首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fricke W 《Annals of botany》2002,90(2):157-167
Grass leaves grow from the base. Unlike those of dicotyledonous plants, cells of grass leaves expand enclosed by sheaths of older leaves, where there is little or no transpiration, and go through developmental stages in a strictly linear arrangement. The environmental or developmental factor that limits leaf cell expansion must do so through biophysical means at the cellular level: wall-yielding, water uptake and solute supply are all candidates. This Botanical Briefing looks at the possibility that tissue hydraulic conductance limits cell expansion and leaf growth. A model is presented that relates pathways of water movement in the elongation zone of grass leaves to driving forces for water movement and to anatomical features. The bundle sheath is considered as a crucial control point. The relative importance of these pathways for the regulation of leaf growth and for the partitioning of water between expansion and transpiration is discussed.  相似文献   

2.
BACKGROUND AND AIMS: Much recent study of plant trichomes has focused on various aspects of glandular secreting trichomes (GSTs) and differentiation of simple trichomes. This Botanical Briefing will highlight: research on various aspects of, and manipulation of glandular secreting trichomes; molecular aspects of the differentiation and development of simple trichomes of arabidopsis and cotton; how methods for manipulation of model systems used in the above work can be applied to expand our understanding of less studied surface structures of plants. SCOPE: The Briefing will cover: established and suggested roles of simple and glandular secreting trichomes; recent results regarding solute and ion movement in trichomes; methods for isolating trichomes; recent studies of trichome differentiation and development; attempts to modify metabolism in secreting trichomes; efforts to exploit trichomes for commercial and agronomic purposes.  相似文献   

3.

Background

Pyridine nucleotides are essential for electron transport and serve as co-factors in multiple metabolic processes in all organisms. Each nucleotide has a particular role in metabolism. For instance, the NAD/NADP ratio is believed to be responsible for sustaining the functional status of plant cells. However, since enzymes involved in the synthesis and degradation of NAD and NADP have not been fully identified, the physiological functions of these co-enzymes in plant growth and development are largely unknown.

Scope

This Botanical Briefing covers progress in the developmental and stress-related roles of genes associated with NAD biosynthesis in plants. Special attention will be given to assessments of physiological impacts through the modulation of NAD and NADP biosynthesis.

Conclusions

The significance of NAD biosynthesis in plant development and NADP biosynthesis in plant stress tolerance is summarized in this Briefing. Further investigation of cells expressing a set of NAD biosynthetic genes would facilitate understanding of regulatory mechanisms by which plant cells maintain NAD homeostasis.Key words: NAD biosynthesis, nicotinate/nicotinamide mononucleotide adenylyltransferase (NMNAT), chloroplastic NADP biosynthesis, NAD kinase 2 (NADK2)  相似文献   

4.
Enigma variations for peptides and their transporters in higher plants   总被引:1,自引:0,他引:1  
BACKGROUND: Two families of proteins that transport small peptides, the oligopeptide transporters (OPTs) and the peptide transporters (PTRs), have been recognized in eukaryotes. Higher plants contain a far greater number of genes for these transporters than do other eukaryotes. This may be indicative of the relative importance of (oligo)peptides and their transport to plant growth and metabolism. RECENT PROGRESS: Recent studies are now allowing us to assign functions to these transporters and are starting to identify their in-planta substrates, revealing unexpected and important contributions of the transporters to plant growth and developmental processes. This Botanical Briefing appraises recent findings that PTRs and OPTs have key roles to play in the control of plant cell growth and development. Evidence is presented that some of these transporters have functions outside that of nitrogen nutrition and that these carriers can also surprise us with their totally unexpected choice of substrates.  相似文献   

5.
Plant KT/KUP/HAK potassium transporters: single family - multiple functions   总被引:3,自引:0,他引:3  
Grabov A 《Annals of botany》2007,99(6):1035-1041
BACKGROUND AND AIMS: Potassium transporters belonging to the KT/KUP/HAK family are important for various aspects of plant life including mineral nutrition and the regulation of development. Genes encoding these transporters are present in the genomes of all plants, but have not been found in the genomes of Protista or Animalia. The aim of this Botanical Briefing is to analyse the function of KT/KUP/HAK transporters from evolutionary, molecular and physiological perspectives. SCOPE: This Briefing covers the phylogeny and evolution of KT/KUP/HAK transporters, the role of transporters in plant mineral nutrition and potassium homeostasis, and the role of KT/KUP/HAK transporters in plant development.  相似文献   

