首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Diet is a key modifiable factor influencing the composition of gut microbiota. There are two types of commercially available diets for experimental animals: non-purified and semi-purified diets. Non-purified diets are composed of complex ingredients from multiple sources, while semi-purified diets are formulated with refined ingredients. Accumulating evidence has demonstrated a link between the gut microbiota and depression, and feed ingredients may influence depressive physiology and behaviors. To test this hypothesis, we examined how chronic non-purified (CRF-1) and semi-purified (AIN-93G) diets affected phenotypes, including depressive behaviors, plasma corticosterone levels, and small-intestine microbiota in young (2 months old) and aged (22 months old) inbred C57BL/JJcl mice. In young mice, similar phenotypes were associated with non-purified and semi-purified diets. However, in aged mice, semi-purified diets increased depressive behaviors in the tail suspension (P < 0.05) and forced swimming tests (P < 0.01). The corticosterone levels were similar between the two diets under normal rearing conditions. However, immediately after exposure to the stressful conditions of the forced swimming test, the corticosterone levels in the aged mice fed the semi-purified diet were higher than those of mice fed the non-purified diet (P < 0.05). There were fewer Lactobacillales in the small intestines of aged mice fed the semi-purified diet compared to those fed the non-purified diet (P < 0.01). Further, α-diversity was lower in aged mice fed the semi-purified versus non-purified diet (P < 0.01). Our results indicate that host physiology and gut microbiota differed according to whether the aged mice were fed a non-purified or semi-purified diet. Specifically, those fed the semi-purified diet were more vulnerable to stress than age-matched mice fed the non-purified diet. Our findings indicate that researchers should consider the effects of feed ingredients on depressive physiology and behaviors, and select diets that are appropriate for their particular research design. Further, identification of the ingredients in non-purified diets could facilitate examination of the mechanisms by which gut microbiota composition might increase resistance to stress and depression.  相似文献   

2.
Vitamin D insufficiency has been reported to be associated with increased blood cholesterol concentrations. Here we used two strains of VDR knock-out (VDR-KO) mice to study whether a lack of vitamin D action has any effect on cholesterol metabolism. In 129S1 mice, both in male and female VDR-KO mice serum total cholesterol levels were significantly higher than those in wild type (WT) mice (20.7% (P = 0.05) and 22.2% (P = 0.03), respectively). In addition, the serum high-density lipoprotein-bound cholesterol (HDL-C) level was 22% (P = 0.03), respectively higher in male VDR-KO mice than in WT mice. The mRNA expression levels of five cholesterol metabolism related genes in livers of 129S1 mice were studied using quantitative real-time PCR (QRT-PCR): ATP-binding cassette transporter A1 (ABCA1), regulatory element binding protein (SREBP2), apolipoprotein A-I (ApoAI), low-density lipoprotein receptor (LDLR) and liver X receptor beta (LXRβ). In the mutant male mice, the mRNA level of ApoAI and LXRβ were 49.2% (P = 0.005) and 38.8% (P = 0.034) higher than in the WT mice. These changes were not observed in mutant female mice, but the female mutant mice showed 52.5% (P = 0.006) decrease of SREBP2 mRNA expression compared to WT mice. Because the mutant mice were fed with a special rescue diet, we wanted to test whether the increased cholesterol levels in mutant mice were due to the diet. Both the WT and mutant NMRI mice were given the same diet for 3 weeks before the blood sampling. No difference in cholesterol or in HDL-C between WT and mutant mice was found. The results suggest that the food, gender and genetic background have an effect on the cholesterol metabolism. Although VDR seems to regulate some of the genes involved in cholesterol metabolism, its role in the regulation of serum cholesterol seems to be minimal.  相似文献   

