首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Katagiri M  Nakamura M 《IUBMB life》2002,53(2):125-129
It has traditionally been thought that animals can utilize ammonia for amino acid biosynthesis, and that for them some amino acids are nutritionally nonessential. Presumably this idea originates from the notions of Schoenheimer (G. L. Foster et al. [1939] J. Biol. Chem. 127, 319-327) and of Rose (W. C. Rose et al. [1948] J. Biol. Chem. 176, 753-762), which we question for the following reasons. First, Schoenheimer's experiments only showed the incorporation of ammonia into amino acids. This may occur simply as an exchange between ammonia and the alpha-amino group of endogenous amino acids and reflects the enzymatic properties of glutamate dehydrogenase, which is a reversible enzyme. Second, Rose's nutritional experiments were concerned with whether carbon skeletons of particular amino acids can (nonessential) or cannot (essential) be synthesized from common intermediates of carbohydrate metabolism. We propose that mammals, living as they do at the top of the food web, are absolutely dependent directly or indirectly on higher plants and microorganisms for preformed alpha-amino nitrogen per se and that the first joining of C- and N-atoms to make glutamate constitutes a basic anabolic system in nature after the fixation of CO2 and N2.  相似文献   

2.
Glutamate in plants: metabolism, regulation, and signalling   总被引:10,自引:0,他引:10  
Glutamate occupies a central position in amino acid metabolism in plants. The acidic amino acid is formed by the action of glutamate synthase, utilizing glutamine and 2-oxoglutarate. However, glutamate is also the substrate for the synthesis of glutamine from ammonia, catalysed by glutamine synthetase. The alpha-amino group of glutamate may be transferred to other amino acids by the action of a wide range of multispecific aminotransferases. In addition, both the carbon skeleton and alpha-amino group of glutamate form the basis for the synthesis of gamma-aminobutyric acid, arginine, and proline. Finally, glutamate may be deaminated by glutamate dehydrogenase to form ammonia and 2-oxoglutarate. The possibility that the cellular concentrations of glutamate within the plant are homeostatically regulated by the combined action of these pathways is examined. Evidence that the well-known signalling properties of glutamate in animals may also extend to the plant kingdom is reviewed. The existence in plants of glutamate-activated ion channels and their possible relationship to the GLR gene family that is homologous to ionotropic glutamate receptors (iGluRs) in animals are discussed. Glutamate signalling is examined from an evolutionary perspective, and the roles it might play in plants, both in endogenous signalling pathways and in determining the capacity of the root to respond to sources of organic N in the soil, are considered.  相似文献   

3.
The nonessential amino acids are involved in a large number of functions that are not directly associated with protein synthesis. Recent studies using a combination of transorgan balance and stable isotopic tracers have demonstrated that a substantial portion of the extra‐splanchnic flux of glutamate, glutamine, glycine and cysteine derives from tissue synthesis. A key amino acid in this respect is glutamic acid. Little glutamic acid of dietary origin escapes metabolism in the small intestinal mucosa. Furthermore, because glutamic acid is the only amino acid that can be synthesized by mammals by reductive amination of a ketoacid, it is the ultimate nitrogen donor for the synthesis of other nonessential amino acids. Because the synthesis of glutamic acid and its product glutamine involve the expenditure of adenosine triphosphate (ATP), it seems possible that nonessential amino acid synthesis might have a significant bearing on the energetics of protein synthesis and, hence, of protein deposition. This paper discusses the topic of the energy cost of protein deposition, considers the metabolic physiology of amino acid oxidation and nonessential amino acid synthesis, and attempts to combine the information to speculate on the overall impact of amino acid metabolism on the energy exchanges of animals.  相似文献   