6.
How Do Plants Survive Ice?   总被引:5,自引:0,他引:5  
ANDREWS  C. J. 《Annals of botany》1996,78(5):529-536
Plant species have had to adapt to freezing and the presenceof ice in many climatic zones. Annual plants avoid ice by seeddispersal but, for biennials and perennials to survive theymust cope with ice in various forms. Most plants that are regularlyexposed to ice during their life cycles have acquired a dormantor quiescent winter period, when they are more tolerant to freezingtemperatures. This Botanical Briefing explores some associationsbetween plants and ice, with an emphasis on processes in plantsthat alleviate stress imposed by ice cover. Examples are takenfrom winter cereals which must reach an equilibrium both withice and with freezing temperatures for survival and economicproductivity. Acclimation; anaerobiosis; anoxia; cold; flooding; hypoxia; ice; ice encasement; winter survival  相似文献   

7.
Abscisic acid receptors: multiple signal-perception sites   总被引:4,自引:0,他引:4  
Wang XF  Zhang DP 《Annals of botany》2008,101(3):311-317
BACKGROUND AND AIMS: The phytohormone abscisic acid (ABA) plays a vital role in various aspects of plant growth and development and in adaptation of plants to various environmental stresses. Cell response to ABA is initiated by ABA perception with a cell receptor. Recently, three distinct ABA receptors have been identified, opening a door to uncover the initial events of ABA signal transduction. The aim of this Botanical Briefing is to present a perspective of the ABA receptors identified. SCOPE: This Briefing offers an introduction to the three ABA receptors identified and an analysis of the complexity and multiplicity of ABA receptors, and provides some viewpoints on future research.  相似文献   

8.
Phytochromes and shade-avoidance responses in plants   总被引:28,自引:0,他引:28  
BACKGROUND AND AIMS: The ability to detect and respond to the impending threat of shade can confer significant selective advantage to plants growing in natural communities. This Botanical Briefing highlights (a) the regulation of shade-avoidance responses by endogenous and exogenous factors and (b) current understanding of the molecular components involved in red to far-red ratio signal transduction. SCOPE: The Briefing covers: (a) the shade-avoidance syndrome in higher plants; (b) the adaptive significance of shade avoidance in natural light environments; (c) phytochrome regulation of shade-avoidance responses; (d) the role of blue light signals in shade avoidance; (e) gating of rapid shade-avoidance responses by the circadian clock; (f) potential signalling components and future perspectives.  相似文献   

9.
AIMS: This Botanical Briefing reviews how the integration of palaeontology, geochemistry and developmental biology is providing a new mechanistic framework for interpreting the 40- to 50-million-year gap between the origination of vascular land plants and the advent of large (megaphyll) leaves, a long-standing puzzle in evolutionary biology. SCOPE: Molecular genetics indicates that the developmental mechanisms required for leaf production in vascular plants were recruited long before the advent of large megaphylls. According to theory, this morphogenetic potential was only realized as the concentration of atmospheric CO2 declined during the late Palaeozoic. Surprisingly, plants effectively policed their own evolution since the decrease in CO2 was brought about as terrestrial floras evolved accelerating the rate of silicate rock weathering and enhancing sedimentary organic carbon burial, both of which are long-term sinks for CO2. CONCLUSIONS: The recognition that plant evolution responds to and influences CO(2) over millions of years reveals the existence of an intricate web of vegetation feedbacks regulating the long-term carbon cycle. Several of these feedbacks destabilized CO2 and climate during the late Palaeozoic but appear to have quickened the pace of terrestrial plant and animal evolution at that time.  相似文献   