3.
The contribution of individual lipoprotein species to the generation of the adrenal cholesterol pool used for the synthesis of anti-inflammatory glucocorticoid species remains unknown. Here we examined the impact of specific lowering of very low-density lipoprotein (VLDL) and low-density (LDL) levels on adrenal cholesterol and glucocorticoid homeostasis. Hereto, lethally-irradiated hypercholesterolemic apolipoprotein E (APOE) knockout mice received APOE-containing bone marrow from wild-type mice (n = 6) or APOE knockout control bone marrow (n = 10) and were subsequently fed a regular chow diet. Transplantation with wild-type bone marrow was associated with a 10-fold decrease in VLDL/LDL-cholesterol levels. No changes were observed in adrenal weights, adrenal cholesterol content, or basal plasma corticosterone levels. However, food deprivation-induced corticosterone secretion was 64% lower (P < 0.05) in wild-type bone marrow recipients as compared to APOE knockout bone marrow recipients, in the context of similar plasma adrenocorticotropic hormone (ACTH) levels. A parallel 19–29% decrease in adrenal relative mRNA expression levels of ACTH-responsive genes SR-BI (P < 0.01), STAR (P < 0.05), and CYP11A1 (P < 0.05) was detected. In support of relative glucocorticoid insufficiency, blood lymphocyte and eosinophil concentrations were respectively 2.4-fold (P < 0.01) and 8-fold (P < 0.001) higher in wild-type bone marrow recipients under food deprivation stress conditions.In conclusion, we have shown that a selective lowering of VLDL/LDL levels in APOE knockout mice through a transplantation with APOE-containing wild-type bone marrow is associated with a decreased maximal adrenal glucocorticoid output. Our studies provide experimental support for the hypothesis that, in vivo, VLDL/LDL serves as the primary source of cholesterol used for glucocorticoid synthesis during food deprivation stress.  相似文献   

4.
A high-fat diet (HFD) impairs insulin binding and signalling and may contribute to the development of insulin resistance. In addition, in vitro studies have shown that alterations in plasma membrane cholesterol influence ligand binding and downstream signalling for several receptor-tyrosine kinases (RTKs), including the insulin receptor. Using an ex vivo approach, we explored the effects of a HFD on insulin binding and signalling in mouse liver and relate these to observed changes in plasma membrane cholesterol. Mice fed a HFD demonstrated decreased insulin signalling compared to mice fed a normal chow diet (ND), indicated by a 3-fold decrease in insulin binding (P < 0.001) and a similar decrease in insulin receptor phosphorylation (~2.5-fold; P < 0.0001). Interestingly, we also observed a marked decrease in the cholesterol content of liver plasma membranes in the HFD fed mice (P < 0.0001). These effects of the HFD were found to be ameliorated by atorvastatin treatment (P < 0.0001). However, in ND mice, atorvastatin had no influence on membrane cholesterol content or insulin binding and signalling. The influence of membrane cholesterol on insulin binding and signalling was also corroborated in HepG2 cells. To the best of our knowledge, this is the first demonstration of the effects of a HFD and atorvastatin treatment on changes in plasma membrane cholesterol content and the consequent effects on insulin binding and signalling. Collectively, these findings suggest that changes in membrane cholesterol content could be an important underlying reason for the long-known effects of a HFD on the development of insulin resistance.  相似文献   

5.
Objective: To examine the extent to which variations in body composition modulate changes in the lipid profile in response to the ad libitum consumption of a diet rich in carbohydrates (CHOs) (high‐CHO diet: 58% of energy as CHOs) or high in fat and in monounsaturated fatty acids (MUFAs) (high‐MUFA diet: 40% of energy as fat, 23% as MUFAs). Research Methods and Procedures: Sixty‐three men were randomly assigned to one of the two diets that they consumed for 6 to 7 weeks. Body composition and fasting plasma lipid levels were measured at the beginning and the end of the dietary intervention. Results: The high‐CHO and high‐MUFA diets induced significant and comparable reductions in body weight and waist circumference. These changes were accompanied by significant and comparable (p < 0.01) reductions in total plasma cholesterol and low‐density lipoprotein cholesterol levels. However, the high‐MUFA diet had more beneficial effects on plasma triglyceride concentrations (p < 0.01) and on plasma high‐density lipoprotein cholesterol levels (p = 0.02) compared with the high‐CHO diet. Diet‐induced changes in waist circumference were significantly associated with changes in low‐density lipoprotein cholesterol levels in the high‐CHO group (r = 0.39, p = 0.03) but not in the high‐MUFA group (r = 0.16, p = 0.38). Discussion: Improvements in plasma lipids induced by the ad libitum consumption of a high‐CHO diet seem to be partly mediated by changes in body weight, whereas lipid changes induced by the high‐MUFA diet seem to be independent of changes in body weight.  相似文献   

