首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
目的:研究黄芩素与氟康唑合用对白念珠菌生物被膜形成的影响。方法采用激光共聚焦显微镜观察黄芩素与氟康唑合用对白念珠菌生物被膜生长形态的影响;采用 XTT 法考察黄芩素与氟康唑合用对白念珠菌生物被膜形成能力的影响;应用水-烃两相测定实验考察黄芩素与氟康唑合用对白念珠菌生物被膜细胞表面疏水性( Cell surface hydrophobicity, CSH)的影响;应用实时定量 RT-PCR(Real Time RT-PCR)实验考察黄芩素与氟康唑合用对白念珠菌 CSH1、EFG1、HWP1、ALS1基因表达的影响。结果黄芩素与氟康唑合用能够协同抑制白念珠菌生物被膜的形成,经黄芩素与氟康唑处理的白念珠菌不能形成正常的生物被膜,其生长动力学及细胞表面疏水性下降,细胞疏水性相关基 CSH1、菌丝形成调控基因EFG1、黏附相关基因 HWP1基因的表达水平降低。结论黄芩素与氟康唑合用可协同抑制白念珠菌生物被膜的形成。  相似文献   

2.
近年来,白念珠菌耐药性备受关注,其耐药机制之一是形成生物被膜(biofilm).生物被膜主要由大量菌细胞及其所分泌的细胞外多聚基质( matrix)将其包裹所构成,基质含有多糖、蛋白、核酸等成分,不仅参与生物被膜的结构组成,也与耐药性密切相关.本文综述了白念珠菌生物被膜基质的组成特点、功能、影响因素、基因调控和药物干预的最新进展,并展望其在生物被膜感染方面作为诊断标志及治疗靶点的潜在应用前景.  相似文献   

3.
目的 研究CRK1基因缺失对白念珠菌形态、黏附、生物被膜的影响.方法 显微镜下观察,计算菌丝形成率,比较CRK1基因缺失菌(Δcrk1菌)及标准菌SC5314形成菌丝的能力;建立肠黏膜模型,计算黏附率,评价CRK1基因缺失对白念珠菌黏附的影响;MTT法及结晶紫法(CV)评价CRK1基因缺失对白念珠菌生物被膜形成的影响.结果 与SC5314相比,Δcrk1菌分别在10%胎牛血清和RPMI-1640培养条件下形成菌丝能力均较弱,两者之间有统计学差异;Δcrk1菌在60、90、120 min时对肠黏膜的黏附数明显少于标准菌SC5314,两者之间有统计学差异;通过MTT法、结晶紫法两种方法证实了,在经48 h培养后,Δcrk1菌与其标准菌SC5314相比,形成生物膜的能力弱,两者之间差异有统计学差异.结论 CRK 1基因缺失影响白念珠菌菌丝二态性的转化,进而影响黏附力和生物被膜的形成.  相似文献   

4.
白念珠菌是人体重要的条件性致病真菌。形态的多样性和可塑性是白念珠菌典型的生物学特征,这与它的致病性、宿主适应能力以及有性生殖过程密切相关。白念珠菌生物被膜(Biofilm)是由不同形态细胞(包括酵母型、菌丝和假菌丝)以及胞外基质组成的致密结构,也是毒性和耐药性形成的重要因子。生物被膜对抗真菌药物、宿主免疫系统和环境胁迫因子等都表现出较强的抵抗力和耐受性,是临床上病原真菌感染防治的重大挑战。随着基因表达谱和遗传操作技术的发展,白念珠菌生物被膜的形成及其耐药性的获得所依赖的遗传调控通路和分子调控机制越来越清楚。主要包括MAPK和cAMP介导的信号途径以及Bcr1和Tec1等因子介导的转录调控。此外,白念珠菌生物被膜的形成与形态转换和有性生殖之间存在密切的联系。文中综述了白念珠菌生物被膜形成的遗传调控机制,重点介绍了细胞壁相关蛋白、转录因子和交配型对该过程的调控以及生物被膜的耐药机制。  相似文献   

5.
白念珠菌是临床最常见的一种能产生生物被膜的致病真菌,所产生的生物被膜是导致高度耐药性和临床白念珠菌反复感染的直接原因.近年来,科学家们开始关注天然产物的抗生物被膜活性,以及不同药物联合应用的抗生物被膜效果,该文对抗白念珠菌生物被膜药物的研究进展作一综述.  相似文献   

