首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Imbalance between matrix metalloproteinases (MMPs) and tissue inhibitor of matrix metalloproteinases (TIMPs) is an important control point in tissue remodelling. Several findings have reported a marked MMP/TIMP imbalance in a variety of in vitro models in which oxidative stress was induced. Since previous studies showed that commercial hyaluronan and chondroitin-4-sulphate are able to limit lipid peroxidation during oxidative stress, we investigated the antioxidant capacity of purified human plasma chondroitin-4-sulfate in reducing MMP and TIMP imbalance in a model of ROS-induced oxidative injury in fibroblast cultures. Purified human plasma chondroitin-4-sulfate was added to the fibroblast cultures exposed to FeSO4 plus ascorbate. We assayed cell death, MMP and TIMP mRNA expression and protein activities, DNA damage, membrane lipid peroxidation, and aconitase depletion. FeSO4 plus ascorbate produced severe death of cells and increased MMP-1, MMP-2 and MMP-9 expression and protein activities. It also caused DNA strand breaks, enhanced lipid peroxidation and decreased aconitase. TIMP-1 and TIMP-2 protein levels and mRNA expression remain unaltered. Purified human plasma C4S, at three different doses, restored the MMP/TIMP homeostasis, increased cell survival, reduced DNA damage, inhibited lipid peroxidation and limited impairment of aconitase. These results further support the hypothesis that these biomolecules possess antioxidant activity and by reducing ROS production C4S may limit cell injury produced by MMP/TIMP imbalance.  相似文献   

2.
3.
The unregulated activities of matrix metalloproteinases (MMPs) are implicated in disease processes including arthritis and tumor cell invasion and metastasis. MMP activities are controlled by four homologous endogenous protein inhibitors, tissue inhibitors of metalloproteinases (TIMPs), yet different TIMPs show little specificity for individual MMPs. The large interaction interface in the TIMP-1.MMP-3 complex includes a contiguous region of TIMP-1 around the disulfide bond between Cys1 and Cys70 that inserts into the active site of MMP-3. The effects of fifteen different substitutions for threonine 2 of this region reveal that this residue makes a large contribution to the stability of complexes with MMPs and has a dominant influence on the specificity for different MMPs. The size, charge, and hydrophobicity of residue 2 are key factors in the specificity of TIMP. Threonine 2 of TIMP-1 interacts with the S1' specificity pocket of MMP-3, which is a key to substrate specificity, but the structural requirements in TIMP-1 residue 2 for MMP binding differ greatly from those for the corresponding residue of a peptide substrate. These results demonstrate that TIMP variants with substitutions for Thr2 represent suitable starting points for generating more targeted TIMPs for investigation and for intervention in MMP-related diseases.  相似文献   

4.

Background

Matrix metalloproteinases (MMPs) are involved in remodeling of the extracellular matrix (ECM) during pregnancy and parturition. Aberrant ECM degradation by MMPs or an imbalance between MMPs and their tissue inhibitors (TIMPs) have been implicated in the pathogenesis of preterm labor, however few studies have investigated MMPs or TIMPs in maternal serum. Therefore, the purpose of this study was to determine serum concentrations of MMP-3, MMP-9 and all four TIMPs as well as MMP:TIMP ratios during term and preterm labor.

Methods

A case control study with 166 singleton pregnancies, divided into four groups: (1) women with preterm birth, delivering before 34 weeks (PTB); (2) gestational age (GA) matched controls, not in preterm labor; (3) women at term in labor and (4) at term not in labor. MMP and TIMP concentrations were measured using Luminex technology.

Results

MMP-9 and TIMP-4 concentrations were higher in women with PTB vs. GA matched controls (resp. p = 0.01 and p<0.001). An increase in MMP-9:TIMP-1 and MMP-9:TIMP-2 ratio was observed in women with PTB compared to GA matched controls (resp. p = 0.02 and p<0.001) as well as compared to women at term in labor (resp. p = 0.006 and p<0.001). Multiple regression results with groups recoded as three key covariates showed significantly higher MMP-9 concentrations, higher MMP-9:TIMP-1 and MMP-9:TIMP-2 ratios and lower TIMP-1 and -2 concentrations for preterm labor. Significantly higher MMP-9 and TIMP-4 concentrations and MMP-9:TIMP-2 ratios were observed for labor.

