cysteine protease or protein folds. The nsP2pro C-terminal domain displays structural similarity to S-adenosyl-L-methionine-dependent RNA methyltransferases and provides essential elements that contribute to substrate recognition and may also regulate the structure of the substrate binding cleft.  相似文献   

13.
During 1971, surveillance for equine encephalitis in the United States was increased due to an epizootic of Venezuelan equine encephalomyelitis. Of 1,982 specimens from 1,551 equines, 76 isolates of eastern equine encephalitis (EEE) virus were recovered from 67 individuals. The virus was isolated from 50/176 brains, 8/74 spleens, 14/1,127 sera, and 4/147 whole bloods from infected equines in 12 of the 31 states bounded by or east of the Mississippi River and in Texas and Iowa; no specimens were received from 9 of these 31 states. Thus, EEE virus was isolated from equines in 12 of 22 of these states. Determinations of antibody to EEE and western equine encephalitis (WEE) viruses indicated a relatively high prevalence of infection with EEE virus in the eastern USA and similarly high prevalence of antibody to WEE virus in the western USA. These data indicate that equine infections with EEE virus in the eastern USA are considerably more common than previous surveillance data have suggested. Increased surveillance and submission of specimens to diagnostic laboratories for diagnosis of EEE virus infections in equines are suggested so that a greater proportion of the thousands of unspecified equine encephalitis cases occurring in the United States each year can be laboratory confirmed.  相似文献   

14.
Venezuelan equine encephalitis virus (VEEV) is an important, naturally emerging zoonotic pathogen. Recent outbreaks in Venezuela and Colombia in 1995, involving an estimated 100,000 human cases, indicate that VEEV still poses a serious public health threat. To develop a safe, efficient vaccine that protects against disease resulting from VEEV infection, we generated chimeric Sindbis (SIN) viruses expressing structural proteins of different strains of VEEV and analyzed their replication in vitro and in vivo, as well as the characteristics of the induced immune responses. None of the chimeric SIN/VEE viruses caused any detectable disease in adult mice after either intracerebral (i.c.) or subcutaneous (s.c.) inoculation, and all chimeras were more attenuated than the vaccine strain, VEEV TC83, in 6-day-old mice after i.c. infection. All vaccinated mice were protected against lethal encephalitis following i.c., s.c., or intranasal (i.n.) challenge with the virulent VEEV ZPC738 strain (ZPC738). In spite of the absence of clinical encephalitis in vaccinated mice challenged with ZPC738 via i.n. or i.c. route, we regularly detected high levels of infectious challenge virus in the central nervous system (CNS). However, infectious virus was undetectable in the brains of all immunized animals at 28 days after challenge. Hamsters vaccinated with chimeric SIN/VEE viruses were also protected against s.c. challenge with ZPC738. Taken together, our findings suggest that these chimeric SIN/VEE viruses are safe and efficacious in adult mice and hamsters and are potentially useful as VEEV vaccines. In addition, immunized animals provide a useful model for studying the mechanisms of the anti-VEEV neuroinflammatory response, leading to the reduction of viral titers in the CNS and survival of animals.  相似文献   

15.
The initial steps of Venezuelan equine encephalitis virus (VEE) spread from inoculation in the skin to the draining lymph node have been characterized. By using green fluorescent protein and immunocytochemistry, dendritic cells in the draining lymph node were determined to be the primary target of VEE infection in the first 48 h following inoculation. VEE viral replicon particles, which can undergo only one round of infection, identified Langerhans cells to be the initial set of cells infected by VEE directly following inoculation. These cells are resident dendritic cells in the skin, which migrate to the draining lymph node following activation. A point mutation in the E2 glycoprotein gene of VEE that renders the virus avirulent and compromises its ability to spread beyond the draining lymph blocked the appearance of virally infected dendritic cells in the lymph node in vivo. A second-site suppressor mutation that restores viral spread to lymphoid tissues and partially restore virulence likewise restored the ability of VEE to infect dendritic cells in vivo.  相似文献   

16.
17.
18.
During 1971, an epizootic of Venezuelan equine encephalitis (VEE) reached the United States. Laboratory tests were performed on a large number of sick, healthy, unvaccinated, and vaccinated horses. Neutralization (N) tests in cell cultures revealed that 153 of 193 (79.3%) equines outside the state of Texas and 175 of 204 (85.8%) within Texas (82.6% overall) had detectable N antibody to VEE virus a week or more after vaccination. Twenty-six of 40 (65%) non-Texas equines and 18 of 29 (62%) Texas equines which had no detectable antibody against VEE virus a week or more after vaccination had N antibody against Eastern equine encephalitis (EEE) or Western equine encephalitis (WEE) virus or both, whereas only 50 of 153 (32.7%) non-Texas equines and 82 of 175 (46.9%) Texas equines with demonstrable N antibody against VEE also had N antibody against EEE and/or WEE virus. In vaccinated equines, significant negative correlations were found between the occurrence of antibody to VEE and antibody to EEE and/or WEE virus. These findings support the hypothesis that pre-existing antibody to EEE and/or WEE virus may modify or interfere with infection by VEE virus. The epizoologic significance of this possibility is discussed briefly.  相似文献   

19.
Alphavirus replicon particle-based vaccine vectors derived from Sindbis virus (SIN), Semliki Forest virus, and Venezuelan equine encephalitis virus (VEE) have been shown to induce robust antigen-specific cellular, humoral, and mucosal immune responses in many animal models of infectious disease and cancer. However, since little is known about the relative potencies among these different vectors, we compared the immunogenicity of replicon particle vectors derived from two very different parental alphaviruses, VEE and SIN, expressing a human immunodeficiency virus type 1 p55(Gag) antigen. Moreover, to explore the potential benefits of combining elements from different alphaviruses, we generated replicon particle chimeras of SIN and VEE. Two distinct strategies were used to produce particles with VEE-p55(gag) replicon RNA packaged within SIN envelope glycoproteins and SIN-p55(gag) replicon RNA within VEE envelope glycoproteins. Each replicon particle configuration induced Gag-specific CD8(+) T-cell responses in murine models when administered alone or after priming with DNA. However, Gag-specific responses varied dramatically, with the strongest responses to this particular antigen correlating with the VEE replicon RNA, irrespective of the source of envelope glycoproteins. Comparing the replicons with respect to heterologous gene expression levels and sensitivity to alpha/beta interferon in cultured cells indicated that each might contribute to potency differences. This work shows that combining desirable elements from VEE and SIN into a replicon particle chimera may be a valuable approach toward the goal of developing vaccine vectors with optimal in vivo potency, ease of production, and safety.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号