首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
Nitrogen-fixing microorganisms play important roles in the structure and function of aquatic ecosystems. However, the diversity and distribution of diazotrophic bacteria along the lake depth continuum are so far poorly understood. In this study, we investigated the dynamic variations of diazotrophs in a subtropical deep reservoir during the stratified period. We applied an in-depth biomolecular approach (DGGE, clone libraries, and quantitative real-time PCR) to explore the nitrogenase (nifH) gene diversity and abundance. The diazotrophic community shifted between the oxic/anoxic interface and the nifH diversity increased with depth. The Cyanobacteria, affiliated to the toxic bloom-forming Cylindrospermopsis raciborskii, were the dominant diazotrophic cluster in the surface waters, whereas diazotrophic Alphaproteobacteria were dominant in the bottom waters. The relationships between microbial and environmental factors clearly demonstrated that the temperature gradient and the oxygen concentration affect the heterogeneity of the diazotrophic community, thereby influencing the entire aquatic nitrogen cycle.  相似文献   

2.
The diazotrophic communities in a rice paddy field were characterized by a molecular polyphasic approach including DNA/RNA-DGGE fingerprinting, real time RT-PCR analysis of nifH gene and the measurement of nitrogen fixation activities. The investigation was performed on a diurnal cycle and comparisons were made between bulk and rhizosphere / root soil as well as between fertilized / unfertilized soils. Real time RT-PCR showed no significant difference in the total quantity of nifH expression under the conditions investigated. The functional diversity and dynamics of the nifH gene expressing diazotroph community investigated using RT-PCR-DGGE revealed high diurnal variations, as well as variation between different soil types. Most of the sequence types recovered from the DGGE gels and clone libraries clustered within nifH Cluster I and III (65 different nifH sequences in total). Sequence types most similar to Azoarcus spp., Metylococcus spp., Rhizobium spp., Methylocystis spp., Desulfovibrio spp., Geobacter spp., Chlorobium spp., were abundant and indicate that these species may be responsible for the observed diurnal variation in the diazotrophic community structure in these rice field samples. Previously described diazotrophic cyanobacterial genera in rice fields, such as Nostoc and Cyanothece, were present in the samples but not detectable in RT-PCR assays.  相似文献   

3.
Diazotrophic gut symbionts are considered to act as nitrogen providers for their hosts, as was shown for various termite species. Although the diet of lagomorphs, like pikas or rabbits, is very poor in nitrogen and energy, their fecal matter contains 30–40% of protein. Since our hypothesis was that pikas maintained a diazotrophic consortium in their gastrointestinal tract, we conducted the first investigation of microbial diversity in pika guts. We obtained gut samples from animals of several Ochotona species, O. hyperborea (Northern pika), O. mantchurica (Manchurian pika), and O. dauurica (Daurian pika), in order to retrieve and compare the nitrogen-fixing communities of different pika species. The age and gender of the animals were taken into consideration. We amplified 320-bp long fragments of the nifH gene using the DNA extracted directly from the colon and cecum samples of pika’s gut, resolved them by DGGE, and performed phylogenetic reconstruction of 51 sequences obtained from excised bands. No significant difference was detected between the nitrogen-fixing gut inhabitants of different pika species. NifH sequences fell into two clusters. The first cluster contained the sequences affiliated with NifH Cluster I (Zehr et al., 2003) with similarity to Sphingomonas sp., Bradyrhizobium sp., and various uncultured bacteria from soil and rhizosphere. Sequences from the second group were related to Treponema sp., Fibrobacter succinogenes, and uncultured clones from the guts of various termites and belonged to NifH Cluster III. We suggest that diazotrophic organisms from the second cluster are genuine endosymbionts of pikas and provide nitrogen for further synthesis processes thus allowing these animals not to be short of protein.  相似文献   

4.
Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies.  相似文献   

5.