Conclusions

Serum MMP-9:TIMP-1 and MMP-9:TIMP-2 balances are tilting in favor of gelatinolysis during preterm labor. TIMP-1 and -2 concentrations were lower in preterm gestation, irrespective of labor, while TIMP-4 concentrations were raised in labor. These observations suggest that aberrant serum expression of MMP:TIMP ratios and TIMPs reflect pregnancy and labor status, providing a far less invasive method to determine enzymes essential in ECM remodeling during pregnancy and parturition.  相似文献   

5.
6.
7.
Matrix metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs) need to be finely modulated in physiological processes. However, oxygen tension influences MMP/TIMP balances, potentially leading to pathology. Intriguingly, new 2H,3H-decafluoropentane-based oxygen-loaded nanodroplets (OLNDs) have proven effective in abrogating hypoxia-dependent dysregulation of MMP and TIMP secretion by single cell populations. This work explored the effects of different oxygen tensions and dextran-shelled OLNDs on MMP/TIMP production in an organized and multicellular tissue (term human placenta). Chorionic villous explants from normal third-trimester pregnancies were incubated with/without OLNDs in 3 or 20% O2. Explants cultured at higher oxygen tension released constitutive proMMP-2, proMMP-9, TIMP-1, and TIMP-2. Hypoxia significantly altered MMP-2/TIMP-2 and MMP-9/TIMP-1 ratios enhancing TIMP-2 and reducing proMMP-2, proMMP-9, and TIMP-1 levels. Intriguingly, OLNDs effectively counteracted the effects of low oxygen tension. Collectively, these data support OLND potential as innovative, nonconventional, and cost-effective tools to counteract hypoxia-dependent dysregulation of MMP/TIMP balances in human tissues.  相似文献   

8.
The tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of the matrix metalloproteinases (MMPs). Since unregulated MMP activities are linked to arthritis, cancer, and atherosclerosis, TIMP variants that are selective inhibitors of disease-related MMPs have potential therapeutic value. The structures of TIMP/MMP complexes reveal that most interactions with the MMP involve the N-terminal pentapeptide of TIMP and the C-D beta-strand connector which occupy the primed and unprimed regions of the active site. The loop between beta-strands A and B forms a secondary interaction site for some MMPs, ranging from multiple contacts in the TIMP-2/membrane type-1 (MT1)-MMP complex to none in the TIMP-1/MMP-1 complex. TIMP-1 and its inhibitory domain, N-TIMP-1, are weak inhibitors of MT1-MMP; inhibition is not improved by grafting the longer AB loop from TIMP-2 into N-TIMP-1, but this change impairs binding to MMP-3 and MMP-7. Mutational studies with N-TIMP-1 suggest that its weak inhibition of MT1-MMP, as compared to other N-TIMPs, arises from multiple (>3) sequence differences in the interaction site. Substitutions for Thr2 of N-TIMP-1 strongly influence MMP selectivity; Arg and Gly, that generally reduce MMP affinity, have less effect on binding to MMP-9. When the Arg mutation is added to the N-TIMP-1(AB2) mutant, it produces a gelatinase-specific inhibitor with Ki values of 2.8 and 0.4 nM for MMP-2 and -9, respectively. Interestingly, the Gly mutant has a Ki of 2.1 nM for MMP-9 and >40 muM for MMP-2, indicating that engineered TIMPs can discriminate between MMPs in the same subfamily.  相似文献   

