首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND AND AIMS: Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. METHODS: Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl(-) and Na(+) were measured. KEY RESULTS: Salinity increased leaf Cl(-) and Na(+) concentrations and decreased osmotic potential (Psi(pi)) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO(2) assimilation rate (A(CO2)) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower A(CO2) was related to low RWC, whereas in salinized plants decreased A(CO2) was related to high levels of leaf Cl(-) and Na(+). A(CO2) recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl(-), Na(+) and quaternary ammonium compounds after recovery. High leaf levels of Cl(-) and Na(+) after recovery apparently came from the roots. CONCLUSIONS: Plants preconditioned by salinity stress maintained a better leaf water status during drought stress due to osmotic adjustment and the accumulation of Cl(-) and Na(+). However, high levels of salt ions impeded recovery of leaf water status and photosynthesis after re-irrigation with non-saline water.  相似文献   

2.
Sultana  N.  Ikeda  T.  Kashem  M.A. 《Photosynthetica》2002,40(1):115-119
To understand the physiology of rice under seawater salinity, potted rice plants were irrigated with different concentrations of Japan seawater (electrical conductivity 0.9, 5.7, 11.5, or 21.5 mS cm-1) from 10 d after transplanting (DAT) to 35 DAT, and from 75 to 100 DAT. Seawater salinity decreased the net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, leaf water and osmotic potentials, and relative water content, and increased leaf temperature. The contents of chlorophylls, carotenoids, and total sugars significantly decreased in the leaves but content of non-reducing sugars decreased only slightly. With increasing salinity the Na+ concentration increased, while Ca2+, Mn2+, and K+ concentrations decreased. Salinity decreased the contents of sugars and proteins, dry mass, and rate of dry mater accumulation in developing grains.  相似文献   

3.
Two photosynthetic periods and photosynthetic photon flux densities (PPFD) were used to study the relationship between the rate of photosynthesis and starch accumulation in vegetative soybean leaves (Merr. cv Amsoy 71). Plants grown in short daily photosynthetic periods (7 hours) had higher rates of CO2 fixation per unit leaf dry weight and of leaf starch accumulation than plants grown in long daily photosynthetic periods (14 hours) irrespective of PPFD. CO2 fixation rates per unit leaf area were similar in 7-hour and 14-hour plants grown at low PPFD but were highest in 14-hour plants at the high PPFD. When single leaves of 14-hour plants were given 7-hour photosynthetic periods, their rates of starch accumulation remained unchanged. The programming of starch accumulation rate and possibly of photosynthetic rate by the length of the daily photosynthetic period is apparently a whole-plant, not an individual leaf, phenomenon. Programming of chloroplast starch accumulation rate by length of the daily photosynthetic and/or dark periods was independent of PPFD within the ranges used in this experiment.  相似文献   

4.
Like those of many horticultural crop species, the growth and leaf gas exchange responses of carrot (Daucus carota L.) to salinity are poorly understood. In this study ion accumulation in root tissues (periderm, xylem and phloem tissues) and in leaves of different ages was assessed for carrot plants grown in the field with a low level of salinity (5.8 mM Na(+) and 7.5 mM Cl(-)) and in a glasshouse with salinity ranging from 1-80 mM. At low levels of salinity (1-7.5 mM), in both the field and glasshouse, carrot leaves accumulated high concentrations of Cl(-) (140-200 mM); these appear to be the result of a high affinity for Cl(-) uptake and a low retention of Cl(-) in the root system. However, Cl(-) uptake is under tight control, with an 80-fold increase in external salinity resulting in only a 1.5-fold change in the Cl(-) concentration of the shoot and no increase in the Cl(-) concentration of the root xylem tissue. In contrast to Cl(-), shoot Na(+) concentrations were comparatively low (30-40 mM) but increased by seven-fold when salinity was increased by 80-fold. Growth over the 56-d treatment period in the glasshouse was insensitive to salinity less than 20 mM, but at higher concentrations the yield of carrot tap roots declined by 7 % for each 10 mM increase in salinity. At low levels of salinity the accumulation of high concentrations of Cl(-) (150 mM) in carrot laminae did not appear to limit leaf gas exchange. However, photosynthesis and stomatal conductance were reduced by 38 and 53 %, respectively, for plants grown at a salinity of 80 mM compared with those grown at 1 mM. Salinity-induced reductions in both p(i) and carbon isotope discrimination (delta) were small (2.5 Pa and 1.4 per thousand, respectively, at 80 mM) indicating that the reduction in photosynthesis was only marginally influenced by CO(2) supply. At a salinity of 80 mM the photosynthetic capacity was reduced, with a 30 % reduction in the CO(2)-saturated rate of photosynthesis (A(max)) and a 40 % reduction in both the apparent rate of RuBP-carboxylase-limited CO(2) fixation (V(cmax)) and the electron transport rate limiting RuBP regeneration (J(max)). This study has shown that carrot growth and leaf gas exchange are insensitive to the high leaf Cl(-) concentrations that occur at low levels (1-7 mM) of salinity. However, growth is limited at salinity levels above 20 mM and leaf gas exchange is limited at salinity levels above 8 mM.  相似文献   