6.
陈美  石海燕  谭丽华  鲁厚根  孙毅 《菌物学报》2021,40(6):1380-1387
利用24孔板在骨科内植物表面构建骨科内植物念珠菌生物被膜模型,并使用荧光镜检和菌落计数法(colony forming unit,CFU)检测醋酸氯己定(以下简称氯己定)与氟康唑对骨科内植物念珠菌生物被膜的联合抗菌效应。本研究成功在体外构建出骨科内植物念珠菌生物被膜模型,并发现无论是白念珠菌(SC5314)、近平滑念珠菌(ATCC22019)还是克柔念珠菌(ATCC00279)氟康唑单药组组间没有显著性差异;氯己定对骨科内植物念珠菌生物被膜的80%最低抑菌浓度(SMIC80)均≥16μg/mL,氟康唑对念珠菌生物被膜的80%最低抑菌浓度(SMIC80)均>64μg/mL。读取SMIC80时,氯己定与氟康唑的协同率高达100%,而两种药物的联合能够使氟康唑和醋酸氯己定的用药剂量减少4-8倍。本研究还发现在体外白念珠菌(SC5314)、近平滑念珠菌(ATCC22019)、克柔念珠菌(ATCC00279)、氟康唑耐药白念珠菌(64550)以及耳念珠菌(0389)均可以在骨科内植物表面形成真菌生物被膜并对氟康唑产生了耐药性;氯己定与抗真菌药物氟康唑对骨科内植物念珠菌生物被膜的杀伤具有明显的协同作用,且明显减少单药用药剂量。  相似文献   

7.
熊延靖  吴艳红 《菌物学报》2020,39(2):343-351
生物被膜的形成是白色念珠菌产生耐药性的重要原因之一。本研究首先构建白色念珠菌体外生物被膜模型,通过倒置显微镜和甲基四氮盐(XTT)法检测大蒜素对白色念珠菌生物被膜形成的影响,同时采用实时荧光定量PCR法(qRT-PCR)对白色念珠菌生物被膜相关基因ALS1ALS3HWP1MP65SUN41的表达水平进行检测。结果显示,当大蒜素浓度≥12.5μg/mL时,白色念珠菌生物被膜的生长被抑制,并且在生物被膜形成的早期,大蒜素干预能有效抑制其形成;大蒜素能下调白色念珠菌生物被膜相关基因ALS1ALS3HWP1MP65SUN41的表达水平。研究结果提示,大蒜素可有效抑制体外白色念珠菌生物被膜的形成,可能与其下调生物被膜相关基因的表达有关。  相似文献   

8.
目的探讨白头翁汤正丁醇提取物(Butyl alcohol extract of Bai Tou Weng decoction,BAEB)对白念珠菌生物被膜细胞凋亡的影响。方法分别以DCFH-DA染色和JC-1染色,用流式细胞仪检测白念珠菌生物被膜细胞内活性氧(ROS)水平和线粒体膜电位(MMP)变化;Annexin V-FITC/PI染色染色荧光显微镜观察白念珠菌生物被膜细胞磷脂酰丝氨酸(phosphatidylserine,PS)外翻并检测凋亡率;FITC-VAD-FMK染色观察白念珠菌生物被膜细胞metacaspase活性;DAPI染色观察白念珠菌生物被膜细胞核形态。结果≥128μg/mL BAEB处理后白念珠菌生物被膜细胞内活性氧水平显著升高,线粒体膜电位显著降低,PS外翻增加,凋亡率明显升高,metacaspase酶活性显著升高,细胞核出现固缩和碎裂。结论白头翁汤正丁醇提取物可诱导白念珠菌生物被膜细胞凋亡。  相似文献   

9.
目的研究粉防己碱(Tet)对白念珠菌(Candida albicans)生物膜及芽管形成的影响。方法采用XTT还原比色法观察Tet对C.albicans成膜的影响;将0.01、0.1、1μmol/L的Tet分别与C.albicans悬液共同孵育,显微镜下计数芽管形成率。分别设阳性对照组(两性霉素B与白念珠菌悬液共孵育)和阴性对照组(白念珠菌悬液中不加Tet),试验重复5次。结果 Tet各剂量组对C.albicans生物膜及芽管形成具有明显抑制作用(P0.05),其作用与药物浓度呈正相关,其中1μmol/L的Tet对C.albicans生物膜及芽管形成的抑制率最高,C.albicans生物膜及芽管形成率低于阴性对照组(P0.05),1μmol/L的Tet组生物膜及芽管形成率低于0.01及0.1μmol/L组(P0.05)。与阳性对照组比较,差异无统计学意义(P0.05)。结论 Tet对体外C.albicans生物膜及芽管形成有一定的抑制作用。  相似文献   