Aims

Previous studies have shown that elephant grass is colonized by nitrogen-fixing bacterial species; however, these results were based on culture-dependent methods, an approach that introduces bias due to an incomplete assessment of the microbial community. In this study, we used culture-independent methods to survey the diversity of endophytes and plant-associated bacterial communities in five elephant grass genotypes used in bioenergy production.

Methods

The plants of five genotypes of elephant grass were harvested from the experimental area of Embrapa Agrobiologia and divided into stem and root tissues. Total DNA and RNA were extracted from plant tissues and the bacterial communities were analyzed by DGGE and clone library of the 16S rRNA and nifH genes at both the cDNA and DNA levels.

Results

Overall, the patterns based on DNA- and RNA-derived DGGE-profiles differed, especially within tissue samples. DNA-based DGGE indicated that both total bacterial and diazotrophic communities associated with roots (rhizoplane?+?endophytes) differed clearly from those obtained from stems (endophytes). These results were confirmed by the phylogenetic analyses of RNA-derived sequences of 16S rRNA (total bacteria; 586 sequences), but not for nifH (186). In fact, rarefaction analyses showed a higher diversity of diazotrophic organisms associated with stems than roots. Based on 16S rRNA sequences, the clone libraries were dominated by sequences affiliated to members of Leptotrix (12.8 %) followed by Burkholderia (9 %) and Bradyrhizobium (6.5 %), while most of the nifH clones were closely related to the genus Bradyrhizobium (26 %).

Conclusions

Our results revealed an unexpectedly large diversity of metabolically active bacteria, providing new insights into the bacterial species predominantly found in association with elephant grass. Furthermore, these results can be very useful for the development of new strategies for selection of potential bacteria that effectively contribute to biological nitrogen fixation and enhance the sustainable production of elephant grass as bioenergy crop.  相似文献   

6.
N2 fixation by diazotrophic bacteria associated with the roots of the smooth cordgrass, Spartina alterniflora, is an important source of new nitrogen in many salt marsh ecosystems. However, the diversity and phylogenetic affiliations of these rhizosphere diazotrophs are unknown. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified nifH sequence segments was used in previous studies to examine the stability and dynamics of the Spartina rhizosphere diazotroph assemblages in the North Inlet salt marsh, near Georgetown, S.C. In this study, plugs were taken from gel bands from representative DGGE gels, the nifH amplimers were recovered and cloned, and their sequences were determined. A total of 59 sequences were recovered, and the amino acid sequences predicted from them were aligned with sequences from known and unknown diazotrophs in order to determine the types of organisms present in the Spartina rhizosphere. We recovered numerous sequences from diazotrophs in the γ subdivision of the division Proteobacteria (γ-Proteobacteria) and from various anaerobic diazotrophs. Diazotrophs in the α-Proteobacteria were poorly represented. None of the Spartina rhizosphere DGGE band sequences were identical to any known or previously recovered environmental nifH sequences. The Spartina rhizosphere diazotroph assemblage is very diverse and apparently consists mainly of unknown organisms.  相似文献   

7.
The diversity of nitrogen-fixing microorganisms in the soil of an oligotrophic Sphagnum peat bog was studied by molecular cloning of fragments of the nifH gene encoding one of the main components of the nitrogenase complex. The fragments were amplified from the DNA isolated from the peat samples collected at the same site in January (library I) and November (library II), 2005. Analysis of the nifH sequence libraries revealed high diversity of diazotrophic bacteria in peat soil: the first library consisted of 237 clones and 55 unique sequence types, the second one included 171 clones and 52 sequence types. Comparison of the two clone libraries showed that the composition and population structure of the nitrogen-fixing community depended greatly on the sampling time; they shared only 11 phylotypes. The sequences of representatives of the class Alphaproteobacteria prevailed in both libraries (27% and 57% of clones in libraries I and II, respectively). Representatives of the classes Deltaproteobacteria and Chlorobea were minor components of library I (6% and 7% of clones, respectively), whereas they prevailed in library II (18% and 24% of clones, respectively). Members of the class Chloroflexi were present only in library I, while members of the classes Bacilli, Clostridia, and Methanomicrobia were present only in library II. Our studies demonstrated that, for complete evaluation of the diversity of natural nitrogen-fixing communities, nifH libraries should consist of at least 200–300 clones.  相似文献   