6.
BackgroundBone marrow of blotchy mouse (blotchy marrow) reflects the function of transmembrane domain and relevant intramembrane sites of ATP7A in myeloid cells. By chronic infusion of angiotensin II, we previously found that blotchy marrow plays a minor role in regulating plasma copper. Moreover, the recipients of blotchy marrow presented a moderate reduction of plasma lipids and inflammatory mediator production. Little is known about whether these changes are a specific response to angiotensin II or reveal a more general role of ATP7A.Objective and designWe investigated if blotchy marrow reduces plasma lipids and inflammatory mediators induced by high-fat diets. To test this hypothesis, blotchy and control marrows were reconstituted to the recipient mice (irradiated male LDLR−/− mice), followed by high-fat-diet feeding for 4 months. At the end points, plasma metals (copper, zinc and iron), lipid profiling (cholesterol, triglyceride, phospholipids and lipoprotein) and six inflammatory mediators (lymphotacin, MCP3, MCP5, TIMP1, VEGF-A and IP-10) were measured. Parallel experiments were performed using male LDLR−/− mice fed either high-fat diets or chow diets for 4 months.ResultsIn addition to hyperlipidemia and low-grade inflammation, high-fat diets selectively increased plasma copper concentration compared to chow diets in LDLR−/− mice. After high-fat-diet feeding, the recipients with blotchy marrow showed a decrease in plasma copper (p < 0.01) and an increase in plasma iron (p < 0.05). The recipients with blotchy marrow also presented decreases in cholesterol (p < 0.01) and phospholipids (p < 0.05) in plasma. Surprisingly, plasma levels of MCP3 (p < 0.05), MCP5 (p < 0.05), TIMP1 (p < 0.01), VEGF-A (p < 0.01) and IP-10 (p < 0.01) were significantly increased in the recipients with blotchy marrow compared to controls; the increased levels of MCP3, MCP5 and TIMP1 were more than 50%.ConclusionOur studies showed that blotchy marrow counteracts the increased copper levels induced by high-fat diets, indicating that circulating myeloid cells can regulate blood copper levels via ATP7A. Moreover, transplantation of blotchy marrow followed by high-fat diets leads to a decrease in lipid profile and an increase in inflammatory mediator production. Overall, blotchy marrow mediates divergent responses to angiotensin II and high-fat diets in vivo.  相似文献   

7.
Atherosclerosis is a chronic inflammatory disease related to a massive accumulation of cholesterol in the artery wall. Photobiomodulation therapy (PBMT) has been reported to possess cardioprotective effects but has no consensus on the underlying mechanisms. Here, we aimed to investigate whether PBMT could ameliorate atherosclerosis and explore the potential molecular mechanisms. The Apolipoprotein E (ApoE)−/− mice were fed with western diet (WD) for 18 weeks and treated with PBMT once a day in the last 10 weeks. Quantification based on Oil red O-stained aortas showed that the average plaque area decreased 8.306 ± 2.012% after PBMT (P < .05). Meanwhile, we observed that high-density lipoprotein cholesterol level in WD + PBMT mice increased from 0.309 ± 0.037 to 0.472 ± 0.038 nmol/L (P < .05) compared with WD mice. The further results suggested that PBMT could promote cholesterol efflux from lipid-loaded primary peritoneal macrophages and inhibit foam cells formation via up-regulating the ATP-binding cassette transporters A1 expression. A contributing mechanism involved in activating the phosphatidylinositol 3-kinases/protein kinase C zeta/specificity protein 1 signalling cascade. Our study outlines that PBMT has a protective role on atherosclerosis by promoting macrophages cholesterol efflux and provides a new strategy for treating atherosclerosis.  相似文献   

8.
Zhang  Chuanjian  Yu  Miao  Yang  Yuxiang  Mu  Chunlong  Su  Yong  Zhu  Weiyun 《Applied microbiology and biotechnology》2017,101(6):2493-2505