10.
C He  X Chen  H Huang  L Xu 《PLoS genetics》2012,8(8):e1002911
In plants, multiple detached tissues are capable of forming a pluripotent cell mass, termed callus, when cultured on media containing appropriate plant hormones. Recent studies demonstrated that callus resembles the root-tip meristem, even if it is derived from aerial organs. This finding improves our understanding of the regeneration process of plant cells; however, the molecular mechanism that guides cells of different tissue types to form a callus still remains elusive. Here, we show that genome-wide reprogramming of histone H3 lysine 27 trimethylation (H3K27me3) is a critical step in the leaf-to-callus transition. The Polycomb Repressive Complex 2 (PRC2) is known to function in establishing H3K27me3. By analyzing callus formation of mutants corresponding to different histone modification pathways, we found that leaf blades and/or cotyledons of the PRC2 mutants curly leaf swinger (clf swn) and embryonic flower2 (emf2) were defective in callus formation. We identified the H3K27me3-covered loci in leaves and calli by a ChIP-chip assay, and we found that in the callus H3K27me3 levels decreased first at certain auxin-pathway genes. The levels were then increased at specific leaf genes but decreased at a number of root-regulatory genes. Changes in H3K27me3 levels were negatively correlated with expression levels of the corresponding genes. One possible role of PRC2-mediated H3K27me3 in the leaf-to-callus transition might relate to elimination of leaf features by silencing leaf-regulatory genes, as most leaf-preferentially expressed regulatory genes could not be silenced in the leaf explants of clf swn. In contrast to the leaf explants, the root explants of both clf swn and emf2 formed calli normally, possibly because the root-to-callus transition bypasses the leaf gene silencing process. Furthermore, our data show that PRC2-mediated H3K27me3 and H3K27 demethylation act in parallel in the reprogramming of H3K27me3 during the leaf-to-callus transition, suggesting a general mechanism for cell fate transition in plants.  相似文献   

11.
We have identified a homolog of the mammalian ionotropic glutamate receptor genes in Arabidopsis thaliana (AtGluR2). This gene was found to alter Ca2+ utilization when overexpressed in A. thaliana. These transgenic plants displayed symptoms of Ca2+ deficiency, including browning and death of the shoot apex, necrosis of leaf tips, and deformation of leaves. Supplementation with Ca2+ alleviated these phenotypes. Overall levels of Ca2+ in tissues of control plants were not significantly different from those of transgenic plants, suggesting that overexpression of the AtGluR2 gene did not affect Ca2+ uptake. However, the relative growth yield as a function of Ca2+ levels revealed that the critical deficiency content of Ca2+ in transgenic plants was three times higher than that of control plants. The transgenic plants also exhibited hypersensitivity to Na+ and K+ ionic stresses. The ion hypersensitivity was ameliorated by supplementation with Ca2+. The results showed that overexpression of the AtGluR2 gene caused reduced efficiency of Ca2+ utilization in the transgenic plants. The promoter of the AtGluR2 gene was active in vascular tissues, particularly in cells adjacent to the conducting vessels. This suggests that AtGluR2 encodes a functional channel that unloads Ca2+ from the xylem vessels. The results together suggest that appropriate expression of the AtGluR2 protein may play critical roles in Ca2+ nutrition by controlling the ion allocation among different Ca2+ sinks both during normal development and during adaptation to ionic stresses.  相似文献   

12.
Protein transport in plant cells: in and out of the Golgi   总被引:7,自引:0,他引:7  
In plant cells, the Golgi apparatus is the key organelle for polysaccharide and glycolipid synthesis, protein glycosylation and protein sorting towards various cellular compartments. Protein import from the endoplasmic reticulum (ER) is a highly dynamic process, and new data suggest that transport, at least of soluble proteins, occurs via bulk flow. In this Botanical Briefing, we review the latest data on ER/Golgi inter-relations and the models for transport between the two organelles. Whether vesicles are involved in this transport event or if direct ER-Golgi connections exist are questions that are open to discussion. Whereas the majority of proteins pass through the Golgi on their way to other cell destinations, either by vesicular shuttles or through maturation of cisternae from the cis- to the trans-face, a number of membrane proteins reside in the different Golgi cisternae. Experimental evidence suggests that the length of the transmembrane domain is of crucial importance for the retention of proteins within the Golgi. In non-dividing cells, protein transport out of the Golgi is either directed towards the plasma membrane/cell wall (secretion) or to the vacuolar system. The latter comprises the lytic vacuole and protein storage vacuoles. In general, transport to either of these from the Golgi depends on different sorting signals and receptors and is mediated by clathrin-coated and dense vesicles, respectively. Being at the heart of the secretory pathway, the Golgi (transiently) accommodates regulatory proteins of secretion (e.g. SNAREs and small GTPases), of which many have been cloned in plants over the last decade. In this context, we present a list of regulatory proteins, along with structural and processing proteins, that have been located to the Golgi and the 'trans-Golgi network' by microscopy.  相似文献   

