首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a rapid, reproducible, and sensitive method for detection and quantification of archaea in naturally occurring microbial communities. A domain-specific PCR primer set and a domain-specific fluorogenic probe having strong and weak selectivity, respectively, for archaeal rRNA genes (rDNAs) were designed. A universal PCR primer set and a universal fluorogenic probe for both bacterial and archaeal rDNAs were also designed. Using these primers and probes, we demonstrated that detection and quantification of archaeal rDNAs in controlled microbial rDNA assemblages can be successfully achieved. The system which we designed was also able to detect and quantify archaeal rDNAs in DNA samples obtained not only from environments in which thermophilic archaea are abundant but also from environments in which methanogenic archaea are abundant. Our findings indicate that this method is applicable to culture-independent molecular analysis of microbial communities in various environments.  相似文献   

2.
Real-time polymerase chain reaction (PCR) is a highly sensitive method that can be used for the detection and quantification of microbial populations without cultivating them in anaerobic processes and environmental samples. This work was conducted to design primer and probe sets for the detection of methanogens using a real-time PCR with the TaqMan system. Six group-specific methanogenic primer and probe sets were designed. These sets separately detect four orders (Methanococcales, Methanobacteriales, Methanomicrobiales, and Methanosarcinales) along with two families (Methanosarcinaceae and Methanosaetaceae) of the order Methanosarcinales. We also designed the universal primer and probe sets that specifically detect the 16S rDNA of prokaryotes and of the domain Bacteria and Archaea, and which are fully compatible with the TaqMan real-time PCR system. Target-group specificity of each primer and probe set was empirically verified by testing DNA isolated from 28 archaeal cultures and by analyzing potential false results. In general, each primer and probe set was very specific to the target group. The primer and probe sets designed in this study can be used to detect and quantify the order-level (family-level in the case of Methanosarcinales) methanogenic groups in anaerobic biological processes and various environments.  相似文献   

3.
采用非分离培养分析方法 ,即 16SrDNA限制性酶切片段长度多态性 (ARDRA)和测序方法对南海湛江海域海绵Pachychalinasp .体内的古菌多样性进行了研究。从海绵体内直接提取古菌总DNA。以样品总DNA为模板 ,用古菌 16SrDNA通用引物进行PCR扩增获得 16SrDNA ,回收、纯化 16SrDNA产物并克隆到T Vector。进行第二次PCR扩增反应 ,且对扩增产物进行ARDRA。在古菌 16SrDNA的ARDRA图谱中 ,大多数克隆的酶切带谱上存在差异 ;随机挑选 8个克隆子进行测序 ,获得古菌 16SrDNA的部分序列 ,并对 16SrDNA序列进行聚类分析构建了系统进化树 ,结果发现海绵体内的古菌主要属于Methanogeniumorganophilum、Methanoplanuspetrolearius等古菌类。但它们与目前数据库中收录的古细菌间的相似性均不超过 90 % ,它们极有可能是一些新的古菌  相似文献   

4.
A quantitative fluorogenic PCR method for detecting methanogenic and methanotrophic orders was established using a refined primer set for the methyl coenzyme M reductase subunit A gene (mcrA). The method developed was applied to several microbial communities in which diversity and abundance of methanogens or anaerobic methanotrophs (ANMEs) was identified by 16S rRNA gene clone analysis, and strong correlations between the copy numbers of mcrA with those of archaeal 16S rRNA genes in the communities were observed. The assay can be applied to detecting and assessing the abundance of methanogens and/or ANMEs in anoxic environments that could not be detected by 16S rRNA gene sequence analyses.  相似文献   

5.
海绵Pacnychalina sp.体内古菌多样性非培养技术分析   总被引:1,自引:0,他引:1  
采用非分离培养分析方法,即16S rDNA限制性酶切片段长度多态性(ARDRA)和测序方法对南海湛江海域海绵Pachychalina sp.体内的古菌多样性进行了研究.从海绵体内直接提取古菌总DNA.以样品总DNA为模板,用古菌16S rDNA通用引物进行PCR扩增获得16S rDNA,回收、纯化16S rDNA产物并克隆到T-Vector.进行第二次PCR扩增反应,且对扩增产物进行ARDRA.在古菌16S rDNA的ARDRA图谱中,大多数克隆的酶切带谱上存在差异;随机挑选8个克隆子进行测序,获得古菌16S rDNA的部分序列,并对16S rDNA序列进行聚类分析构建了系统进化树,结果发现海绵体内的古菌主要属于Methanogenium organophilum、Methanoplanus petrolearius等古菌类.但它们与目前数据库中收录的古细菌间的相似性均不超过90%,它们极有可能是一些新的古菌.  相似文献   