4.
Mosquitoes utilize the amino acids derived from blood meal protein to produce egg proteins. But the amino acids can also be used to produce egg lipid or can be oxidized for energy production. These latter two processes result in the release of nitrogen as toxic ammonia. Therefore, amino acids must be processed in such a way that amino acid nitrogen can be incorporated into non-toxic waste products. Proline is the predominant amino acid in the hemolymph of the adult female mosquito Aedes aegypti. After feeding on albumin meal, hemolymph proline levels increased five-fold over unfed levels, reached maximal levels in the first hours after feeding and remained high through oviposition. Hemolymph proline levels increased as the concentration of protein in the meal increased. When starved of sugar for 24 h prior to feeding on an albumin meal, hemolymph proline levels increased four-fold over the proline levels of non-starved mosquitoes. Proline levels after feeding on a protein deficient in essential amino acids, pike parvalbumin, increased to twice the levels of albumin fed mosquitoes. Based on these observations, we propose that mosquitoes utilize proline as a temporary nitrogen sink to store ammonia arising from deamination of blood meal amino acid.  相似文献   

5.
Branched-chain amino acids (BCAAs) catabolism follows sequential reactions and their metabolites intersect with other metabolic pathways. The initial enzymes in BCAA metabolism, the mitochondrial branched-chain aminotransferase (BCATm), which deaminates the BCAAs to branched-chain α-keto acids (BCKAs); and the branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC), which oxidatively decarboxylates the BCKAs, are organized in a supramolecular complex termed metabolon. Glutamate dehydrogenase (GDH1) is found in the metabolon in rat tissues. Bovine GDH1 binds to the pyridoxamine 5′-phosphate (PMP)-form of human BCATm (PMP-BCATm) but not to pyridoxal 5′-phosphate (PLP)-BCATm in vitro. This protein interaction facilitates reamination of the α-ketoglutarate (αKG) product of the GDH1 oxidative deamination reaction. Human GDH1 appears to act like bovine GDH1 but human GDH2 does not show the same enhancement of BCKDC enzyme activities. Another metabolic enzyme is also found in the metabolon is pyruvate carboxylase (PC). Kinetic results suggest that PC binds to the E1 decarboxylase of BCKDC but does not effect BCAA catabolism. The protein interaction of BCATm and GDH1 promotes regeneration of PLP-BCATm which then binds to BCKDC resulting in channeling of the BCKA products from BCATm first half reaction to E1 and promoting BCAA oxidation and net nitrogen transfer from BCAAs. The cycling of nitrogen through glutamate via the actions of BCATm and GDH1 releases free ammonia. Formation of ammonia may be important for astrocyte glutamine synthesis in the central nervous system. In peripheral tissue association of BCATm and GDH1 would promote BCAA oxidation at physiologically relevant BCAA concentrations.  相似文献   

6.
Two strains of Cyanidium caldarium which possess different biochemical and nutritional characteristics were examined with respect to their ability to utilize amino acids or 2-ketoglutarate as substrates.One strain utilizes alanine, glutamate or aspartate as nitrogen sources, and glutamate, alanine or 2-ketoglutarate as carbon and energy sources for growth in the dark. The growth rate in the dark on 2-ketoglutarate is almost twice as high or higher than that on glutamate or alanine. During growth or incubation of this alga on amino acids, large amounts of ammonia are formed; however, ammonia formation is strongly inhibited by 2-ketoglutarate. The capacity of the alga to form ammonia from amino acids is inducible and develops fully only when the cells are grown or incubated in the presence of glutamate.By contrast, the other strain of Cyanidium caldarium cannot utilize alanine or aspartate as nitrogen sources. It utilizes glutamate only very poorly and does not excrete ammonia into the external medium. This strain is unable to utilize amino acids or 2-ketoglutarate as carbon and energy sources for heterotrophic growth.Cell-free extracts were tested for the occurrence of enzymes which could account for amino acid metabolism and ammonia formation.  相似文献   