9.
10.
Cigarette smoke exposure causes vascular remodeling and pulmonary hypertension by poorly understood mechanisms. To ascertain whether cigarette smoke exposure affects production of matrix metalloproteinases (MMPs) in the pulmonary vessels, we exposed C57Bl/6 (C57) mice or mice lacking TNF-alpha receptors (TNFRKO) to smoke daily for 2 wk or 6 mo. Using laser capture microdissection and RT-PCR analysis, we examined gene expression of MMP-2, MMP-9, MMP-12, MMP-13, and tissue inhibitor of metalloproteinase (TIMP-1) and examined protein production by immunohistochemistry for MMP-2, MMP-9, and MMP-12 in small intrapulmonary arteries. At 2 wk, mRNA levels of TIMP-1 and all MMPs were increased in the C57, but not TNFRKO, mice, and immunoreactive protein for MMP-2, MMP-9, and MMP-12 was also increased in the C57 mice. Increased gelatinase activity was identified by in situ and bulk tissue zymography. At 6 mo, only MMP-12 mRNA levels remained increased in the C57 mice, but at a much lower level; however, MMP-2 mRNA levels increased in the TNFRKO mice. We conclude that smoke exposure increases MMP production in the small intrapulmonary arteries but that, with the exception of MMP-12, increased MMP production is transient. MMPs probably play a role in smoke-induced vascular remodeling, as they do in other forms of pulmonary hypertension, implying that MMP inhibitors might be beneficial. MMP production is largely TNF-alpha dependent, further supporting the importance of TNF-alpha in the pathogenesis of cigarette smoke-induced lung disease.  相似文献   

11.
Matrix metalloproteinases (MMPs) are zinc-requiring enzymes that can degrade components of the extracellular matrix and that are implicated in tissue remodeling. Their role in the onset of menstruation in vivo has been proven; however, the expression and functions of MMPs and tissue inhibitors of metalloproteinases (TIMPs) in vascular structures are poorly understood. We determined by immunocytochemistry, using characterized monoclonal antibodies, the distribution of MMPs and of their inhibitors TIMP-1 and TIMP-2 in the endometrium during the menstrual cycle. MMP-1, MMP-2, MMP-3, MMP-9, TIMP-1, and TIMP-2 had differing distributions and patterns of expression. In addition to the localization of MMP-9 in the epithelium and of MMP-2, MMP-3, and MMP-1 in the stromal tissue, these MMPs were detected in the vascular structures. MMP-2 (72-kDa gelatinase) and tissue inhibitors TIMP-1 and TIMP-2 were detectable in vessels throughout the cycle. In contrast, MMP-3 (stromelysin-1) was detected only in late-secretory and menstrual endometrial vessels, while MMP-9 (92-kDa gelatinase) was detected in spiral arteries during the secretory phase and in vascular structures during the midfollicular and menstrual phases. The expression of MMP-2 and MMP-9 in endometrial vessels during the proliferative and secretory periods suggests their relationship to vascular growth and angiogenesis. The pronounced expression of MMP-3 (stromelysin-1) in the vessels situated in the superficial endometrial layer during menses suggests that this metalloproteinase initiates damage in the vascular wall during menstrual breakdown. The finding of an intense expression of TIMP-1 and TIMP-2 in the vessels delineating necrotic from non-necrotic areas during menses also suggests that they could limit tissue damage, allowing regeneration of the endometrium after menses. These data indicate that, in addition to expression in epithelial cells and stromal tissue, MMPs are expressed in endometrial vascular cells in a cycle-specific pattern, consistent with regulation by steroid hormones and with specific roles in the vascular remodeling processes occurring in the endometrium during the cycle.  相似文献   

12.
The system of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) may play a key role in atherogenesis of chronic kidney disease (CKD) patients by its impact on matrix accumulation. Connections with inflammation, stress, or endothelial dysfunction are also probable. However, the data on correlations between these parameters in CKD patients are scarce in adults and absent in children. The aim of our study was to evaluate serum concentrations of MMP-2, MMP-9, TIMP-1, and TIMP-2, as well as their correlations with markers of stress response (Hsp90-α, anti-Hsp60), endothelial dysfunction (sE-selectin), and inflammation (high-sensitivity C-reactive protein) in CKD children treated conservatively. Thirty-seven patients were divided into two groups according to the CKD stage (gr.CKDI, 19 children with CKD stages 2–3; gr.CKDII, 18 subjects with CKD stages 4–5). Twenty-four age-matched healthy subjects served as controls. Serum concentrations of MMP-2, MMP-9, TIMP-1, TIMP-2, Hsp90-α, anti-Hsp60, and sE-selectin were assessed by ELISA. Median values of MMP-2, MMP-9, TIMP-1, and TIMP-2 were significantly higher in all CKD children vs. controls and were increased in patients with CKD stages 4–5 vs. CKD stages 2–3. Hsp90-α, anti-Hsp60, sE-selectin, and glomerular filtration rate predicted the values of MMPs and TIMPs. Chronic kidney disease in children is characterized by MMP/TIMP system dysfunction, aggravated by the progression of renal failure. Correlations between examined parameters, heat shock proteins, and markers of endothelial damage suggest the possibility of MMP/TIMP application as indicators of stress response and atherogenesis in children with CKD on conservative treatment.  相似文献   