6.
肠道微生物对于人体健康的重要作用已经得到广泛证实,目前,对肠道微生物的研究大多采用基于扩增细菌16S rRNA基因V3-V4区的高通量测序分析,对古菌的关注较少。本研究选择了一对可以同时扩增细菌和古菌16S rRNA基因的引物,通过比较人为干扰肠道微生物前后的群落变化,说明这对引物适宜分析人类肠道细菌和古菌群落变化并具有一定优越性。采集志愿者粪便样品,同时用仅能扩增细菌引物 (B引物) 和细菌古菌通用引物 (AB引物) 进行扩增和高通量测序;使用几个常用的rRNA数据库判断引物对细菌的覆盖度和对古菌的扩增能力。结果表明,AB引物在可以展示B引物扩增出的细菌群落的基础上,可以得到肠道中常见的产甲烷古菌的序列,同时也展示出人为干扰肠道微生物前后的群落结构变化。AB引物可以仅通过一次扩增和测序同时分析肠道中的细菌和古菌群落,更加全面展示肠道微生物群落结构,适用于肠道微生物相关研究。  相似文献   

7.
【背景】在过去的十几年里,基于核糖体RNA基因的扩增子测序技术被广泛用于各种生态系统中微生物群落的多样性检测。扩增子测序的使用极大地促进了土壤、水体、空气等环境中微生物生态的相关研究。【目的】随着高通量测序技术的不断发展和参考数据库的不断更新,针对不同的环境样本的引物选择和改进仍然需要更深入的校验。【方法】本文收集了目前在微生物群落研究中被广泛采用的标记基因扩增通用引物,包括16S rRNA基因扩增常用的8对通用引物和2对古菌引物、9对真菌转录间隔区(internal transcribed spacer,ITS)基因扩增引物,以及18S rRNA基因扩增的4对真核微生物通用引物和1对真菌特异性引物。这些引物中包括了地球微生物组计划(Earth Microbiome Project,EMP)推荐的2对16S rRNA基因扩增引物、1对ITS1基因扩增引物和1对18S rRNA基因扩增引物。采用最近更新的标准数据库对这些引物进行了覆盖度和特异性评价。【结果】EMP推荐的引物依然具有较高的覆盖度,而其他引物在覆盖度及对特定环境或类群的特异性上也各有特点。此外,最近有研究对这些通用引物进行了一些改进,而我们也发现,一个碱基的变化都可能会导致评价结果或扩增产物发生明显变化,简并碱基的引入既可以覆盖更多的物种,但同时也会在一定程度上降低关注物种的特异性。【结论】研究结果为微生态研究中标记基因的引物选择提供了一个广泛的指导,但在关注具体科学问题时,引物的选择仍需数据指导与实验尝试。  相似文献   

8.
For the analysis of microbial community structure based on 16S rDNA sequence diversity, sensitive and robust PCR amplification of 16S rDNA is a critical step. To obtain accurate microbial composition data, PCR amplification must be free of bias; however, amplifying all 16S rDNA species with equal efficiency from a sample containing a large variety of microorganisms remains challenging. Here, we designed a universal primer based on the V3-V4 hypervariable region of prokaryotic 16S rDNA for the simultaneous detection of Bacteria and Archaea in fecal samples from crossbred pigs (Landrace×Large white×Duroc) using an Illumina MiSeq next-generation sequencer. In-silico analysis showed that the newly designed universal prokaryotic primers matched approximately 98.0% of Bacteria and 94.6% of Archaea rRNA gene sequences in the Ribosomal Database Project database. For each sequencing reaction performed with the prokaryotic universal primer, an average of 69,330 (±20,482) reads were obtained, of which archaeal rRNA genes comprised approximately 1.2% to 3.2% of all prokaryotic reads. In addition, the detection frequency of Bacteria belonging to the phylum Verrucomicrobia, including members of the classes Verrucomicrobiae and Opitutae, was higher in the NGS analysis using the prokaryotic universal primer than that performed with the bacterial universal primer. Importantly, this new prokaryotic universal primer set had markedly lower bias than that of most previously designed universal primers. Our findings demonstrate that the prokaryotic universal primer set designed in the present study will permit the simultaneous detection of Bacteria and Archaea, and will therefore allow for a more comprehensive understanding of microbial community structures in environmental samples.  相似文献   