10.
目的构建白念珠菌SIM1基因缺失菌,初步考察SIM1基因的功能。方法采用同源重组的方法构建SIM1基因双臂缺失菌,通过测定生长曲线、菌丝诱导、黏附上皮细胞等实验考察SIM1基因缺失菌表型。结果成功构建SIM1基因缺失菌,SIM1基因缺失后没有显著影响白念珠菌生长繁殖、菌丝及被膜形成,但白念珠菌对Caco-2细胞和KB细胞的黏附能力显著下降,对部分药物的敏感性增加。结论白念珠菌SIM1基因缺失导致细胞壁成分改变,并影响白念珠菌对宿主的黏附。  相似文献   

11.
12.
Candida albicans is a leading cause of biofilm-related infections. As Candida biofilms are recalcitrant to host defenses, we sought to determine the effects of interferon-γ and granulocyte colony-stimulating factor, two pro-inflammatory cytokines, on the antifungal activities of human polymorphonuclear neutrophils (PMNs) against C. albicans biofilms, using an in vitro biofilm model. Priming of PMNs by these cytokines augmented fungal damage of planktonic cells; however, priming of PMNs did not have the same effect against Candida biofilms. Biofilm phenotype appears to play an important role in protecting C. albicans from the innate immune system.  相似文献   

13.
14.
Like MTL-heterozygous (a/α) cells, white MTL-homozygous (a/a or α/α) cells of Candida albicans, to which a minority of opaque cells of opposite mating type have been added, form thick, robust biofilms. The latter biofilms are uniquely stimulated by the pheromone released by opaque cells and are regulated by the mitogen-activated protein kinase signal transduction pathway. However, white MTL-homozygous cells, to which opaque cells of opposite mating type have not been added, form thinner biofilms. Mutant analyses reveal that these latter biofilms are self-induced. Self-induction of a/a biofilms requires expression of the α-receptor gene STE2 and the α-pheromone gene MFα, and self-induction of α/α biofilms requires expression of the a-receptor gene STE3 and the a-pheromone gene MFa. In both cases, deletion of WOR1, the master switch gene, blocks cells in the white phenotype and biofilm formation, indicating that self-induction depends upon low frequency switching from the white to opaque phenotype. These results suggest a self-induction scenario in which minority opaque a/a cells formed by switching secrete, in a mating-type-nonspecific fashion, α-pheromone, which stimulates biofilm formation through activation of the α-pheromone receptor of majority white a/a cells. A similar scenario is suggested for a white α/α cell population, in which minority opaque α/α cells secrete a-pheromone. This represents a paracrine system in which one cell type (opaque) signals a second highly related cell type (white) to undergo a complex response, in this case the formation of a unisexual white cell biofilm.  相似文献   

15.
Farnesol is a quorum-sensing molecule that inhibits filamentation in Candida albicans. Both filamentation and quorum sensing are deemed to be important factors in C. albicans biofilm development. Here we examined the effect of farnesol on C. albicans biofilm formation. C. albicans adherent cell populations (after 0, 1, 2, and 4 h of adherence) and preformed biofilms (24 h) were treated with various concentrations of farnesol (0, 3, 30, and 300 micro M) and incubated at 37 degrees C for 24 h. The extent and characteristics of biofilm formation were then assessed microscopically and with a semiquantitative colorimetric technique based on the use of 2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide. The results indicated that the effect of farnesol was dependent on the concentration of this compound and the initial adherence time, and preincubation with 300 micro M farnesol completely inhibited biofilm formation. Supernatant media recovered from mature biofilms inhibited the ability of planktonic C. albicans to form filaments, indicating that a morphogenetic autoregulatory compound is produced in situ in biofilms. Northern blot analysis of RNA extracted from cells in biofilms indicated that the levels of expression of HWP1, encoding a hypha-specific wall protein, were decreased in farnesol-treated biofilms compared to the levels in controls. Our results indicate that farnesol acts as a naturally occurring quorum-sensing molecule which inhibits biofilm formation, and we discuss its potential for further development and use as a novel therapeutic agent.  相似文献   