5.
BACKGROUND AND AIMS: Atriplex (Halimione) portulacoides is a halophytic, C(3) shrub. It is virtually confined to coastal salt marshes, where it often dominates the vegetation. The aim of this study was to investigate its growth responses to salinity and the extent to which these could be explained by photosynthetic physiology. METHODS: The responses of young plants to salinity in the range 0-700 mol m(-3) NaCl were investigated in a glasshouse experiment. The performance of plants was examined using classical growth analysis, measurements of gas exchange (infrared gas analysis), determination of chlorophyll fluorescence characteristics (modulated fluorimeter) and photosynthetic pigment concentrations; total ash, sodium, potassium and nitrogen concentrations, and relative water content were also determined. KEY RESULTS: Plants accumulated Na(+) approximately in proportion to external salinity. Salt stimulated growth up to an external concentration of 200 mol m(-3) NaCl and some growth was maintained at higher salinities. The main determinant of growth response to salinity was unit leaf rate. This was itself reflected in rates of CO(2) assimilation, which were not affected by 200 mol m(-3) but were reduced at higher salinities. Reductions in net photosynthetic rate could be accounted for largely by lower stomatal conductance and intercellular CO(2) concentration. Apart from possible effects of osmotic shock at the beginning of the experiment, salinity did not have any adverse effect on photosystem II (PSII). Neither the quantum efficiency of PSII (Phi(PSII)) nor the chlorophyll fluorescence ratio (F(v)/F(m)) were reduced by salinity, and lower mid-day values recovered by dawn. Mid-day F(v)/F(m) was in fact depressed more at low external sodium concentration, by the end of the experiment. CONCLUSIONS: The growth responses of the hygro-halophyte A. portulacoides to salinity appear largely to depend on changes in its rate of photosynthetic gas exchange. Photosynthesis appears to be limited mainly through stomatal conductance and hence intercellular CO(2) concentration, rather than by effects on PSII; moderate salinity might stimulate carboxylation capacity. This is in contrast to more extreme halophytes, for which an ability to maintain leaf area can partially offset declining rates of carbon assimilation at high salinity.  相似文献   

6.
Water relations and photosynthetic characteristics of plants of Lycium nodosum grown under increasing water deficit (WD), saline spray (SS) or saline irrigation (SI) were studied. Plants of this perennial, deciduous shrub growing in the coastal thorn scrubs of Venezuela show succulent leaves which persist for approx. 1 month after the beginning of the dry season; leaf succulence is higher in populations closer to the sea. These observations suggested that L. nodosum is tolerant both to WD and salinity. In the glasshouse, WD caused a marked decrease in the xylem water potential (psi), leaf osmotic potential (psi(s)) and relative water content (RWC) after 21 d; additionally, photosynthetic rate (A), carboxylation efficiency (CE) and stomatal conductance (gs) decreased by more than 90 %. In contrast, in plants treated for 21 d with a foliar spray with 35 per thousand NaCl or irrigation with a 10 % NaCl solution, psi and RWC remained nearly constant, while psi(s) decreased by 30 %, and A, CE and gs decreased by more than 80 %. An osmotic adjustment of 0.60 (SS) and 0.94 MPa (SI) was measured. Relative stomatal and mesophyll limitations to A increased with both WD and SS, but were not determined for SI-treated plants. No evidence of chronic photoinhibition due to any treatment was observed, since maximum quantum yield of PSII, Fv/Fm, did not change with either drought in the field or water or salinity stress in the glasshouse. Nevertheless, WD and SI treatments caused a decrease in the photochemical (qP) and an increase in the non-photochemical (qN) quenching coefficients relative to controls; qN was unaffected by the SS treatment. The occurrence of co-limitation of A by stomatal and non-stomatal factors in plants of L. nodosum may be associated with the extended leaf duration under water or saline stress. Additionally, osmotic adjustment may partly explain the relative maintenance of A and gs in the SS and SI treatments and the tolerance to salinity of plants of this species in coastal habitats.  相似文献   