13.
L Zheng  Y Huang  W Song  X Gong  M Liu  X Jia  G Zhou  L Chen  A Li  Y Fan 《Journal of biomechanics》2012,45(14):2368-2375
Matrix metalloproteinase (MMP)-1, 2, with their endogenous inhibitors, tissue inhibitor of metalloproteinase (TIMP)-1, 2 are critical for extracellular matrix remodeling in human periodontal ligament (PDL) and their expression are sensitive to mechanical stresses. Shear stress as the main type of mechanical stress in tooth movement is involved in matrix turnover. However, how shear stress regulates MMPs and TIMPs system is still unclear. In this study, we investigated the effect of fluid shear stress on expression of MMP-1, 2 and TIMP-1, 2 in human PDL cells and the possible roles of mitogen-activated protein kinases in this process. Three levels of fluid shear stresses (6, 9 and 12dyn/cm(2)) were loaded on PDL cells for 2, 4, 8 and 12h. The results indicated that fluid shear stress rearranged cytoskeleton in PDL cells. Fluid shear stress increased expression of MMP-1, 2, TIMP-1 and suppressed TIMP-2 expression. MAP kinases including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 were activated rapidly by fluid shear stress. The ERK inhibitor blocked fluid shear stress induced MMP-1 expression and P38 inhibitor reduced fluid shear stress stimulated MMP-2 expression. Our study suggested that fluid shear stress involved in PDL remodeling via regulating MMP-1, 2 and TIMP-1, 2 expression. ERK regulated fluid shear stress induced MMP-1 expression and P38 play a role in fluid shear stress induced MMP-2 upregulation.  相似文献   

14.
Matrix metalloproteinases (MMPs) are implicated in atherosclerotic plaque rupture and recondition. Specific tissue inhibitors (TIMPs) control MMP functions. Both MMPs and TIMPs are potential biomarkers of plaque instability. Elevated Apo-CII and CIII and Apo-E levels are recognized as cardiovascular disease risk factors. We aimed to establish the best blood biomarker panel to evaluate the coronary artery disease (CAD) severity. Plasma levels of MMP-3 and MMP-9, TIMP-1 and TIMP-2, Apo-CII, Apo-CIII and Apo-E were measured in 472 patients with CAD evaluated by coronary angiography and electrocardiography, and in 285 healthy controls. MMP-3 and MMP-9 plasma levels in CAD patients were significantly increased (P < 0.001) compared to controls (3.54- and 3.81-fold, respectively). Furthermore, these increments are modulated by CAD severity as well as for Apo-CII and Apo-CIII levels (P < 0.001). TIMPs levels were decreased in CAD versus controls (P < 0.001) and in inverse correlation to MMPs. Standard ROC curve approach showed the importance of panels of biomarkers, including MMP-3, MMP-9, TIMP-1, TIMP-2, Apo-CII and Apo-CIII, for disease aggravation diagnosis. A high area under curve (AUC) value (0.995) was reached for the association of MMP-9, TIMP-2 and Apo-CIII. The unbalance between MMPs and TIMPs in vascular wall and dyslipidaemia creates favourable conditions for plaque disruption. Our study suggests that the combination of MMP-9, TIMP-2 and Apo-CIII values (‘CAD aggravation panel’) characterizes the severity of CAD, that is electrophysiological state, number of involved vessels, stent disposal and type of stent.  相似文献   

15.
Extracellular matrix remodeling and degradation are of great importance in both physiological and pathological situations. Matrix metalloproteinases (MMPs) and their natural occurring inhibitors - tissue inhibitors of metalloproteinases (TIMPs) - are involved in matrix turnover. Among the TIMPs there is only little specificity for inhibiting individual MMPs. In this report we describe the mutational analysis of the interaction of human TIMP-4 with several MMPs. The effects of different substitutions of residue 2 (Ser(2)) in the inhibitory domain of TIMP-4 were determined by kinetic measurements. Size, charge and polarity of residue 2 in the TIMP structure are key factors in MMP inhibition.  相似文献   