8.
The diversity of nitrogen-fixing bacteria was assessed in the rhizospheres of two cultivars of sorghum (IS 5322-C and IPA 1011) sown in Cerrado soil amended with two levels of nitrogen fertilizer (12 and 120 kg ha(-1)). The nifH gene was amplified directly from DNA extracted from the rhizospheres, and the PCR products cloned and sequenced. Four clone libraries were generated from the nifH fragments and 245 sequences were obtained. Most of the clones (57%) were closely related to nifH genes of uncultured bacteria. NifH clones affiliated with Azohydromonas spp., Ideonella sp., Rhizobium etli and Bradyrhizobium sp. were found in all libraries. Sequences affiliated with Delftia tsuruhatensis were found in the rhizosphere of both cultivars sown with high levels of nitrogen, while clones affiliated with Methylocystis sp. were detected only in plants sown under low levels of nitrogen. Moreover, clones affiliated with Paenibacillus durus could be found in libraries from the cultivar IS 5322-C sown either in high or low amounts of fertilizer. This study showed that the amount of nitrogen used for fertilization is the overriding determinative factor that influenced the nitrogen-fixing community structures in sorghum rhizospheres cultivated in Cerrado soil.  相似文献   

9.
The diversity of dinitrogenase reductase gene (nifH) fragments in Paenibacillus azotofixans strains was investigated by using molecular methods. The partial nifH gene sequences of eight P. azotofixans strains, as well as one strain each of the close relatives Paenibacillus durum, Paenibacillus polymyxa, and Paenibacillus macerans, were amplified by PCR by using degenerate primers and were characterized by DNA sequencing. We found that there are two nifH sequence clusters, designated clusters I and II, in P. azotofixans. The data further indicated that there was sequence divergence among the nifH genes of P. azotofixans strains at the DNA level. However, the gene products were more conserved at the protein level. Phylogenetic analysis showed that all nifH cluster II sequences were similar to the alternative (anf) nitrogenase sequence. A nested PCR assay for the detection of nifH (cluster I) of P. azotofixans was developed by using the degenerate primers as outer primers and two specific primers, designed on the basis of the sequence information obtained, as inner primers. The specificity of the inner primers was tested with several diazotrophic bacteria, and PCR revealed that these primers are specific for the P. azotofixans nifH gene. A GC clamp was attached to one inner primer, and a denaturing gradient gel electrophoresis (DGGE) protocol was developed to study the genetic diversity of this region of nifH in P. azotofixans strains, as well as in soil and rhizosphere samples. The results revealed sequence heterogeneity among different nifH genes. Moreover, nifH is probably a multicopy gene in P. azotofixans. Both similarities and differences were detected in the P. azotofixans nifH DGGE profiles generated with soil and rhizosphere DNAs. The DGGE assay developed here is reproducible and provides a rapid way to assess the intraspecific genetic diversity of an important functional gene in pure cultures, as well as in environmental samples.  相似文献   

