首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
The binding kinetics of the TCR for its interacting ligand and the nature of the resulting signal transduction event determine the fate of a developing thymocyte. The intracellular tyrosine phosphatase SHP-1 is a potential regulator of the TCR signal transduction cascade and may affect thymocyte development. To assess the role of SHP-1 in thymocyte development, we generated T cell-transgenic mice that express a putative dominant negative form of SHP-1, in which a critical cysteine is mutated to serine (SHP-1 C453S). SHP-1 C453S mice that express the 3.L2 TCR transgene are increased in CD4 single positive cells in the thymus and are increased in cells that express the clonotypic TCR. These data suggest that the expression of SHP-1 C453S results in increased positive selection in 3.L2 TCR-transgenic mice and support a role for SHP-1 thymocyte development.  相似文献   

2.
Stimulation of NK cell-mediated cytotoxicity involves the coupling of proximal Src and Syk family protein tyrosine kinases to downstream effectors. However, the mechanisms linking these second messenger pathways are incompletely understood. Here, we describe a key role for the LAT (p36) adaptor protein in human NK cell activation. LAT is tyrosine phosphorylated upon stimulation of NK cells through FcgammaRIII receptors and following direct contact with NK-sensitive target cells. This NK stimulation induces the association of LAT with several phosphotyrosine-containing proteins. In addition to the biochemical evidence showing LAT involvement in NK cell activation, a genetic model shows that LAT is required for FcR-dependent phosphorylation of phospholipase C-gamma. Furthermore, overexpression of LAT in NK cells leads to increased Ab-dependent cell-mediated cytotoxicity and "natural cytotoxicity," thus demonstrating a functional role for LAT in NK cells. These data suggest that LAT is an important adaptor protein for the regulation of human NK cell-mediated cytotoxicity.  相似文献   

3.
The protein-tyrosine phosphatase SHP-2 modulates signaling events through receptor tyrosine kinases and cytokine receptors including the receptor for prolactin (PRLR). Here we investigated mechanisms of SHP-2 recruitment within the PRLR signaling complex. Using SHP-2 and PRLR immunoprecipitation studies in 293 cells and in the mouse mammary epithelial cell line HC11, we found that SHP-2 co-immunoprecipitates with the PRLR and that the C-terminal tyrosine of the PRLR plays a regulatory role in both the tyrosine phosphorylation and the recruitment of SHP-2. Our results further indicate that SHP-2 association to the PRLR occurs via the C-terminal SH2 domain of the phosphatase. In addition, we determined that the newly identified adaptor protein Gab2, but not Gab1, is specifically tyrosine phosphorylated and is able to recruit SHP-2 and phosphatidyinositol 3-kinase in response to PRLR activation. Together, these studies suggest the presence of dual recruitment sites for SHP-2; the first is to the C-terminal tyrosine of the PRLR and the second is to the adaptor protein Gab2.  相似文献   

4.
Qu CK 《Cell research》2000,10(4):279-288
Cellular biological avtivities are tightly controlled by intracellular signaling processes initiated by extracellular signals.Protein tyrosine phosphatases,which remove phosphate groups from phosphorylated signaling molecules,play equally important tyrosine roles as protein tyrosine kinases in signal transduction.SHP-2 a cytoplasmic SH2 domain containing protein tyrosine phosphatase,is involved in the signaling pathways of a variety of growth factors and cytokines.Recent studies have clearly demonstrated that this phosphatase plays an important role in transducing signal relay from the cell surface to the nucleus,and is a critical intracellular regulator in mediating cell proliferation and differentiation.  相似文献   

5.
Signalling through the leptin receptor has been shown to activate the SH2 domain-containing tyrosine phosphatase SHP-2 through tyrosine phosphorylation. The human leptin receptor contains five tyrosine residues in the cytoplasmic domain that may become phosphorylated. We show here using BIAcore studies, wherein binding of peptides to SHP-2 was detected, that peptides corresponding to sequences containing phosphotyrosines 974 and 986 (LR974P and LR986P, respectively) from the leptin receptor cytoplasmic domain were the only two peptides that bound to the enzyme. Binding of LR974P to SHP-2 was inhibited in a dose-dependent fashion by orthovanadate, whereas binding of LY986P was not, indicating that the enzyme binds to these peptides through different sites. Only the leptin receptor-derived peptide corresponding to tyrosine 974 was dephosphorylated by recombinant purified SHP-2. Time courses of the reaction were complex, and fitted a two exponent rate equation. Preincubation of SHP-2 with LR986P markedly activated the enzyme at early time points and time courses of the activated enzyme fitted a single exponential first order rate equation. We propose that LR974P binds to the active site of SHP-2, whereas LR986P may bind to the N- and C-terminal SH2 domains of SHP-2, thus activating the phosphatase activity. These data support a model in which SHP-2 binds to phosphotyrosine 986 in the activated leptin receptor and is activated to dephosphorylate phosphotyrosine 974, downregulating signalling events emanating from SH2 domain-containing proteins that bind here.  相似文献   