7.
The objective of this work was to construct a dynamic model of hepatic amino acid metabolism in the lactating dairy cow that could be parameterized using net flow data from in vivo experiments. The model considers 22 amino acids, ammonia, urea, and 13 energetic metabolites, and was parameterized using a steady-state balance model and two in vivo, net flow experiments conducted with mid-lactation dairy cows. Extracellular flows were derived directly from the observed data. An optimization routine was used to derive nine intracellular flows. The resulting dynamic model was found to be stable across a range of inputs suggesting that it can be perturbed and applied to other physiological states. Although nitrogen was generally in balance, leucine was in slight deficit compared to predicted needs for export protein synthesis, suggesting that an alternative source of leucine (e.g. peptides) was utilized. Simulations of varying glucagon concentrations indicated that an additional 5 mol/d of glucose could be synthesized at the reference substrate concentrations and blood flows. The increased glucose production was supported by increased removal from blood of lactate, glutamate, aspartate, alanine, asparagine, and glutamine. As glucose output increased, ketone body and acetate release increased while CO(2) release declined. The pattern of amino acids appearing in hepatic vein blood was affected by changes in amino acid concentration in portal vein blood, portal blood flow rate and glucagon concentration, with methionine and phenylalanine being the most affected of essential amino acids. Experimental evidence is insufficient to determine whether essential amino acids are affected by varying gluconeogenic demands.  相似文献   

8.
Aphids are highly specialized insects that feed on the phloem-sap of plants, the amino acid composition of which is very unbalanced. Amino acid metabolism is thus crucial in aphids, and we describe a novel investigation method based on the use of 14C-labeled amino acids added in an artificial diet. A metabolism cage for aphids was constructed, allowing for the collection and analysis of the radioactivity incorporated into the aphid body, expired as CO2, and rejected in the honeydew and exuviae. This method was applied to the study of the metabolism of eight energetic amino acids (aspartate, glutamate, glutamine, glycine, serine, alanine, proline, and threonine) in the pea aphid, Acyrthosiphon pisum. All these amino acids except threonine were subject to substantial catabolism as measured by high 14CO2 production. The highest turnover was displayed by aspartate, with 60% of its carbons expired as CO2. For the first time in an aphid, we directly demonstrated the synthesis of three essential amino acids (threonine, isoleucine, and lysine) from carbons of common amino acids. The synthesis of these three compounds was only observed from amino acids that were previously converted into glutamate. This conversion was important for aspartate, and lower for alanine and proline. To explain the quantitative results of interconversion between amino acids, we propose a compartmentation model with the intervention of bacterial endosymbiotes for the synthesis of essential amino acids and with glutamate as the only amino acid supplied by the insect to the symbiotes. Moreover, proline exhibited partial conversion into arginine, and it is suggested that proline is probably indirectly involved in excretory nitrogen metabolism. © 1995 Wiley-Liss, Inc.  相似文献   

9.
The composition and levels of amino acids in four Frankia strains isolated from different actinorhizal plants, were determined. Minor differences in the amino acid profiles were noted with GLN (GLU) being the major amino acid in all four strains. Enzyme actives of ammonia metabolism, GS (glutamine synthetase), GOGAT (glutamate synthetase), and GDH (glutamate dehydrogenase), were also measured. In strains At4 and Hr18, GS and GOGAT activity levels were elevated in N2-grown cells but significant amounts of GDH activity were present in ammonia-grown cells. No GDH was detected in strain Cc01 and Mg+. The characters of heat-stable and heat-labile GSs were described. In N2-fixing cells, the ATP and amino acid content was much lower, but ammonia content was higher than in NH inf4 sup+ -grown cells.  相似文献   

10.
Proline accumulation in osmotically stressed leaves of Lotus corniculatus was stimulated by increasing light intensity (photon fluence density, PFD). Treatment with propanil limited proline accumulation in response to light and osmotic stress, indicating a dependence of proline synthesis on photosynthetic NADPH. Drought stress induced proline accumulation in L. corniculatus both in nitrate-fed plant (NFP) and ammonium-fed plants (AFP), although higher proline concentration was observed in AFP than in NFP after 24 h of drought stress. Changes in proline accumulation induced by drought stress in plants grown under different nitrogen regimes could not be explained by changes of either total protein or amino acids, consistent with specifically altered regulation of proline synthesis. Under control conditions, alanine, aspartate and glutamate were the predominant amino acids in NFP; conversely, in AFP, arginine and ornithine were the predominant amino acids. Only the NFP regime showed changes in the concentrations of specific amino acids under drought stress a decrease in alanine, aspartate and glutamate and increased gama-aminobutyric acid. In AFP and especially NFP, proline accumulation under osmotic stress was associated with increased ornithine amino transferase activity. An increase of both activity and protein of ferredoxin-dependent glutamate synthase was observed in osmotic-stressed NFP; inversely both decreased in drought-stressed AFP. PFD and nitrogen source are therefore shown to be regulators of proline accumulation in L. corniculatus osmotically stressed plants.  相似文献   