13.
Potassium (K+) channels play multiple roles in higher plants, and have been characterized electrophysiologically in various subcellular membranes. The K+ channel AtKCO1 from Arabidopsis thaliana is the prototype of a new family of plant K+ channels. In a previous study the protein has been functionally characterized after heterologous expression in Baculovirus-infected insect cells. In order to obtain further information on the physiological function of AtKCO1, the gene expression pattern and subcellular localization of the protein in plants were investigated. The regulatory function of the 5' region of the AtKCO1 gene was examined in transgenic A. thaliana plants carrying beta-glucuronidase (GUS) fusion constructs. Our analysis demonstrates that the AtKCO1 promoter is active in various tissues and cell types, and the highest GUS activity could be detected in mitotically active tissues of the plant. Promoter activity was strongly dependent on the presence of a 5' leader intron. The same overall structure was identified in two genes encoding AtKCO1-like K+ channels from Solanum tuberosum (StKCO1alpha and StKCO1beta). To investigate the subcellular localization of AtKCO1, the channel protein, as well as a fusion protein of AtKCO1 with green fluorescence protein (GFP), were expressed in transgenic tobacco BY2 cells. In sucrose density gradients, both proteins co-fractionate with tonoplast markers (Nt-TIPa, vATPase). In fluorescence images from transgenic AtKCO1-GFP BY2 cells fluorescence was exclusively detected in the tonoplast. Thus AtKCO1 is the first cloned K+ channel demonstrated to be a vacuolar K+ channel.  相似文献   

14.
An appreciable number of potassium channels mediating K+ uptake have been identified in higher plants. Promoter-beta-glucuronidase reporter gene studies were used here to demonstrate that SKT1, encoding a potato K+ inwardly rectifying channel, is expressed in guard cells in addition to KST1 previously reported. However, whereas KST1 was found to be expressed in essentially all mature guard cells, SKT1 expression was almost exclusively restricted to guard cells of the abaxial leaf epidermis. This suggests that different types of K+ channel subunits contribute to channel formation in potato guard cells and therefore differential regulation of stomatal movements in the two leaf surfaces. The overlapping expression pattern of SKT1 and KST1 in abaxial guard cells indicates that K+in channels of different sub-families contribute to ionic currents in this cell type, thus explaining the different properties of channels expressed solely in heterologous systems and those endogenous to guard cells. Interaction studies had previously suggested that plant K+ inward rectifiers form clusters via their conserved C-terminal domain, KT/HA. K+ channels co-expressed in one cell type may therefore form heteromers, which increase functional variability of K+ currents, a phenomenon well described for animal voltage-gated K+ channels. Co-expression of KST1 and SKT1 in Xenopus oocytes resulted in currents with an intermediate sensitivity towards Cs+, suggesting the presence of heteromers, and a sensitivity towards external Ca2+, which reflected the property of the endogenous K+in current in guard cells. Modulation of KST1 currents in oocytes by co-expressing KST1 with a SKT1 pore-mutant, which by itself was not able to confer activating K+ currents, demonstrated the possibility that KST1 and SKT1 co-assemble to hetero-oligomers. Furthermore, various C-terminal deletions of the mutated SKT1 channel restored KST1 currents, showing that the C-terminal KT motif is essential for heteromeric channel formation.  相似文献   