6.
Male "viable motheaten" (me(v)) mice, with a naturally occurring mutation in the gene of the SH2 domain protein tyrosine phosphatase SHP-1, are sterile. Known defects in sperm maturation in these mice correlate with an impaired differentiation of the epididymis, which has similarities to the phenotype of mice with a targeted inactivation of the Ros receptor tyrosine kinase. Ros and SHP-1 are coexpressed in epididymal epithelium, and elevated phosphorylation of Ros in the epididymis of me(v) mice suggests that Ros signaling is under control of SHP-1 in vivo. Phosphorylated Ros strongly and directly associates with SHP-1 in yeast two-hybrid, glutathione S-transferase pull-down, and coimmunoprecipitation experiments. Strong binding of SHP-1 to Ros is selective compared to six other receptor tyrosine kinases. The interaction is mediated by the SHP-1 NH(2)-terminal SH2 domain and Ros phosphotyrosine 2267. Overexpression of SHP-1 results in Ros dephosphorylation and effectively downregulates Ros-dependent proliferation and transformation. We propose that SHP-1 is an important downstream regulator of Ros signaling.  相似文献   

7.
The 2B4 molecule (CD244) has been described as a coreceptor in human NK cell activation. However, the behavior of 2B4 during the cytotoxic NK cell immune synapse (NK-IS) formation remains undetermined. In this study, we demonstrate the redistribution of 2B4 and the signaling adaptor molecule, signaling lymphocyte activation molecule-associated protein (SAP), to the cytotoxic NK-IS upon formation of conjugates between resting NK cells and EBV-infected 721.221 human cells. Confocal microscopy showed that 2B4 localized at the central supramolecular activation cluster, surrounded by a peripheral supramolecular activation cluster containing talin within NK cell and ICAM-1 on target cells. Videomicroscopy studies with 2B4-GFP-transfected NK cells revealed that 2B4 redistributed to cytotoxic NK-IS as soon as the cell contact occurred. Simultaneously, a SAP-GFP also clustered at the contact site, where it remained during the interaction period. The 2B4 molecular clusters remained bound to the target cell even after NK cell detachment. These results underscore the function of 2B4 as an adhesion molecule and suggest a relevant role in the initial binding, scanning of target cells, and formation of cytotoxic NK-IS. Finally, these findings are indicative of an important role of the activating 2B4/signaling lymphocyte activation molecule-associated protein complex during the recognition of EBV-infected cells.  相似文献   

8.
9.
The Tec kinase Bruton's tyrosine kinase (Btk) represents a key intermediary for B cell receptor (BCR) signaling. Btk mutation produces B cell deficiency in mice with X-linked immunodeficiency (xid), and surface Ig-mediated responses of mature B cells are seriously deranged. The central role that Btk plays in directing downstream events produced by BCR engagement is demonstrated by the complete failure of NF-kappa B induction and cellular proliferation following anti-Ig treatment of B cells obtained from xid mice. In this study, we report that the block in BCR signaling produced by Btk mutation is reversed by CD40 engagement. Prior treatment with CD40 ligand normalized subsequent responses of xid B cells to BCR cross-linking, so that typical outcomes of BCR signaling such as NF-kappa B activation and cell cycle progression occurred in a Btk-independent fashion. These results demonstrate that a specific genetic lesion interrupting BCR-mediated intracellular signaling is circumvented through stimulation of CD40.  相似文献   

10.
Chemokines regulate the homeostatic trafficking of lymphocytes and lymphocyte influx into sites of injury and inflammation. The signaling pathways by which chemokine receptors regulate lymphocyte migration remain incompletely characterized. We demonstrate that Jurkat T cells lacking the ZAP-70 tyrosine kinase exhibit reduced migration in response to the CXCR4 ligand CXCL12 when compared with wild-type Jurkat T cells. Expression of wild-type, but not kinase-inactive, ZAP-70 resulted in enhanced migration of ZAP-70-deficient Jurkat T cells. The tyrosine residue at position 292 in the interdomain B region of ZAP-70 exerts a negative regulatory effect on ZAP-70-dependent migration. Stimulation of Jurkat T cells with CXCL12 also resulted in ZAP-70-dependent tyrosine phosphorylation of the Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76) adapter protein. Although CXCL12-dependent migration of SLP-76-deficient Jurkat T cells was impaired, re-expression of SLP-76 did not enhance migration. These results suggest a novel function for ZAP-70, but not SLP-76, in CXCR4 chemokine receptor signaling in human T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号