9.
A laboratory-scale continuously stirred anaerobic thermophilic batch digester was inoculated with cattle manure. Bacterial and archaeal communities, as well as digester performances, were analysed during reactor start-up for about 20 days. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) was used for overall detection and for study of the dynamics of microbial populations. Dominant bacteria and archaea 16S rDNAs were sequenced from the sample on day 12. Ten bacteria and 3 archaea OTUs (operational taxonomic units) were identified from the 52 clones sequenced. Sequences corresponding to the dominant bacterial SSCP peak were phylogenetically close to the 16S rDNA sequence of Bacillus thermoterrestris, whereas sequences corresponding to the two dominant archaeal SSCP peaks were phylogenetically close to the 16S rDNA sequence of Methanoculleus thermophilicus and Methanosarcina thermophila.  相似文献   

10.
The oxidation of methane in anoxic marine sediments is thought to be mediated by a consortium of methane-consuming archaea and sulfate-reducing bacteria. In this study, we compared results of rRNA gene (rDNA) surveys and lipid analyses of archaea and bacteria associated with methane seep sediments from several different sites on the Californian continental margin. Two distinct archaeal lineages (ANME-1 and ANME-2), peripherally related to the order Methanosarcinales, were consistently associated with methane seep marine sediments. The same sediments contained abundant (13)C-depleted archaeal lipids, indicating that one or both of these archaeal groups are members of anaerobic methane-oxidizing consortia. (13)C-depleted lipids and the signature 16S rDNAs for these archaeal groups were absent in nearby control sediments. Concurrent surveys of bacterial rDNAs revealed a predominance of delta-proteobacteria, in particular, close relatives of Desulfosarcina variabilis. Biomarker analyses of the same sediments showed bacterial fatty acids with strong (13)C depletion that are likely products of these sulfate-reducing bacteria. Consistent with these observations, whole-cell fluorescent in situ hybridization revealed aggregations of ANME-2 archaea and sulfate-reducing Desulfosarcina and Desulfococcus species. Additionally, the presence of abundant (13)C-depleted ether lipids, presumed to be of bacterial origin but unrelated to ether lipids of members of the order Desulfosarcinales, suggests the participation of additional bacterial groups in the methane-oxidizing process. Although the Desulfosarcinales and ANME-2 consortia appear to participate in the anaerobic oxidation of methane in marine sediments, our data suggest that other bacteria and archaea are also involved in methane oxidation in these environments.  相似文献   

11.
AIMS: The development of a fluorogenic, 5' nuclease, TaqMan PCR assay for the detection of Ri-plasmids from root mat inducing Agrobacterium biovar 1 strains. METHODS AND RESULTS: A TaqMan probe and primer set were designed within the T-DNA sequence of a known root mat inducing Agrobacterium strain. One hundred and ten Agrobacterium and closely related bacteria were tested using this novel PCR and compared with results from a conventional PCR which detects Ti and Ri-plasmids. The Agrobacterium selective media, Medium 1A was modified into broth form for use as an enrichment of the pathogen from samples prior to the TaqMan PCR. CONCLUSIONS: The root mat pathogen was detected successfully from a range of sample types using the enriched fluorogenic PCR assay, negating the need for complex DNA extraction procedures and post-PCR processing techniques such as gel electrophoresis. The technique is therefore a rapid and cost-effective detection method. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first known report of a fluorogenic, 5' nuclease, TaqMan assay designed to detect an Agrobacterium plant pathogen. The method can be used as a model system for the detection of other Agrobacterium pathogens.  相似文献   