15.
The capacity of tomato leaf tissues to accumulate proline in response to a salt shock (150 mM NaCl) applied to excised shoots, leaves, leaflets or leaf discs was determined and compared to that of whole plants grown at the same salinity. The associated changes in free amino acids, Na+, K+ and Cl- contents were also investigated. In excised organs treated for 80 h, up to 200 mumol g-1 DW of proline were accumulated, whereas the amount of proline in leaf discs did not exceed a value ten-fold lower. In the whole plants subjected to salinity the Na+, Cl- and K+ contents remained low in comparison to that observed in excised organs. Proline and other amino acids increased more slowly in whole plants than in excised shoots. The contribution of roots and vascular tissues to the control of Na+ and Cl- accumulation and to the regulation of proline metabolism are discussed.  相似文献   

16.
Plant voltage-gated channels belonging to the Shaker family participate in sustained K+ transport processes at the cell and whole plant levels, such as K+ uptake from the soil solution, long-distance K+ transport in the xylem and phloem, and K+ fluxes in guard cells during stomatal movements. The attention here is focused on the regulation of these transport systems by protein-protein interactions. Clues to the identity of the regulatory mechanisms have been provided by electrophysiological approaches in planta or in heterologous systems, and through analogies with their animal counterparts. It has been shown that, like their animal homologues, plant voltage-gated channels can assemble as homo- or heterotetramers associating polypeptides encoded by different Shaker genes, and that they can bind auxiliary subunits homologous to those identified in mammals. Furthermore, several regulatory processes (involving, for example, protein kinases and phosphatases, G proteins, 14-3-3s, or syntaxins) might be common to plant and animal Shakers. However, the molecular identification of plant channel partners is still at its beginning. This paper reviews current knowledge on plant K+ channel regulation at the physiological and molecular levels, in the light of the corresponding knowledge in animal cells, and discusses perspectives for the deciphering of regulatory networks in the future.  相似文献   

17.
In the light of stomatal opening: new insights into 'the Watergate'   总被引:1,自引:0,他引:1  
Stomata can be regarded as hydraulically driven valves in the leaf surface, which open to allow CO2 uptake and close to prevent excessive loss of water. Movement of these 'Watergates' is regulated by environmental conditions, such as light, CO2 and humidity. Guard cells can sense environmental conditions and function as motor cells within the stomatal complex. Stomatal movement results from the transport of K+ salts across the guard cell membranes. In this review, we discuss the biophysical principles and mechanisms of stomatal movement and relate these to ion transport at the plasma membrane and vacuolar membrane. Studies with isolated guard cells, combined with recordings on single guard cells in intact plants, revealed that light stimulates stomatal opening via blue light-specific and photosynthetic-active radiation-dependent pathways. In addition, guard cells sense changes in air humidity and the water status of distant tissues via the stress hormone abscisic acid (ABA). Guard cells thus provide an excellent system to study cross-talk, as multiple signaling pathways induce both short- and long-term responses in these sensory cells.  相似文献   

18.
19.
HKT1和HAK1等转运子介导钾离子的高亲和吸收以及K+/Na+共运转,从而可能增强Na+替代K+的能力;KAT1和KST1等离子通道介导钾离子的累积和转运,从而调节气孔细胞的渗透压,控制气孔运动。阐述了植物生物膜上离子转运机制和钾营养高效机理的某种可能的关系。这些转运子和通道的高效表达可能与植物钾营养高效有很大的相关性。  相似文献   

20.
转HAL1基因番茄的耐盐性   总被引:18,自引:0,他引:18  
利用农杆菌介导的叶盘法,把HAL1 基因转入番茄,Southern杂交检测得到转基因植株.耐盐实验表明, T1代转基因番茄在150 mmol/L的NaCl胁迫下仍有43%的发芽率,200 mmol/L的NaCl胁迫下发芽率为6%,而对照种子在100和150 mmol/L的NaCl胁迫下发芽率分别为11.0%和0.转基因番茄的电解质相对外渗率小于对照,而根冠比和叶绿素含量大于对照,转HAL1基因显著提高了番茄的耐盐性.盐胁迫下Na 、K 的累积状况表明,转基因番茄根、茎、叶的K /Na 均有所提高,根系的SK/Na增大,茎、叶的RSK/Na和RLK/Na减小,说明根系对K /Na 离子的选择吸收和运输能力加强.不但选择吸收K /Na ,而且表现出整株水平上的有利于耐盐的K /Na 区域化分配.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号