The study aimed to evaluate the effects of early antibiotic intervention (EAI) on bacterial fermentation patterns and mucosal immune markers in the colon of pigs with different protein level diets. Eighteen litters of piglets at day (d) 7 were fed creep feed without or with growth promoting antibiotics until d 42. At d 42, pigs within each group were further randomly assigned to a normal- or low-crude protein (CP) diet. At d 77 and d 120, five pigs per group were slaughtered for analyzing colonic bacteria, metabolites, and mucosal gene expressions. Results showed that low-CP diet increased propionate and butyrate concentrations at d 77 but reduced ammonia and phenol concentrations (P < 0.05). EAI increased p-cresol and indole concentrations under normal-CP diet at d 77 (P < 0.05). Low-CP diet significantly affected (P < 0.05) some bacteria groups (Firmicutes, Clostridium cluster IV, Clostridium cluster XIVa, Escherichia coli, and Lactobacillus), but EAI showed limited effects. Low-CP diet down-regulated gene expressions of pro-inflammatory cytokines, toll-like receptor (TLR4), myeloid differentiating factor 88 (MyD88), and nuclear factor-κB p65 (NF-κB p65) (P < 0.05). EAI up-regulated mRNA expressions of interleukin-8 (IL-8) and interferon-γ (IFN-γ) under normal-CP diet at d 77 (P < 0.05). Furthermore, reductions of E. coli and ammonia under low-CP diet were positively correlated with down-regulated gene expressions of pro-inflammatory cytokines, which were positively correlated with the down-regulated TLR4-MyD88-NF-κB signaling pathway. In conclusion, EAI had short-term effects under normal-CP diet with increased aromatic amino acid fermentation and gene expressions of pro-inflammatory cytokines. Low-CP diet markedly reduced protein fermentation, modified microbial communities, and down-regulated gene expressions of pro-inflammatory cytokines possibly via down-regulating TLR4-MyD88-NF-κB signaling pathway.

  相似文献   

9.
To determine whether leptin receptor (LEPR) 223A>G polymorphism has an effect on the plasma leptin levels and the macroangiopathic complications in type 2 diabetes mellitus (T2DM). The genotypes and allelic frequencies of the LEPR 223A>G were examined with polymerase chain reaction and restriction fragment length polymorphism in 301 patients with T2DM and 172 unrelated healthy subjects. The plasma concentrations of leptin were determined in all subjects. The mean plasma leptin levels in the T2DM group were significantly higher than that of controls and the plasma levels of leptin were higher in diabetic patients with macroangiopathy than in patients without macroangiopathy (P < 0.05). The genotype (GG, AG and AA) distribution of 223A>G polymorphism was 58.3, 32.5, and 9.2% in diabetic patients with macroangiopathy, 75.3, 22.1, and 2.6% in patients without macroangiopathy, and 70.3, 27.5, 2.2% in controls respectively, a significant difference was found between diabetic patients with and without macroangiopathy (P < 0.05). The frequency of the allele A was higher in patients with macroangiopathy than in patients without macroangiopathy (25.6 vs. 16.3%; P < 0.05). Moreover, the plasma leptin levels were markedly higher in patients with AA genotype than those with AG or GG genotype in patients with macroangiopathy (P < 0.05). The LEPR 223A>G gene polymorphism associated with a predisposition to increased plasma leptin levels could constitute a useful predictive marker for diabetic macroangiopathy.  相似文献   

10.
In two separate studies, 60 beef heifers (379 kg BW) and 60 beef steers (348 kg BW) were randomly assigned to six treatments in 2×3 factorial arrangements. The treatments were with or without Synovex® implants combined with either a control diet or diets supplemented with 200 ppm Zn from ZnSO4 or zinc methionine (Zn-Met). Near the mid-point of the feeding periods, cattle were vaccinated with a modified live virus and subsequent titers and concentrations of immunoglobulin G (IgG) were measured. Liver and blood samples were obtained 1 week prior to the start of the experiments and at intervals during the experiments. In experiment 1, average daily gains of beef heifers were (P<0.05) affected by the interaction of implant and source of dietary Zn. Compared to control and ZnSO4 treatments, supplementation with Zn-Met increased (P<0.05) the concentration of Zn in serum. Antibody titers and concentrations of IgG in serum were highest (P<0.05) in heifers fed ZnSO4 compared to heifers fed the control or Zn-Met supplemented diets. The Synovex-H® implant reduced the concentrations of Zn and Cu in liver. In experiment 2, Synovex-S® implants improved (P<0.05) weight gains of steers supplemented with 200 ppm dietary Zn from ZnSO4 compared to non-implanted steers. However, the implant had no effect when Zn-Met was the dietary Zn source. The implant increased (P<0.05) concentrations of Zn in liver of steers supplemented with 200 ppm dietary Zn and reduced Zn in liver of steers fed the control diet. Implanted steers had higher (P<0.05) Cu status and IgG concentrations in serum than non-implanted steers. Steers supplemented with either ZnSO4 or Zn-Met had greater (P<0.05) concentrations of Zn in liver and plasma than steers fed the control diet. These results indicate both the level and source of Zn supplementation in diets of feedlot cattle affect their response to growth implants.  相似文献   