16.
Alterations in matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) have been implicated in adverse left ventricular (LV) remodeling after myocardial infarction (MI). However, the direct mechanistic role of TIMPs in the post-MI remodeling process has not been completely established. The goal of this project was to define the effects of altering endogenous MMP inhibitory control through combined genetic and pharmacological approaches on post-MI remodeling in mice. This study examined the effects of MMP inhibition (MMPi) with PD-166793 (30 mg.kg(-1).day(-1)) on LV geometry and function (conductance volumetry) after MI in wild-type (WT) mice and mice deficient in the TIMP-1 gene [TIMP-1 knockout (TIMP1-KO)]. At 3 days after MI (coronary ligation), mice were randomized into four groups: WT-MI/MMPi (n = 10), TIMP1-KO-MI/MMPi (n = 10), WT-MI (n = 22), and TIMP1-KO-MI (n = 23). LV end-diastolic volume (EDV) and ejection fraction were determined 14 days after MI. Age-matched WT (n = 20) and TIMP1-KO (n = 28) mice served as reference controls. LVEDV was similar under control conditions in WT and TIMP1-KO mice (36 +/- 2 and 40 +/- 2 microl, respectively) but was greater in TIMP1-KO-MI than in WT-MI mice (48 +/- 2 vs. 61 +/- 5 microl, P < 0.05). LVEDV was reduced from MI-only values in WT-MI/MMPi and TIMP1-KO-MI/MMPi mice (42 +/- 2 and 36 +/- 2 microl, respectively, P < 0.05) but was reduced to the greatest degree in TIMP1-KO mice (P < 0.05). LV ejection fraction was reduced in both groups after MI and increased in TIMP1-KO-MI/MMPi, but not in WT-MI/MMPi, mice. These unique results demonstrated that myocardial TIMP-1 plays a regulatory role in post-MI remodeling and that the accelerated myocardial remodeling induced by TIMP-1 gene deletion can be pharmacologically "rescued" by MMP inhibition. These results define the importance of local endogenous control of MMP activity with respect to regulating LV structure and function after MI.  相似文献   

17.
Extracellular matrix remodelling mediates many processes including cell migration and differentiation and is regulated through the enzymatic action of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). TIMPs are secreted proteins, consisting of structurally and functionally distinct N- and C-terminal domains. TIMP N-terminal domains inhibit MMP activity, whereas their C-terminal domains may have cell signalling activity. The in vivo role of TIMP N- and C-terminal domains in regulating developmental events has not previously been demonstrated. Here we investigated the roles of TIMP-2 and TIMP-3 N- and C-terminal domains in Xenopus laevis embryos. We show that overexpression of TIMP-2 N- and C-terminal domains results in severe developmental defects and death, as well as unique changes in MMP-2 and -9 expression, indicating that the individual domains may regulate MMPs through distinct mechanisms. In contrast, we show that only the N-terminal, but not the C-terminal domain of TIMP-3, results in developmental defects.  相似文献   