10.
Molecular approaches [PCR-denaturing gradient gel electrophoresis (DGGE)] were used to determine whether three different vetiver (Chrysopogon zizanioides) genotypes, commercially used in Brazil and considered economically important over the world, select specific bacterial populations to coexist in their rhizospheres. DGGE profiles revealed that the predominant rhizospheric bacterial community hardly varies regarding the vetiver genotype. Moreover, using traditional cultivation methods, bacterial strains were isolated from the different rhizospheres. Colonies presenting different morphologies (83) were selected for determining their potential for plant growth promotion. More than half of the strains tested (57.8%) were amplified by PCR using nifH-based primers, specific for the enzyme nitrogenase reductase. The production of siderophores was observed in 88% of the strains, while the production of antimicrobial substances was detected in only 14.5% of the isolates when Micrococcus sp. was used as the indicator strain. Production of indole-3-acetic acid and the solubilization of phosphate were observed in 55.4% and 59% of the isolates, respectively. In total, 44 strains (53%) presented at least three characteristics of plant growth promotion and were submitted to amplified ribosomal DNA restriction analysis. Twenty-four genetic groups were formed at 100% similarity and one representative of each group was selected for their identification by partial 16S rRNA gene sequencing. They were affiliated with the genera Acinetobacter, Comamonas, Chryseobacterium, Klebsiella, Enterobacter, Pantoea, Dyella, Burkholderia, or Pseudomonas. These strains can be considered of great importance as possible biofertilizers in vetiver.  相似文献   

11.
Copepods can be associated with different kinds and different numbers of bacteria. This was already shown in the past with culture-dependent microbial methods or microscopy and more recently by using molecular tools. In our present study, we investigated the bacterial community of four frequently occurring copepod species, Acartia sp., Temora longicornis, Centropages sp. and Calanus helgolandicus from Helgoland Roads (North Sea) over a period of 2 years using DGGE (denaturing gradient gel electrophoresis) and subsequent sequencing of 16S-rDNA fragments. To complement the PCR-DGGE analyses, clone libraries of copepod samples from June 2007 to 208 were generated. Based on the DGGE banding patterns of the two years survey, we found no significant differences between the communities of distinct copepod species, nor did we find any seasonality. Overall, we identified 67 phylotypes (>97 % similarity) falling into the bacterial phyla of Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. The most abundant phylotypes were affiliated to the Alphaproteobacteria. In comparison with PCR-DGGE and clone libraries, phylotypes of the Gammaproteobacteria dominated the clone libraries, whereas Alphaproteobacteria were most abundant in the PCR-DGGE analyses.  相似文献   

12.
Two bacterial 16S rRNA gene clone libraries were constructed from the forestomach of alpacas and sheep fed alfalfa. After the amplification using the universal 16S rRNA gene primers, equal quantities of PCR products from the same species were mixed and used to construct the two libraries. Sequence analysis showed that the 60 clones from alpacas were divided into 27 phylotypes with 25% clones affiliated with Eubacterium sp. F1. The 60 clones from sheep were divided into 21 phylotypes with 7 phylotypes affiliated with Prevotella ruminicola (40% clones). Clones closely related to Clostridium proteoclasticum, Eubacterium sp. F1, Clostridium cellobioparum, Mogibacterium neglectum, Eubacterium ventriosum, Clostridiaceae bacterium WN011, Clostridium coccoides, Clostridium orbiscindens, Eubacterium sp. F1, Cytophaga sp. Dex80-37, Treponema bryantii and Pelotomaculum sp. FP were only found in the forestomach of alpacas, and those to Anaerovorax odorimutans, Treponema zioleckii, Bifidobacterium indicum, Paludibacter propionicigenes, Paraprevotella clara, Eubacterium siraeum, Desulfotomaculum sp. CYP1, Clostridium bolteae, Clostridium termitidis and Clostridiaceae bacterium DJF_LS40 only in the rumen of sheep. Quantitative real-time PCR revealed that the forestomach of alpacas had significantly lower density of bacteria, with bacterial 16S rRNA gene copies (6.89 [Log10 (copies per gram of wet weight)]), than that of sheep (7.71, P < 0.01). The two clone libraries also appeared different in Shannon index (library from alpacas 3.30 and from sheep 3.04). Our results showed that there were apparent differences in the bacterial diversity and abundance in the forestomach between alpacas and sheep.  相似文献   