11.
Cathepsin G (CatG), a serine protease present in mast cells and neutrophils, can produce angiotensin-II (Ang-II) and degrade elastin. Here we demonstrate increased CatG expression in smooth muscle cells (SMCs), endothelial cells (ECs), macrophages, and T cells from human atherosclerotic lesions. In low-density lipoprotein (LDL) receptor-deficient (Ldlr–/–) mice, the absence of CatG reduces arterial wall elastin degradation and attenuates early atherosclerosis when mice consume a Western diet for 3 months. When mice consume this diet for 6 months, however, CatG deficiency exacerbates atherosclerosis in aortic arch without affecting lesion inflammatory cell content or extracellular matrix accumulation, but raises plasma total cholesterol and LDL levels without affecting high-density lipoprotein (HDL) or triglyceride levels. Patients with atherosclerosis also have significantly reduced plasma CatG levels that correlate inversely with total cholesterol (r = –0.535, P < 0.0001) and LDL cholesterol (r = –0.559, P < 0.0001), but not with HDL cholesterol (P = 0.901) or triglycerides (P = 0.186). Such inverse correlations with total cholesterol (r = –0.504, P < 0.0001) and LDL cholesterol (r = –0.502, P < 0.0001) remain significant after adjusting for lipid lowering treatments among this patient population. Human CatG degrades purified human LDL, but not HDL. This study suggests that CatG promotes early atherogenesis through its elastinolytic activity, but suppresses late progression of atherosclerosis by degrading LDL without affecting HDL or triglycerides.  相似文献   

12.
《Small Ruminant Research》2007,72(1-3):179-193
Black locust (BL; Robinia pseudoacacia L.), a native tree of southeastern USA known to contain substantial levels of condensed tannins (CT), was fed to 32, 4 month old (20.4 kg BW) Boer cross wether goats in two randomized complete block design trials. The objectives were to examine the effects of feeding hay diets containing several levels of fresh BL foliage on intake, digestibility, and N metabolism. First year (1999) diets were HE (100% Eastern gamagrass [EGH; Tripsacum dactyloides L.] hay), HEG (70% EGH and a 30% mixture of 59% ground corn [GC; Zea mays L.], 36% soybean meal [SBM; Glycine max L.], and 5% minerals), 25BL99 (75% EGH and 25% BL leaves), and 50BL99 (50% EGH and 50% BL leaves). Second year (2000) diets were HO (100% orchardgrass [OGH; Dactylis glomerata L.] hay), HOG (70% OGH and a 30% mixture of 63% GC, 37% SBM, and 5% minerals), 50BL00 (50% OGH and 50% BL leaves), and 75BL00 (25% OGH and 75% BL leaves). In 1999, apparent digestibilities of the diets in the order listed above were 62.4, 68.2, 58.0, and 60.6% (P = 0.001) for DM and 62.8, 72.5, 56.0, and 59.1% (P = 0.001) for crude protein (CP). Acid detergent lignin digestibilities were negative for diets 25BL99 (−56.7%) and 50BL99 (−49.3%), apparently due to the formation of insoluble tannin and lignin complexes during passage through the digestive tract. Intakes of DM were similar across diets. In 2000, apparent digestibilities of diet DM (64.4, 71.7, 64.8 and 65.4%) and CP (70.0, 76.0, 66.6, and 66.5%) did not differ. Lignin digestibilities were positive for diets 50BL00 (9.4%) and 75BL00 (29.6%) unlike those for year 1999. Overall, BL contained 10% CT and 18–34% hydrolyzable tannins. In 1999, N intake, urinary N (UN) excretion and N retained were higher for diet HEG (P = 0.01) than diet HE whereas fecal N excretion (FN) was similar for diets HEG, 25BL99 and 50BL99. In 1999, FN excretion as a percentage of N intake was higher (P < 0.02) in the BL diets, although UN as a percentage of N intake did not differ among diets. In 2000, N intake and FN output were higher for BL diets compared to diets HO (P = 0.01) and HOG (P = 0.02). Fecal N as a percentage of N intake was lower (P = 0.01) for diet HOG (24.0%) than for diets 50BL00 (33.4%) and 75BL00 (33.5%). Conversely, urinary N as a percentage of N intake was higher for diets HO and HOG compared to the BL diets (P = 0.02). Increased levels of dietary BL increased FN, suggesting that tannins formed insoluble protein complexes thus hindering digestibility.  相似文献   