7.
Olive ( Olea europaea L. cv. Frantoio) plants grown hydroponically in a glasshouse were supplied with half-strength Hoagland solutions containing 0, 50, 100, and 200 m M NaCl for 4 weeks and subsequently supplied with the standard solution without NaCl to relieve salinity stress. Two complete stress-relief cycles were repeated on the same plant material during one growing season. Growth was inhibited at all salt levels, but most growth parameters of plants treated with 50 or 100 m M NaCl returned to control levels after 4 weeks of relief. More severely stressed plants (200 m M NaCl) recovered to only 60% of the growth of the controls after 4 weeks. During relief, plants treated with 50 and 100 m M NaCl had net photosynthetic rates and stomatal conductances higher than the controls. Increasing the NaCl concentration of the external solution from 0 to 200 m M decreased both leaf pre-dawn water potential (from -0.3 to -1.0 MPa) and osmotic potential (from -2.1 to -2.7 MPa). The sodium concentration in the leaves of plants treated with 200 m M NaCl reached maximum levels of 211 and 388 m M (expressed on a tissue water basis) at the end of the first salinity and relief periods, respectively. Leaf chloride concentrations were 359 and 223 m M at the same sampling dates. These data indicate that the inhibitory effects of salinization on growth and gas exchange of the salt-tolerant olive cv. Frantoio can be readily reversed when salinity is relieved, despite the marked accumulation of potentially toxic ions (Na+. Cl) in the leaf.  相似文献   

8.

At present plants continuously exposed to salinity stress due to the challenging environment that has reduced the crop growth and productivity worldwide. Application of phytohormones by using seed priming method emerges as one of the most reliable and cost effective to alleviate the toxic effect of salinity stress. In this study, we evaluate the effect of seed-primed salicylic acid (SA) to reduce the adverse effect of different salt concentrations (0, 100, 200, and 300 mM NaCl) in pea (Pisum sativum L.) seedlings. After seedling emergence, percent seed germination was calculated; however, after 60 days; plants were sampled for studying the growth and photosynthetic traits, lipid peroxidation level, antioxidant activities, ions accumulation, and its sequestration. The results depicted that salinity treatments hampered overall growth performance and induced oxidative stress in a dose-dependent manner. Salinity also has negatively influence on ion accumulation as Na+ ion increased while K+ ion decreased. On the other hand, seed priming with SA significantly reduced the salinity-induced effects on the overall performance of plants, including growth and photosynthetic attributes. SA alleviated the adverse effect of salinity even at higher salinity level by inducing enzymatic and non-enzymatic antioxidant systems, soluble sugars, and proline accumulation, and regulating ion homeostasis along with up-regulation of Na+/H+ antiporters (SOS1 and NHX1). Thus, seed priming with SA shows a comprehensive role in mitigation of salinity stress and can be used as a model for promising salinity tolerant cultivation.

  相似文献   

9.
The interactive effects of salinity and phosphorus availability on growth, water relations, nutritional status and photosynthetic activity were investigated in barley (Hordeum vulgare L. cv. Manel). Seedlings were grown hydroponically under low or sufficient phosphorus (P) supply (5 or 180 μmol KH(2) PO(4) plant(-1) week(-1) , respectively), with or without 100 mm NaCl. Phosphorus deficiency or salinity significantly decreased whole plant growth, leaf water content, leaf osmotic potential and gas exchange parameters, with a more marked impact of P stress. The effect of both stresses was not additive since the response of plants to combined salinity and P deficiency was similar to that of plants grown under P deficiency alone. In addition, salt-treated plants exposed to P deficiency showed higher salt tolerance compared to plants grown with sufficient P supply. This was related to plant ability to significantly increase root:shoot DW ratio, root length, K(+)/Na(+) ratio, leaf proline and soluble sugar concentrations and total non-enzymatic antioxidant capacity, together with restricting Na(+) accumulation in the upper leaves. As a whole, our results indicate that under concomitant exposure to both salt and P deficiency, the impact of the latter constraint is pre-dominant.  相似文献   