16.
White–opaque switching in Candida albicans was first discovered in 1987. Fifteen years later, and three years after the discovery of the mating system, it was demonstrated that the switch from white to opaque was an essential step in the mating process. But this latter discovery did not reveal why C. albicans had this requirement, when Saccharomyces cerevisiae and other hemiascomycetes did not. The discovery that mating-competent opaque cells signaled mating-incompetent white cells, through the release of pheromones, to become adhesive and form biofilms provided a clue to this fundamental question. Opaque cells appeared to signal white cells to form biofilms that facilitated mating by protecting the fragile gradients of the pheromone that directed chemotropism, a process necessary for fusion. Here, we explore the discoveries and observations that have led to this hypothesis, and the ancillary questions that have risen that are related to the regulation of the unique pheromone response, the evolution of this response and the relationship between pheromone-enhanced white cell biofilms and 'asexual' biofilms formed by a /α cells. This discussion, therefore, focuses on a unique and complex component of the basic biology of C. albicans that relates switching, mating and pathogenesis.  相似文献   

17.
Candida species cause frequent infections owing to their ability to form biofilms - surface-associated microbial communities - primarily on implanted medical devices. Increasingly, mechanistic studies have identified the gene products that participate directly in the development of Candida albicans biofilms, as well as the regulatory circuitry and networks that control their expression and activity. These studies have uncovered new mechanisms and signals that govern C. albicans biofilm development and associated drug resistance, thus providing biological insight and therapeutic foresight.  相似文献   

18.
A variety of manifestations of Candida albicans infections are associated with the formation of biofilms on the surface of biomaterials. Cells in biofilms display phenotypic traits that are dramatically different from their free-floating planktonic counterparts, such as increased resistance to anti-microbial agents and protection form host defenses. Here, we describe the characteristics of C. albicans biofilm development using a 96 well microtitre plate model, microscopic observations and a colorimetric method based on the use of a modified tetrazolium salt (2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide, XTT) to monitor metabolic activities of cells within the biofilm. C. albicans biofilm formation was characterized by initial adherence of yeast cells (0-2 h), followed by germination and micro-colony formation (2-4 h), filamentation (4-6 h), monolayer development (6-8 h), proliferation (8-24 h) and maturation (24-48 h). The XTT-reduction assay showed a linear relationship between cellular density of the biofilm and metabolic activity. Serum and saliva pre-conditioning films increased the initial attachment of C. albicans, but had minimal effect on subsequent biofilm formation. Scanning electron microscopy and confocal scanning laser microscopy were used to visualize C. albicans biofilms. Mature C. albicans biofilms consisted of a dense network of yeasts cells and hyphal elements embedded within exopolymeric material. C. albicans biofilms displayed a complex three dimensional structure which demonstrated spatial heterogeneity and a typical architecture showing microcolonies with ramifying water channels. Antifungal susceptibility testing demonstrated the increased resistance of sessile C. albicans cells against clinically used fluconazole and amphotericin B as compared to their planktonic counterparts.  相似文献   

19.
20.
Biofilms are a protected niche for microorganisms, where they are safe from antibiotic treatment and can create a source of persistent infection. Using two clinically relevant Candida albicans biofilm models formed on bioprosthetic materials, we demonstrated that biofilm formation proceeds through three distinct developmental phases. These growth phases transform adherent blastospores to well-defined cellular communities encased in a polysaccharide matrix. Fluorescence and confocal scanning laser microscopy revealed that C. albicans biofilms have a highly heterogeneous architecture composed of cellular and noncellular elements. In both models, antifungal resistance of biofilm-grown cells increased in conjunction with biofilm formation. The expression of agglutinin-like (ALS) genes, which encode a family of proteins implicated in adhesion to host surfaces, was differentially regulated between planktonic and biofilm-grown cells. The ability of C. albicans to form biofilms contrasts sharply with that of Saccharomyces cerevisiae, which adhered to bioprosthetic surfaces but failed to form a mature biofilm. The studies described here form the basis for investigations into the molecular mechanisms of Candida biofilm biology and antifungal resistance and provide the means to design novel therapies for biofilm-based infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号