首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
rad5 (rev2) mutants of Saccharomyces cerevisiae are sensitive to UV light and other DNA-damaging agents, and RAD5 is in the RAD6 epistasis group of DNA repair genes. To unambiguously define the function of RAD5, we have cloned the RAD5 gene, determined the effects of the rad5 deletion mutation on DNA repair, DNA damage-induced mutagenesis, and other cellular processes, and analyzed the sequence of RAD5-encoded protein. Our genetic studies indicate that RAD5 functions primarily with RAD18 in error-free postreplication repair. We also show that RAD5 affects the rate of instability of poly(GT) repeat sequences. Genomic poly(GT) sequences normally change length at a rate of about 10(-4); this rate is approximately 10-fold lower in the rad5 deletion mutant than in the corresponding isogenic wild-type strain. RAD5 encodes a protein of 1,169 amino acids of M(r) 134,000, and it contains several interesting sequence motifs. All seven conserved domains found associated with DNA helicases are present in RAD5. RAD5 also contains a cysteine-rich sequence motif that resembles the corresponding sequences found in 11 other proteins, including those encoded by the DNA repair gene RAD18 and the RAG1 gene required for immunoglobin gene arrangement. A leucine zipper motif preceded by a basic region is also present in RAD5. The cysteine-rich region may coordinate the binding of zinc; this region and the basic segment might constitute distinct DNA-binding domains in RAD5. Possible roles of RAD5 putative ATPase/DNA helicase activity in DNA repair and in the maintenance of wild-type rates of instability of simple repetitive sequences are discussed.  相似文献   

2.
Nucleotide sequence of the RAD10 gene of Saccharomyces cerevisiae.   总被引:14,自引:2,他引:12  
The RAD10 gene is one of several genes in Saccharomyces cerevisiae required for incision of u.v.-irradiated or cross-linked DNA. We have determined the nucleotide sequence of the RAD10 gene and its flanking regions. The RAD10 nucleotide sequence presented here differs significantly from that recently reported. The RAD10 protein predicted from the nucleotide sequence contains 210 amino acids with a calculated mol. wt. of 24 310. The middle portion of the RAD10 protein, which is highly basic and also contains eight of the total of 10 tyrosine residues present in the protein, may be involved in DNA binding by ionic interactions and tyrosine intercalation between the bases of DNA. A genomic deletion of the entire RAD10 gene does not affect viability; however, the rad10 deletion mutant is highly u.v. sensitive.  相似文献   

3.
The RAD3 gene of Saccharomyces cerevisiae is required for excision of pyrimidine dimers and is essential for viability. We present the nucleotide sequence of the RAD3 protein coding region and its flanking regions, and the deduced primary structure of the RAD3 protein. In addition, we have mapped the 5' end of RAD3 mRNA. The predicted RAD3 protein contains 778 amino acids with a calculated molecular weight of 89,779. A segment of the RAD3 protein shares homology with several adenine nucleotide binding proteins, suggesting that RAD3 protein may react with ATP. The twenty carboxyl terminal amino acids of RAD3 protein are predominantly acidic; however, deletion of this acidic region has no obvious effect on viability or DNA repair.  相似文献   

4.
5.
E. Alani  S. Subbiah    N. Kleckner 《Genetics》1989,122(1):47-57
The RAD50 gene of Saccharomyces cerevisiae is required for chromosome synapsis and recombination during meiosis and for repair of DNA damage during vegetative growth. The precise role of the RAD50 gene product in these processes is not known. Most rad50 mutant phenotypes can be explained by the proposal that the RAD50 gene product is involved in the search for homology between interacting DNA molecules or chromosomes, but there is no direct evidence for this model. We present here the nucleotide sequence of the RAD50 locus and an analysis of the predicted 153-kD RAD50 protein. The amino terminal region of the predicted protein contains residues suggestive of a purine nucleotide binding domain, most likely for adenine. The remaining 1170 amino acids consist of two 250 amino acid segments of heptad repeat sequence separated by 320 amino acids, plus a short hydrophobic carboxy-terminal tail. Heptad repeats occur in proteins such as myosin and intermediate filaments that form alpha-helical coiled coils. One of the two heptad regions in RAD50 shows similarity to the S-2 domain of rabbit myosin beyond that expected for two random coiled coil proteins.  相似文献   

6.
7.
8.
The RAD3 gene of Saccharomyces cerevisiae is required for excision repair and is essential for cell viability. RAD3 encoded protein possesses a single stranded DNA-dependent ATPase and DNA and DNA.RNA helicase activities. Mutational studies have indicated a requirement for the RAD3 helicase activities in excision repair. To examine the extent of conservation of structure and function of RAD3 during eukaryotic evolution, we have cloned the RAD3 homolog, rhp3+, from the distantly related yeast Schizosaccharomyces pombe. RAD3 and rhp3+ encoded proteins are highly similar, sharing 67% identical amino acids. We show that like RAD3, rhp3+ is indispensable for excision repair and cell viability, and our studies indicate a requirement of the putative rhp3+ DNA helicase activity in DNA repair. We find that the RAD3 and rhp3+ genes can functionally substitute for one another. The level of complementation provided by the rhp3+ gene in S.cerevisiae rad3 mutants or by the RAD3 gene in S.pombe rhp3 mutants is remarkable in that both the excision repair and viability defects in both yeasts are restored to wild type levels. These observations suggest a parallel evolutionary conservation of other protein components with which RAD3 interacts in mediating its DNA repair and viability functions.  相似文献   

9.
Nucleotide excision repair (NER) is the primary pathway for the removal of DNA adducts that distort the double helix. In the yeast Saccharomyces cerevisiae the RAD6 epistasis group defines a more poorly characterized set of DNA damage response pathways, believed to be distinct from NER. Here we show that the elimination of the DNA minor groove adducts formed by an important class of anticancer antibiotic (CC-1065 family) requires NER factors in S. cerevisiae. We also demonstrate that the elimination of this class of minor groove adduct from the active MFA2 gene depends upon functional Rad18 and Rad6. This is most clear for the repair of adducts on the transcribed strand, where an absolute requirement for Rad6 and Rad18 was seen. Further experiments revealed that a specific RAD6-RAD18-controlled subpathway, the RAD5 branch, mediates these events. Cells disrupted for rad5 are highly sensitive to this minor groove binding agent, and rad5 cells exhibit an in vivo adduct elimination defect indistinguishable from that seen in rad6 and rad18 cells as well as in NER-defective cells. Our results indicate that the RAD5 subpathway may interact with NER factors during the repair of certain DNA adducts.  相似文献   

10.
Eleven suppressors of the radiation sensitivity of Saccharomyces cerevisiae diploids lacking the Srs2 helicase were analyzed and found to contain codominant mutations in the RAD51 gene known to be involved in recombinational repair and in genetic recombination. These mutant alleles confer an almost complete block in recombinational repair, as does deletion of RAD51, but heterozygous mutant alleles suppress the defects of srs2::LEU2 cells and are semidominant in Srs2+ cells. The results of this study are interpreted to mean that wild-type Rad51 protein binds to single-stranded DNA and that the semidominant mutations do not prevent this binding. The cloning and sequencing of RAD51 indicated that the gene encodes a predicted 400-amino-acid protein with a molecular mass of 43 kDa. Sequence comparisons revealed homologies to domains of Escherichia coli RecA protein predicted to be involved in DNA binding, ATP binding, and ATP hydrolysis. The expression of RAD51, measured with a RAD51-lacZ gene fusion, was found to be UV- and gamma-ray-inducible, with dose-dependent responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号