11.
The changes in hind leg tissue (muscle and skin) amono acid pool size and arteriovenous balance were measured in rats subjected to 0–90 min of cold exposure (4°C). Tissue free amino acid pools presented a different composition pattern from protein amino acids. Muscle rapidly reacted to cold exposure by releasing small amounts of some amino acids (alanine, aspartate), with only small changes in pool size during the first 30 min. Amino acid oxidation was very limited during the whole period of cold exposure, since at all times tested there was either nil ammonia efflux or net absorption of ammonia and glutamine; i.e. the muscle was in positive nitrogen balance throughout the period studied. Thus most of the amino acid nitrogen taken up from the blood and not found in the free amino pools must have been incorporated into protein, since it was not oxidized, as shown by the glutamine and ammonia blance. The data on amino acid incorporation into proteins indicate that hind leg protein turnover is rapidly and widely modulated from a low initial setting upon cold exposure to a higher protein synthesis rate immediately afterwards, suggesting that protein turnover may have an important role in short-term events in cold-exposed muscle, in addition to its influence in long-term adaptation.  相似文献   

12.
Desulfobacterium vacuolatum strain IbRM was able to grow using casamino acids as a source of carbon, energy and nitrogen. Growth was accompanied by utilization of several amino acids and sulfide production. Proline and glutamate were used preferentially and to the greatest extent. Glycine, serine and alanine were used more slowly and only after proline and glutamate were used. Isoleucine, valine, leucine and aspartate decrease was slowest and occurred in a linear fashion throughout the growth phase. Amino acids used from casamino acids, excluding aspartate, were also used as single carbon, energy and nitrogen sources. As a single amino acid, aspartate could only be used as a nitrogen source. Aspartate was not used as an electron acceptor. No growth occurred on any amino acid in the absence of sulfate. As single substrates, isoleucine, proline and glutamate were oxidized without formation of acetate and with molar yields of 13.1, 9.4 and 7.7 g mol–1, respectively. Received: 24 June 1997 / Accepted: 10 September 1997  相似文献   

13.
BCAAs (branched-chain amino acids) are indispensable (essential) amino acids that are required for body protein synthesis. Indispensable amino acids cannot be synthesized by the body and must be acquired from the diet. The BCAA leucine provides hormone-like signals to tissues such as skeletal muscle, indicating overall nutrient sufficiency. BCAA metabolism provides an important transport system to move nitrogen throughout the body for the synthesis of dispensable (non-essential) amino acids, including the neurotransmitter glutamate in the central nervous system. BCAA metabolism is tightly regulated to maintain levels high enough to support these important functions, but at the same time excesses are prevented via stimulation of irreversible disposal pathways. It is well known from inborn errors of BCAA metabolism that dysregulation of the BCAA catabolic pathways that leads to excess BCAAs and their alpha-keto acid metabolites results in neural dysfunction. In this issue of Biochemical Journal, Joshi and colleagues have disrupted the murine BDK (branched-chain alpha-keto acid dehydrogenase kinase) gene. This enzyme serves as the brake on BCAA catabolism. The impaired growth and neurological abnormalities observed in this animal show conclusively the importance of tight regulation of indispensable amino acid metabolism.  相似文献   