13.
We investigated the anti-tumor effects of a dry powder preparation of the antlered form of Ganoderma lucidum (G. lucidum AF, rokkaku-reishi in Japanese), a variant type of G. lucidum, not only in allogeneic Sarcoma 180-bearing ddY mice, but also in syngeneic MM 46-bearing C3H/He mice. G. lucidum AF inhibited tumor growth and elongated the life span when orally administered to mice by free-feeding of a 2.5% G. lucidum AF-containing diet. It also showed anti-tumor activity in spite of post-feeding after tumor inoculation. G. lucidum AF significantly countered the depression of splenic CD8+ cells and protected the decrease in interferon-gamma (IFN-γ) production in regional lymph nodes of MM 46-bearing mice, indicating that the anti-tumor activity of G. lucidum AF might be caused by its immunostimulating action. These results suggest that the ingestion of G. lucidum AF can be useful for the prevention and curing of cancer.  相似文献   

14.
This study aimed to investigate the effect of resveratrol on methane production, rumen fermentation and microbial composition under high-concentrate (HC) and high-forage (HF) diets using the in vitro fermentation system. A total of 25 mg of resveratrol was supplemented into 300 mg of either HC or HF diet. Methane production, total volatile fatty acid (VFA) concentration, molar proportion of VFA, metabolites of resveratrol and prokaryotic community composition were measured after 12 and 24 h of in vitro fermentation. Resveratrol reduced methane production (ml per mg of dry matter degraded) by 41% and 60% under both HC and HF diets (P < 0.001), respectively, and this result could be associated with the lower abundance of Methanobrevibacter (P < 0.001) in response to resveratrol. The molar proportion of propionate was significantly higher in the resveratrol group only under the HC diet (P = 0.045). The relative abundance of 10 bacterial genera was affected by the three-way interaction of treatment, diet and time (P < 0.05). Resveratrol was partly converted to dihydroresveratrol after 24 h of fermentation, and its degradation could be associated with microbes belonging to the order Coriobacteriales. Our results suggest that multiple factors (e.g. diet and time) should be considered in animal experiments to test the effect of polyphenol or other plant extracts on rumen fermentation, methane emission and microbial composition.  相似文献   

15.
Oak acorn contains high levels of tannins which have capacity to form complexes with proteins and consequently reduce their availability and as a result it could reduce colostrum quality and immunoglobulin (Ig) synthesis. Thus, the aim of this experiment was to investigate the effects of dietary oak (Quercus persica) acorn (OA) level during the last 60 days of pregnancy on colostrum composition and plasma metabolites and IgG level of goats and their kids. In all, 24 multiparous pregnant goats (41.7±2.3 kg BW) were assigned into one of the three experimental diets consisted of control diet (without OA) and diets containing 20% (OA20) or 40% (OA40) OA on dry matter basis. Goats fed OA40 had lower BW change compared with other groups (P⩽0.05). Kids birth weight was not affected by experimental diets (P>0.05). Goats fed OA containing diets had lower plasma glucose, triglyceride and Fe concentrations compared with those fed the control diet (P<0.01). Plasma IgG (P<0.01) and urea (P<0.05) concentrations were lower in goats fed OA40 compared with others. Animals fed OA containing diets had higher plasma alanine aminotransferase than those fed the control diet (P<0.05). Goats fed OA40 produced colostrum with lower fat (P⩽0.05) and lactose (P<0.01) contents compared with other animals. Goats fed OA containing diets had lower colostrum IgG level than those fed the control diet (P⩽0.05). Kids plasma total protein concentration was not affected by experimental diets (P>0.05), whereas kids born from goats fed OA containing diets had lower plasma IgG level compared with the control diet (P<0.01). It is concluded that feeding OA during the last 60 days of pregnancy decreased colostrum quality which may have adverse effect on kid’s survival.  相似文献   