13.
We analyzed the phylogenetic composition of bacterioplankton assemblages in 11 Arctic Ocean samples collected over three seasons (winter-spring 1995, summer 1996, and summer-fall 1997) by sequencing cloned fragments of 16S rRNA genes. The sequencing effort was directed by denaturing gradient gel electrophoresis (DGGE) screening of samples and the clone libraries. Sequences of 88 clones fell into seven major lineages of the domain Bacteria: α (36%)-, γ (32%)-, δ (14%)-, and (1%)-Proteobacteria; Cytophaga-Flexibacter-Bacteroides spp. (9%); Verrucomicrobium spp. (6%); and green nonsulfur bacteria (2%). A total of 34% of the cloned sequences (excluding clones in the SAR11 and Roseobacter groups) had sequence similarities that were <94% compared to previously reported sequences, indicating the presence of novel sequences. DGGE fingerprints of the selected samples showed that most of the bands were common to all samples in all three seasons. However, additional bands representing sequences related to Cytophaga and Polaribacter species were found in samples collected during the summer and fall. Of the clones in a library generated from one sample collected in spring of 1995, 50% were the same and were most closely affiliated (99% similarity) with Alteromonas macleodii, while 50% of the clones in another sample were most closely affiliated (90 to 96% similarity) with Oceanospirillum sp. The majority of the cloned sequences were most closely related to uncultured, environmental sequences. Prominent among these were members of the SAR11 group. Differences between mixed-layer and halocline samples were apparent in DGGE fingerprints and clone libraries. Sequences related to α-Proteobacteria (dominated by SAR11) were abundant (52%) in samples from the mixed layer, while sequences related to γ-proteobacteria were more abundant (44%) in halocline samples. Two bands corresponding to sequences related to SAR307 (common in deep water) and the high-G+C gram-positive bacteria were characteristic of the halocline samples.  相似文献   

14.
15.
Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean   总被引:13,自引:0,他引:13  
We analyzed the phylogenetic composition of bacterioplankton assemblages in 11 Arctic Ocean samples collected over three seasons (winter-spring 1995, summer 1996, and summer-fall 1997) by sequencing cloned fragments of 16S rRNA genes. The sequencing effort was directed by denaturing gradient gel electrophoresis (DGGE) screening of samples and the clone libraries. Sequences of 88 clones fell into seven major lineages of the domain Bacteria: alpha(36%)-, gamma(32%)-, delta(14%)-, and epsilon(1%)-Proteobacteria; Cytophaga-Flexibacter-Bacteroides spp. (9%); Verrucomicrobium spp. (6%); and green nonsulfur bacteria (2%). A total of 34% of the cloned sequences (excluding clones in the SAR11 and Roseobacter groups) had sequence similarities that were <94% compared to previously reported sequences, indicating the presence of novel sequences. DGGE fingerprints of the selected samples showed that most of the bands were common to all samples in all three seasons. However, additional bands representing sequences related to Cytophaga and Polaribacter species were found in samples collected during the summer and fall. Of the clones in a library generated from one sample collected in spring of 1995, 50% were the same and were most closely affiliated (99% similarity) with Alteromonas macleodii, while 50% of the clones in another sample were most closely affiliated (90 to 96% similarity) with Oceanospirillum sp. The majority of the cloned sequences were most closely related to uncultured, environmental sequences. Prominent among these were members of the SAR11 group. Differences between mixed-layer and halocline samples were apparent in DGGE fingerprints and clone libraries. Sequences related to alpha-Proteobacteria (dominated by SAR11) were abundant (52%) in samples from the mixed layer, while sequences related to gamma-proteobacteria were more abundant (44%) in halocline samples. Two bands corresponding to sequences related to SAR307 (common in deep water) and the high-G+C gram-positive bacteria were characteristic of the halocline samples.  相似文献   