14.
The anaerobic fungusPiromyces sp. strain E2 appeared restricted in nitrogen utilization. Growth was only supported by ammonium as source of nitrogen. Glutamine also resulted in growth, but this was due to release of ammonia rather than to uptake and utilization of the amino acid. The fungus was not able to grow on other amino acids, albumin, urea, allantoin, or nitrate. Assimilation of ammonium is very likely to be mediated by NADP-linked glutamate dehydrogenase (NADP-GDH) and glutamine synthetase (GS). One transaminating activity, glutamate-oxaloacetate transaminase (GOT), was demonstrated. Glutamate synthase (GOGAT), NAD-dependent glutamate dehydrogenase (NAD-GDH), and the transaminating activity glutamate-pyruvate transaminase (GPT) were not detected in cell-free extracts ofPiromyces sp. strain E2. Specific enzyme activities of both NADP-GDH and GS increased four-to sixfold under nitrogen-limiting conditions.Abbreviations GDH Glutamate dehydrogenase - GOGAT Glutamate synthase - GOT Glutamate-oxaloacetate transaminase - GPT Glutamate-pyruvate transaminase - GS Glutamine synthetase  相似文献   

15.
DNA coding for the ferredoxin-dependent glutamate synthase (EC1.4.7.1) of spinach chloroplasts has been cloned and sequenced. It consists of 5015 bp and starts with the codon for the N-terminal cysteine of the mature protein. Ferredoxin-dependent glutamate synthase is one of the key enzymes in the early stages of ammonia assimilation in plants, algae and cyanobacteria. In addition to the ferredoxin-dependent enzyme, there are two other forms of glutamate synthase, one of which uses NADH as the electron donor and a second that uses NADPH. Although all three forms catalyze the reductive transamidation of the amido nitrogen from glutamine to 2-oxoglutarate to form two molecules of glutamate, ferredoxin-dependent glutamate synthases differ from the NADH and NADPH-dependent forms in subunit composition and amino acid sequence. The recent availability of sequence data for glutamate synthases from spinach and from two archael species has produced a clearer and more detailed picture of the evolution of this key enzyme in nitrogen metabolism and the origins of the two subunit/domain structure of the enzyme.  相似文献   

16.
B. Dahlbender  D. Strack 《Planta》1986,169(3):382-392
The relationships between the metabolism of malate, nitrogen assimilation and biosynthesis of amino acids in response to different nitrogen sources (nitrate and ammonium) have been examined in cotyledons of radish (Raphanus sativus L.). Measurements of the activities of some key enzymes and pulse-chase experiments with [14C]malate indicate the operation of an anaplerotic pathway for malate, which is involved in the synthesis of glutamine during increased ammonia assimilation. It is most likely that the tricarboxylicacid cycle is supplied with carbon through entry of malate, formed via the phosphoenolpyruvate (PEP)-carboxylation pathway, when 2-oxoglutarate leaves the cycle to serve as precursor for an increased synthesis of glutamine via glutamate. This might occur predominantly in the cytosol via the activity of the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle, the NADH-dependent GOGAT being the rate-limiting activity.Abbreviations DTT dithiothreitol - EDTA ethylenediamine-tetraacetic acid - GDH glutamate dehydrogenase - GOGAT glutamate synthase (glutamine: 2-oxoglutarate aminotransferase) - GOT aspartate aminotransferase (glutamate: oxaloacetate transaminase) - GS glutamine synthetase - HPLC high-performance liquid chromatography - MCF extraction medium of methanol: chloroform: 7M formic acid, 12:5:3, by vol. - MDH malate dehydrogenase - MSO L-methionine, sulfoximine - PEPCase phosphoenolpyruvate carboxylase - TLC thin-layer chromatography  相似文献   

17.
Preparations of structurally preserved cerebellar perikarya (cells) were found to express high-affinity transport systems for glutamate but not for certain putative transmitter substances (including monoamines, glycine and taurine) and non-transmitter amino acids. The characteristics of the high-affinity glutamate transport system were similar to those of other preparations of brain tissue: [3H]glutamate uptake by the cells was Na+-dependent and was inhibited competetively by other acidic amino acids. The rank order of apparent affinities of the carrier for acidic amino acids was L-aspartate > L-glutamate > D-aspartate ? D-glutamate (the affinity for D-glutamate being over two orders of magnitude lower than for the other three amino acids). Comparison of high-affinity [3H]glutamate uptake in preparations enriched in different cell types showed that although the affinities are similar (2-4 fiM), the rate is outstandingly high in astrocytes (Vmax 18 nmol/min per mg protein). Significantly, uptake into the putatively glutamatergic granule cells was very low. These observations were supported by autoradiographic findings which showed that the predominant sites of [3H]glutamate uptake in cerebellar cultures enriched in interneurones are the astrocytes. Furthermore, the Vmax in cultures enriched in astrocytes was as high as that in separated astrocytes. Thus, it seems that the principal cell type involved in acidic amino acid uptake in the cerebellum is the astrocyte, and this must be taken into consideration when high-affinity uptake is used as a marker for glutamatergic transmitter systems. Furthermore, the selective cellular distribution of glutamate transport sites, together with the uneven distribution of enzymes related to glutamate metabolism observed previously, indicates that a metabolic interaction takes place between the different cell types, supporting the current hypothesis on metabolic compartmentation in the brain.  相似文献   