16.
Mehta K 《Amino acids》2009,37(4):709-716
Cholesterol and docosahexaenoic acid (DHA) are important nutrients for neural development of infants. However, little is known about the effect of cholesterol or DHA on concentrations of amino acids (AA) in neonatal tissues. This study was conducted with the piglet (an established model for studying human infant nutrition) to test the hypothesis that dietary supplementation with the lipids may modulate AA availability in tissues. Sixteen newborn pigs were nursed by sows for 24 h and then assigned to one of four treatment groups, representing supplementation with 0.0% (control), 0.2% cholesterol, 0.2% DHA, or cholesterol plus DHA to the basal milk-formula. All piglets were euthanized at 49 days of age. In brain, cholesterol supplementation reduced (P < 0.05) concentrations of glutamate, serine, glutamine, threonine, β-alanine, alanine, methionine, isoleucine, leucine, and γ-aminobutyrate but increased (P < 0.05) concentrations of glycine and lysine, whereas DHA supplementation similarly affected (P < 0.05) concentrations of the same AA (except for isoleucine and lysine) and taurine. In addition, concentrations of most AA in liver, muscle and plasma were substantially altered by dietary supplementation of cholesterol and DHA in a tissue-dependent manner. Further, DHA reduced concentrations of carnosine in skeletal muscle, as well as ammonia in both plasma and brain. The results reveal that cholesterol and DHA can regulate AA metabolism and availability in various tissues of piglets. These novel findings have important implications for designing the next generation of infant formula to optimize neonatal growth and development.  相似文献   

17.

In the current study, we investigated the effect of a probiotic bacterium (Lactobacillus rhamnosus ATCC 7469) microencapsulated with alginate and hi-maize starch and coated with chitosan on improving growth factors, body composition, blood chemistry, and the immune response of rainbow trout (initial weight: 18.41 ± 0.32 g). Four experimental diets were formulated to feed fish for 60 days. They were control diet without any additive (C), diet added with beads without probiotic (E), a probiotic sprayed to the diet (L.r), and encapsulated probiotic supplemented diet (E-L.r). The results indicated that feeding with E-Lr significantly improved weight gain (84.98 g) and feed conversion ratio (0.95) compared to the other groups (P < 0.05). Also, fish fed E-Lr diet had a significantly higher value of whole-body protein (17.51%), total protein in the blood (4.98 g/dL), lysozyme (30.66 U/mL), alternative complement pathway hemolytic activity (134 U/mL), superoxide dismutase (203 U/mg protein), and catalase (528.33 U/mg protein) (P < 0.05) as compared to those fed the control diet. Similarly, a higher relative expression of immune-related genes such as interleukin-1 (Il-1) and tumor necrosis factor-alpha (TNF-1α) were reported in those fed E-L.r and L.r diets respectively. Interestingly, the fish fed dietary E-L.r had a significantly lower value of lipid in the whole body (4.82%) and cholesterol in the blood (160.67%) in comparison with those fed the control diet (P < 0.05). At the end of the experiment, all groups were challenged by Yersinia ruckeri where the survival rate of rainbow trout fed dietary E-L.r (70.36%) was statistically higher than that of the others (P < 0.05). Overall, the results suggested that encapsulated probiotic Lact. rhamnosus ATCC 7469 acted better than unencapsulated probiotic and has a potential to improve growth performance, flesh quality, and the immune response of rainbow trout.