16.
Bacterial diversity in 16S ribosomal DNA and reverse-transcribed 16S rRNA clone libraries originating from the heavy metal-contaminated rhizosphere of the metal-hyperaccumulating plant Thlaspi caerulescens was analysed and compared with that of contaminated bulk soil. Partial sequence analysis of 282 clones revealed that most of the environmental sequences in both soils affiliated with five major phylogenetic groups, the Actinobacteria, alpha-Proteobacteria, beta-Proteobacteria, Acidobacteria and the Planctomycetales. Only 14.7% of all phylotypes (sequences with similarities> 97%), but 45% of all clones, were common in the rhizosphere and the bulk soil clone libraries. The combined use of rDNA and rRNA libraries indicated which taxa might be metabolically active in this soil. All dominant taxa, with the exception of the Actinobacteria, were relatively less represented in the rRNA libraries compared with the rDNA libraries. Clones belonging to the Verrucomicrobiales, Firmicutes, Cytophaga-Flavobacterium-Bacteroides and OP10 were found only in rDNA clone libraries, indicating that they might not represent active constituents in our samples. The most remarkable result was that sequences belonging to the Actinobacteria dominated both bulk and rhizosphere soil libraries derived from rRNA (50% and 60% of all phylotypes respectively). Seventy per cent of these clone sequences were related to the Rubrobacteria subgroups 2 and 3, thus providing for the first time evidence that this group of bacteria is probably metabolically active in heavy metal-contaminated soil.  相似文献   

17.
Wu L  Ma K  Lu Y 《Microbial ecology》2009,57(1):58-68
The diversity and function of nitrogen-fixing bacteria colonizing rice roots are not well understood. A field experiment was conducted to determine the diversity of diazotrophic communities associated with roots of modern rice cultivars using culture-independent molecular analyses of nitrogenase gene (nifH) fragments. Experimental treatments included four modern rice cultivars (Oryza sativa, one Indica, one Japonica and two hybrid rice varieties) and three levels (0, 50, and 100 kg N ha−1) of N (urea) fertilizer application. Cloning and sequencing of 103 partial nifH genes showed that a diverse community of diazotrophs was associated with rice roots. However, the nifH gene fragments belonging to betaproteobacteria were dominant, accounting for nearly half of nifH sequences analyzed across the clone libraries. Most of them were similar to nifH fragments retrieved from wild rice and Kallar grass, with Azoarcus spp. being the closest cultured relatives. Alphaproteobacteria were also detected, but their relative abundance in the nifH gene pools was dramatically decreased with N fertilizer application. In addition, a high fraction of nifH gene pools was affiliated with methylotrophs and methane oxidizers. The sequence analysis was consistent with the terminal restriction fragment-length polymorphism (T-RFLP) fingerprinting of the nifH gene fragments, which showed three of four dominant terminal restriction fragments were mainly related to betaproteobacteria based on in silico digestion of nifH sequences. T-RFLP analyses also revealed that the effects of N fertilizer on the nifH gene diversity retrieved from roots varied according to rice cultivars. In summary, the present study revealed the prevalence of betaproteobacterial sequences among the proteobacteria associated with roots of modern rice cultivars. This group of diazotrophs appeared less sensitive to N fertilizer application than diazotrophic alphaproteobacteria. Furthermore, methylotrophs may also play a role in nitrogen fixation on rice roots. However, it must be noted that due to the potential bias of polymerase chain reaction protocol, the significance of non-proteobacterial diazotrophs such as Firmicutes and anaerobic bacteria is possibly underestimated.  相似文献   