18.
The enzyme glutamate dehydrogenase (GDH) plays an important role in integrating mitochondrial metabolism of amino acids and ammonia. Glutamate may function as a respiratory substrate in the oxidative deamination direction of GDH, which also yields α-ketoglutarate. In the reductive amination direction GDH produces glutamate, which can then be used for other cellular needs such as amino acid synthesis via transamination. The production or removal of ammonia by GDH is also an important consequence of flux through this enzyme. However, the abundance and role of GDH in cellular metabolism varies by tissue. Here we discuss the different roles the house-keeping form of GDH has in major organs of the body and how GDH may be important to regulating aspects of intermediary metabolism. The near-equilibrium poise of GDH in liver and controversy over cofactor specificity and regulation is discussed, as well as, the role of GDH in regulation of renal ammoniagenesis, and the possible importance of GDH activity in the release of nitrogen carriers by the small intestine.  相似文献   

19.
The cellular distribution of free amino acids was estimated in primary cultures (14 days in vitro) composed principally of cerebellar interneurones or cerebellar and forebrain astrocytes. In cultured neural cells, the overall concentration of amino acids resembled that found in brain at the corresponding age in vivo. In the two neural cell types, there were marked differences in the distribution of amino acids, in particular, those associated with the metabolic compartmentation of glutamate. In neuronal cell cultures, the concentrations of glutamate, aspartate, and gamma-aminobutyric acid were, respectively, about three, four, and seven times greater than in astrocytes. By contrast, the amount of glutamine was approximately 65% greater in astroglial cell cultures than in interneurone cultures. An unexpected finding was a very high concentration of glycine in astrocytes derived from 8-day-old cerebellum, but the concentrations of both serine and glycine were greater in nerve cell cultures than in forebrain astrocytes. The essential amino acids threonine, valine, isoleucine, leucine, tyrosine, phenylalanine, histidine, lysine, and arginine were all present in the growth medium, and small cellular changes in the contents of some of these amino acids may relate to differences in their influx and efflux during culturing and washing procedures. The present results, together with our previous findings, provide further support for the model assigning the "small" compartment of glutamate to glial cells and the "large" compartment to neurones, and also underline the metabolic interaction between these two cell types in the brain.  相似文献   

20.
The pathway of nitrogen assimilation in plants   总被引:5,自引:0,他引:5  
The major route of nitrogen assimilation has been considered for many years to occur via the reductive amination of α-oxoglutarate, catalysed by glutamate dehydrogenase. However, recent work has shown that in most bacteria an alternative route via glutamine synthetase and glutamine: 2-oxoglutarate aminotransferase (glutamate synthase) operates under conditions of ammonia limitation. Subsequently the presence of a ferredoxin-dependent glutamate synthase in green leaves and green and blue-green algae, and a NAD(P)H and ferredoxin-dependent enzyme in roots and other non-green plant tissues, has suggested that this route may also function in most members of the plant kingdom. The only exceptions are probably the majority of the fungi, where so far most organisms studied do not appear to contain glutamate synthase. Besides the presence of the necessary enzymes there is other evidence to support the contention that the assimilation of ammonia into amino acids occurs via glutamine synthetase and glutamate synthase, and that it is unlikely that glutamate dehydrogenase plays a major role in nitrogen assimilation in bacteria or higher plants except in circumstances of ammonia excess.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号