  相似文献   

18.
《Cytokine》2014,65(2):175-183
Aneuploidy, a condition associated with altered chromosome number, hence DNA index, is frequently seen in many diseases including cancers and affects immunity. Iron, an essential nutrient for humans, modulates the immune function and the proliferation of normal and cancer cells. To determine whether impaired immunity seen in iron-deficient subjects may be related to aneuploidy, we measured spleen cell DNA index, percent of cells in different phases of the cell cycle, plasma and/or supernatant IL-2, IL-10, IL-12, and interferon-gamma in control, pair-fed, iron-deficient, and iron-replete mice (N = 20–22/group). The test and control diets differed only in iron content (0.09 mmol/kg versus 0.9 mmol/kg) and were fed for 68 days. Mean levels of hemoglobin and liver iron stores of iron-deficient and iron-replete mice were 40–60% lower than those of control and pair-fed mice (P < 0.05). Mean plasma levels of IL-10, interferon-gamma and percent of cells in S + G2/M phases were lower in mice with than in those without aneuploidy (P < 0.05). Lowest plasma IL-12 and interferon-gamma concentrations were observed in iron-deficient mice with aneuploidy. Mean percents of cultures with aneuploidy and DNA indexes were higher in iron-deficient and iron-replete than in control and pair-fed mice likely due to delayed cell division (P < 0.05). Aneuploidy decreased the concentration of IL-2 and interferon-gamma in baseline cultures while it increased that of interferon-gamma in anti-CD3 treated cultures. Aneuploidic indexes negatively correlated with cytokine levels, percents of cells in S + G2/M phases and indicators of iron status (P < 0.05). Although chromosome cytogenetics was not performed, for the first time, we report that increased aneuploidy rate may modulate the immune function during iron-deficiency.  相似文献   

19.
Temporin A (FLPLIGRVLSGIL‐NH2), temporin F (FLPLIGKVLSGIL‐NH2), and temporin G (FFPVIGRILNGIL‐NH2), first identified in skin secretions of the frog Rana temporaria, produced concentration‐dependent stimulation of insulin release from BRIN‐BD11 rat clonal β‐cells at concentrations ≥1 nM, without cytotoxicity at concentrations up to 3 μM. Temporin A was the most effective. The mechanism of insulinotropic action did not involve an increase in intracellular Ca2+ concentrations. Temporins B, C, E, H, and K were either inactive or only weakly active. Temporins A, F, and G also produced a concentration‐dependent stimulation of insulin release from 1.1B4 human‐derived pancreatic β‐cells, with temporin G being the most potent and effective, and from isolated mouse islets. The data indicate that cationicity, hydrophobicity, and the angle subtended by the charged residues in the temporin molecule are important determinants for in vitro insulinotropic activity. Temporin A and F (1 μM), but not temporin G, protected BRIN‐BD11 cells against cytokine‐induced apoptosis (P < 0.001) and augmented (P < 0.001) proliferation of the cells to a similar extent as glucagon‐like peptide‐1. Intraperitoneal injection of temporin G (75 nmol/kg body weight) together with a glucose load (18 mmol/kg body weight) in C57BL6 mice improved glucose tolerance with a concomitant increase in insulin secretion whereas temporin A and F administration was without significant effect on plasma glucose levels. The study suggests that combination therapy involving agents developed from the temporin A and G sequences may find application in Type 2 diabetes treatment.  相似文献   

20.
The objective of this study was to determine the effects of feeding commercially available beef‐ and horse‐based diets on nutrient digestibility and fecal characteristics of large captive exotic felids and domestic cats. Four species of large exotic felids including cheetahs, Malayan tigers, jaguars, and Amur tigers, and domestic cats were utilized in a crossover design. Raw meat diets included a beef‐based diet (57% protein; 28% fat) and a horse‐based diet (51% protein; 30% fat). All cats were acclimated to the diet for 16 days followed by a 4 day collection period, where total feces, including one fresh sample, were collected. All feces were scored on collection. Intake did not differ due to diet, but fecal output was greater when cats consumed the horse‐based diet. Total tract apparent dry matter (DM) digestibility was higher (P<0.05) and organic matter (OM) and crude protein (CP) digestibilities were lower (P<0.05) when cats were fed the beef‐based diet compared with the horse‐based diet. CP digestibility was similar in domestic cats and cheetahs, and greater (P<0.05) than Amur tigers. Fecal scores were lower and fecal DM was greater (P<0.05) when cats consumed the horse‐based diet compared with the beef‐based diet. Domestic cats had lower (P<0.05) fecal ammonia concentrations compared with all other species. Fecal ammonia concentrations were lowest (P<0.05) when cats were fed the horse‐based diet. Fecal total short‐chain fatty acid (SCFA), branched‐chain fatty acid (BCFA), and butyrate concentrations were higher (P<0.05) when cats consumed the beef‐based diet. Our results suggest that the domestic cat serves as an appropriate model for large exotic felid species, but differences among the species exist. Decreased nutrient digestibility by tigers and jaguars should be considered when developing feeding recommendations for these species based on domestic cat data. Zoo Biol 29:432–448, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号