18.
Six diazotrophic bacteria were isolated from surface-sterilized roots of rice variety HUR-36, which is grown with very low or no inputs of nitrogen fertilizer. Out of six bacteria one isolate, RREM25, showed appreciable level of nitrogenase activity, IAA production, and Phosphate solubilization ability, and was further characterized with a view to exploiting its plant growth promoting activity. Based on 16S rRNA gene sequence analysis, this isolate was identified as Burkholderia cepacia. Diazotrophic nature of this particular isolate was confirmed by Western blot analysis of dinitrogenase reductase and amplification of nifH. Microscopic observation confirmed colonization of gfp/gusA-tagged RREM25 in the intercellular spaces of cortical as well as vascular zones of roots. Inoculation of RREM25 to rice plants resulted in significant increase in plant height, dry shoot and root weight, chlorophyll content, nitrogen content and nitrogenase activity. Plant growth promoting features suggest that this endophytic bacterium may be exploited in rice cultivation after a thorough and critical pathogenicity test.  相似文献   

19.
The bacterial community structure of the rhizosphere and non-rhizosphere soil of Pinus patula, found in the Nilgiris region of Western Ghats, was studied by constructing 16S rRNA gene clone libraries. In the rhizosphere and non-rhizosphere soil clone libraries constructed, 13 and 15 bacterial phyla were identified, respectively. The clone libraries showed the predominance of members of culturally underrepresented phyla like Acidobacteria and Verrucomicrobia. The Alphaproteobacteria and Acidobacteria clones were predominant in rhizosphere and non-rhizosphere soil samples, respectively. In rhizosphere, amongst Alphaproteobacteria members, Bradyrhizobium formed the significant proportion, whereas in non-rhizosphere, members of subdivision-6 of phylum Acidobacteria were abundant. The diversity analysis of P. patula soil libraries showed that the phylotypes (16S rRNA gene similarity cutoff, ≥97 %) of Acidobacteria and Bacteroidetes were relatively predominant and diverse followed by Alphaproteobacteria and Verrucomicrobia. The diversity indices estimated higher richness and abundance of bacteria in P. patula soil clone libraries than the pine forest clone libraries retrieved from previous studies. The tools like principal co-ordinate analysis and Jackknife cluster analysis, which were under UniFrac analysis indicated that variations in soil bacterial communities were attributed to their respective geographical locations due to the phylogenetic divergence amongst the clone libraries. Overall, the P. patula rhizosphere and non-rhizosphere clone libraries were found significantly unique in composition, evenly distributed and highly rich in phylotypes, amongst the biogeographically distant clone libraries. It was finally hypothesised that the phylogenetic divergence amongst the bacterial phylotypes and natural selection plays a pivotal role in the variations of bacterial communities across the geographical distance.  相似文献   

20.
Bacterial and fungal populations associated with the rhizosphere of healthy black spruce (Picea mariana) seedlings and seedlings with symptoms of root rot were characterized by cloned rRNA gene sequence analysis. Triplicate bacterial and fungal rRNA gene libraries were constructed, and 600 clones were analyzed by amplified ribosomal DNA restriction analysis and grouped into operational taxonomical units (OTUs). A total of 84 different bacterial and 31 different fungal OTUs were obtained and sequenced. Phylogenetic analyses indicated that the different OTUs belonged to a wide range of bacterial and fungal taxa. For both groups, pairwise comparisons revealed that there was greater similarity between replicate libraries from each treatment than between libraries from different treatments. Significant differences between pooled triplicate samples from libraries of genes from healthy seedlings and pooled triplicate samples from libraries of genes from diseased seedlings were also obtained for both bacteria and fungi, clearly indicating that the rhizosphere-associated bacterial and fungal communities of healthy and diseased P. mariana seedlings were different. The communities associated with healthy and diseased seedlings also showed distinct ecological parameters as indicated by the calculated diversity, dominance, and evenness indices. Among the main differences observed at the community level, there was a higher proportion of Acidobacteria, Gammaproteobacteria, and Homobasidiomycetes clones associated with healthy seedlings, while the diseased-seedling rhizosphere harbored a higher proportion of Actinobacteria, Sordariomycetes, and environmental clones. The methodological approach described in this study appears promising for targeting potential rhizosphere-competent biological control agents against root rot diseases occurring in conifer nurseries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号