12.
The oxidation of methane in anoxic marine sediments is thought to be mediated by a consortium of methane-consuming archaea and sulfate-reducing bacteria. In this study, we compared results of rRNA gene (rDNA) surveys and lipid analyses of archaea and bacteria associated with methane seep sediments from several different sites on the Californian continental margin. Two distinct archaeal lineages (ANME-1 and ANME-2), peripherally related to the order Methanosarcinales, were consistently associated with methane seep marine sediments. The same sediments contained abundant 13C-depleted archaeal lipids, indicating that one or both of these archaeal groups are members of anaerobic methane-oxidizing consortia. 13C-depleted lipids and the signature 16S rDNAs for these archaeal groups were absent in nearby control sediments. Concurrent surveys of bacterial rDNAs revealed a predominance of δ-proteobacteria, in particular, close relatives of Desulfosarcina variabilis. Biomarker analyses of the same sediments showed bacterial fatty acids with strong 13C depletion that are likely products of these sulfate-reducing bacteria. Consistent with these observations, whole-cell fluorescent in situ hybridization revealed aggregations of ANME-2 archaea and sulfate-reducing Desulfosarcina and Desulfococcus species. Additionally, the presence of abundant 13C-depleted ether lipids, presumed to be of bacterial origin but unrelated to ether lipids of members of the order Desulfosarcinales, suggests the participation of additional bacterial groups in the methane-oxidizing process. Although the Desulfosarcinales and ANME-2 consortia appear to participate in the anaerobic oxidation of methane in marine sediments, our data suggest that other bacteria and archaea are also involved in methane oxidation in these environments.  相似文献   

13.
Extremophiles - 16S rRNA gene profiling is a powerful method for characterizing microbial communities; however, no universal primer pair can target all bacteria and archaea, resulting in different...  相似文献   

14.
15.
There is no universally accepted method to quantify bacteria and archaea in seawater and marine sediments, and different methods have produced conflicting results with the same samples. To identify best practices, we compiled data from 65 studies, plus our own measurements, in which bacteria and archaea were quantified with fluorescent in situ hybridization (FISH), catalyzed reporter deposition FISH (CARD-FISH), polyribonucleotide FISH, or quantitative PCR (qPCR). To estimate efficiency, we defined “yield” to be the sum of bacteria and archaea counted by these techniques divided by the total number of cells. In seawater, the yield was high (median, 71%) and was similar for FISH, CARD-FISH, and polyribonucleotide FISH. In sediments, only measurements by CARD-FISH in which archaeal cells were permeabilized with proteinase K showed high yields (median, 84%). Therefore, the majority of cells in both environments appear to be alive, since they contain intact ribosomes. In sediments, the sum of bacterial and archaeal 16S rRNA gene qPCR counts was not closely related to cell counts, even after accounting for variations in copy numbers per genome. However, qPCR measurements were precise relative to other qPCR measurements made on the same samples. qPCR is therefore a reliable relative quantification method. Inconsistent results for the relative abundance of bacteria versus archaea in deep subsurface sediments were resolved by the removal of CARD-FISH measurements in which lysozyme was used to permeabilize archaeal cells and qPCR measurements which used ARCH516 as an archaeal primer or TaqMan probe. Data from best-practice methods showed that archaea and bacteria decreased as the depth in seawater and marine sediments increased, although archaea decreased more slowly.  相似文献   

16.
A PCR approach was used to construct a database of nasA genes (called narB genes in cyanobacteria) and to detect the genetic potential for heterotrophic bacterial nitrate utilization in marine environments. A nasA-specific PCR primer set that could be used to selectively amplify the nasA gene from heterotrophic bacteria was designed. Using seawater DNA extracts obtained from microbial communities in the South Atlantic Bight, the Barents Sea, and the North Pacific Gyre, we PCR amplified and sequenced nasA genes. Our results indicate that several groups of heterotrophic bacterial nasA genes are common and widely distributed in oceanic environments.  相似文献   