18.
Troeberg L  Tanaka M  Wait R  Shi YE  Brew K  Nagase H 《Biochemistry》2002,41(50):15025-15035
The inhibitory properties of TIMP-4 for matrix metalloproteinases (MMPs) were compared to those of TIMP-1 and TIMP-2. Full-length human TIMP-4 was expressed in E. coli, folded from inclusion bodies, and the active component was purified by MMP-1 affinity chromatography. Progress curve analysis of MMP inhibition by TIMP-4 indicated that association rate constants (k(on)) and inhibition constants (K(i)) were similar to those for other TIMPs ( approximately 10(5) M(-)(1) s(-)(1) and 10(-)(9)-10(-)(12) M, respectively). Dissociation rate constants (k(off)) for MMP-1 and MMP-3 determined using alpha(2)-macroglobulin to capture MMP dissociating from MMP-TIMP complexes were in good agreement with values deduced from progress curves ( approximately 10(-)(4) s(-)(1)). K(i) and k(on) for the interactions of TIMP-1, -2, and -4 with MMP-1 and -3 were shown to be pH dependent. TIMP-4 retained higher reactivity with MMPs at more acidic conditions than either TIMP-1 or TIMP-2. Molecular interactions of TIMPs and MMPs investigated by IAsys biosensor analysis highlighted different modes of interaction between proMMP-2-TIMP-2 (or TIMP-4) and active MMP-2-TIMP-2 (or TIMP-4) complexes. The observation that both active MMP-2 and inactive MMP-2 (with the active site blocked either by the propeptide or a hydroxamate inhibitor) have essentially identical affinities for TIMP-2 suggests that there are two TIMP binding sites on the hemopexin domain of MMP-2: one with high affinity that is involved in proMMP-2 or hydroxamate-inhibited MMP-2; and the other with low affinity involved in formation of the complex of active MMP-2 and TIMP-2. Similar models of interaction may apply to TIMP-4. The latter low-affinity site functions in conjunction with the active site of MMP-2 to generate a tight enzyme-inhibitor complex.  相似文献   

19.
Increased vascular matrix metalloproteinases (MMPs) levels play a role in late phases of hypertensive vascular remodeling. However, no previous study has examined the time course of MMPs in the various phases of two-kidney, one-clip hypertension (2K1C). We examined structural vascular changes, collagen and elastin content, vascular oxidative stress, and MMPs levels/activities during the development of 2K1C hypertension. Plasma angiotensin converting enzyme (ACE) activity was measured to assess renin-angiotensin system activation. Sham or 2K1C hypertensive rats were studied after 2, 4, 6, and 10weeks of hypertension. Systolic blood pressure (SBP) was monitored weekly. Morphometry of structural changes in the aortic wall was studied in hematoxylin/eosin, orcein and picrosirius red sections. Aortic NADPH activity and superoxide production was evaluated. Aortic gelatinolytic activity was determined by in situ zymography, and MMP-2, MMP-14, and tissue inhibitor of MMPs (TIMP)-2 levels were determined by gelatin zymography, immunofluorescence and immunohistochemistry. 2K1C hypertension was associated with increased ACE activity, which decreased to normal after 10 weeks. We found increased aortic collagen and elastin content in the early phase of hypertension, which were associated with vascular hypertrophy, increased vascular MMP-2 and MMP-14 (but not TIMP-2) levels, and increased gelatinolytic activity, possibly as a result of increased vascular NADPH oxidase activity and oxidative stress. These results indicate that vascular remodeling of renovascular hypertension is an early process associated with early increases in MMPs activities, enhanced matrix deposition and oxidative stress. Using antioxidants or MMPs inhibitors in the early phase of hypertension may prevent the vascular alterations of hypertension.  相似文献   

20.
The excessive activity of matrix metalloproteinases (MMPs) contributes to pathological processes such as arthritis, tumor growth and metastasis if not balanced by the tissue inhibitors of metalloproteinases (TIMPs). In arthritis, the destruction of fibrillar (type II) collagen is one of the hallmarks, with MMP-1 (collagenase-1) and MMP-13 (collagenase-3) being identified as key players in arthritic cartilage. MMP-13, furthermore, has been found in highly metastatic tumors. We have solved the 2.0 A crystal structure of the complex between the catalytic domain of human MMP-13 (cdMMP-13) and bovine TIMP-2. The overall structure resembles our previously determined MT1-MMP/TIMP-2 complex, in that the wedge-shaped TIMP-2 inserts with its edge into the entire MMP-13 active site cleft. However, the inhibitor is, according to a relative rotation of approximately 20 degrees, oriented differently relative to the proteinase. Upon TIMP binding, the catalytic zinc, the zinc-ligating side chains, the enclosing MMP loop and the S1' wall-forming segment move significantly and in concert relative to the rest of the cognate MMP, and the active site cleft constricts slightly, probably allowing a more favourable interaction between the Cys1(TIMP) alpha-amino group of the inhibitor and the catalytic zinc ion of the enzyme. Thus, this structure supports the view that the central N-terminal TIMP segment essentially defines the relative positioning of the TIMP, while the flanking edge loops determine the relative orientation, depending on the individual target MMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号