17.
In a survey on the presence of archaea in a number of European lakes, it was found that known archaeal primer sets for PCR were not suited for use in freshwater environment, as some lack selectivity, while others were too selective. A nested PCR was developed for denaturing gradient gel electrophoresis (DGGE) with primer sets 21F–958R and Parch519f–Arch915r, respectively. After sequencing of the DGGE bands obtained by this nested method, 93% of the sequences were of archaeal origin. More diverse archaeal DGGE patterns were found as compared with other PCR methods. The nested PCR-DGGE method presented here is therefore a reliable tool to analyze the archaeal diversity in freshwater habitats, revealing even more widespread diversity of the archaea.  相似文献   

18.
In this report, real-time quantitative PCR (TaqMan qPCR) of the small subunit (SSU) 16S-like rRNA molecule, a universal phylogenetic marker, was used to quantify the relative abundance of individual bacterial members of a diverse, yet mostly unculturable, microbial community from a marine sponge. Molecular phylogenetic analyses of bacterial communities derived from Caribbean Lithistid sponges have shown a wide diversity of microbes that included at least six major subdivisions; however, very little overlap was observed between the culturable and unculturable microbial communities. Based on sequence data of three culture-independent Lithistid-derived representative bacteria, we designed probe/primer sets for TaqMan qPCR to quantitatively characterize selected microbial residents in a Lithistid sponge, Vetulina, metagenome. TaqMan assays included specificity testing, DNA limit of detection analysis, and quantification of specific microbial rRNA sequences such as Nitrospira-like microbes and Actinobacteria up to 172 million copies per microgram per Lithistid sponge metagenome. By contrast, qPCR amplification with probes designed for common previously cultured sponge-associated bacteria in the genera Rheinheimera and Marinomonas and a representative of the CFB group resulted in only minimal detection of the Rheiheimera in total DNA extracted from the sponge. These data verify that a large portion of the microbial community within Lithistid sponges may consist of currently unculturable microorganisms.  相似文献   

19.
Aims: In the last decades, the worldwide increase in copper wastes release by industrial activities like mining has driven environmental metal contents to toxic levels. For this reason, the study of the biological copper‐resistance mechanisms in natural environments is important. Therefore, an appropriate molecular tool for the detection and tracking of copper‐resistance genes was developed. Methods and Results: In this work, we designed a PCR primer pair to specifically detect copper P‐type ATPases gene sequences. These PCR primers were tested in bacterial isolates and metagenomic DNA from intertidal marine environments impacted by copper pollution. As well, T‐RFLP fingerprinting of these gene sequences was used to compare the genetic composition of such genes in microbial communities, in normal and copper‐polluted coastal environments. New copper P‐type ATPases gene sequences were found, and a high degree of change in the genetic composition because of copper exposure was also determined. Conclusions: This PCR based method is useful to track bacterial copper‐resistance gene sequences in the environment. Significance and Impact of the Study: This study is the first to report the design and use of a PCR primer pair as a molecular marker to track bacterial copper‐resistance determinants, providing an excellent tool for long‐term analysis of environmental communities exposed to metal pollution.  相似文献   

20.
This study describes reconstruction of two highly unusual archaeal genomes by de novo metagenomic assembly of multiple, deeply sequenced libraries from surface waters of Lake Tyrrell (LT), a hypersaline lake in NW Victoria, Australia. Lineage-specific probes were designed using the assembled genomes to visualize these novel archaea, which were highly abundant in the 0.1–0.8 μm size fraction of lake water samples. Gene content and inferred metabolic capabilities were highly dissimilar to all previously identified hypersaline microbial species. Distinctive characteristics included unique amino acid composition, absence of Gvp gas vesicle proteins, atypical archaeal metabolic pathways and unusually small cell size (approximately 0.6 μm diameter). Multi-locus phylogenetic analyses demonstrated that these organisms belong to a new major euryarchaeal lineage, distantly related to halophilic archaea of class Halobacteria. Consistent with these findings, we propose creation of a new archaeal class, provisionally named ‘Nanohaloarchaea''. In addition to their high abundance in LT surface waters, we report the prevalence of Nanohaloarchaea in other hypersaline environments worldwide. The simultaneous discovery and genome sequencing of a novel yet ubiquitous lineage of uncultivated microorganisms demonstrates that even historically well-characterized environments can reveal unexpected diversity when analyzed by metagenomics, and advances our understanding of the ecology of hypersaline environments and the evolutionary history of the archaea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号