10.
11.
The physiological basis for the advantage of alternate partial root-zone irrigation (PRI) over common deficit irrigation (DI) in improving crop water use efficiency (WUE) remains largely elusive. Here leaf gas exchange characteristics and photosynthetic CO(2)-response and light-response curves for maize (Zea mays L.) leaves exposed to PRI and DI were analysed under three N-fertilization rates, namely 75, 150, and 300 mg N kg(-1) soil. Measurements of net photosynthetic rate (A(n)) and stomatal conductance (g(s)) showed that, across the three N-fertilization rates, the intrinsic WUE was significantly higher in PRI than in DI leaves. Analysis of the CO(2)-response curve revealed that both carboxylation efficiency (CE) and the CO(2)-saturated photosynthetic rate (A(sat)) were significantly higher in PRI than in DI leaves across the three N-fertilization rates; whereas the N-fertilization rates did not influence the shape of the curves. The enhanced CE and A(sat) in the PRI leaves was accompanied by significant decreases in carbon isotope discrimination (Δ(13)C) and bundle-sheath cell leakiness to CO(2) (Φ). Analysis of the light-response curve indicated that, across the three N-fertilization rates, the quantum yield (α) and light-saturated gross photosynthetic rate (A(max)) were identical for the two irrigation treatments; whilst the convexity (κ) of the curve was significantly greater in PRI than in DI leaves, which coincided with the greater CE and A(sat) derived from the CO(2)-response curve at a photosynthetic photon flux density of 1500 μmol m(-2) s(-1). Collectively, the results suggest that, in comparison with the DI treatment, PRI improves photosynthetic capacity parameters CE, A(sat), and κ of maize leaves and that contributes to the greater intrinsic WUE in those plants.  相似文献   

12.
We have examined the possible role of leaf cytosolic hexoses and the expression of mannitol metabolism as mechanisms that may affect the repression of photosynthetic capacity when plants are grown at 1000 versus 380 [mu]L L-1 CO2. In plants grown at high CO2, leaf ribulose-1,5-bisphosphate carboxylase/oxygenase content declined by [greater than or equal to]20% in tobacco (Nicotiana sylvestris) but was not affected in the mannitol-producing species snapdragon (Antirrhinum majus) and parsley (Petroselinum hortense). In the three species mesophyll glucose and fructose at midday occurred almost entirely in the vacuole (>99%), irrespective of growth CO2 levels. The estimated cytosolic concentrations of glucose and fructose were [less than or equal to]100 [mu]M. In the three species grown at high CO2, total leaf carbohydrates increased 60 to 100%, but mannitol metabolism did not function as an overflow mechanism for the increased accumulation of carbohydrate. In both snapdragon and parsley grown at ambient or high CO2, mannitol occurred in the chloroplast and cytosol at estimated midday concentrations of 0.1 M or more each. The compartmentation of leaf hexoses and the metabolism of alternate carbohydrates are further considered in relation to photosynthetic acclimation to high levels of CO2.  相似文献   

13.
In citrus, damage produced by salinity is mostly due to toxic ion accumulation, since this salt-sensitive crop adjusts osmotically with high efficiency. In spite of this observation, the putative role of sugars as osmolites under salinity remains unknown. In this work, we have studied carbohydrate contents (total hexoses, sucrose and starch) in leaves and roots of citrus grown under increasing salinity. The experimental system was characterized through the analyses of several parameters known to be strongly affected by salinity in citrus, such as chloride accumulation, photosynthetic rate, ethylene production and leaf abscission. Three-year-old plants of the Clementina de Nules cultivar grafted on Carrizo citrange rootstock were watered with three different levels of salinity (NaCl was added to the watering solutions to achieve final concentrations of 30, 60 and 90 mM). Data indicate that salt stress caused an accumulation of chloride ions in a way proportional to the external increase in NaCl. The adverse conditions reduced CO2 assimilation, increased ethylene production and triggered abscission of the injured leaves. Data also show that salinity induced progressive depletions of carbohydrates in leaves and roots of citrus plants. This observation clearly indicates that sugar accumulation is not a main component of the osmotic adjustment machinery in citrus.  相似文献   

14.
Diurnal changes in net photosynthetic rate (PN), evapotranspiration rate (ET) and water use efficiency (WUE=PN/ET) of field grown chickpea (Cicer arietinum) L. cv. H-355 were studied from the vegetative phase through maturirty at Haryana Agricultural University Farm, Hissar, India. The maximum photosynthetic rate (PN max) increased from the initial vegetative phase to pod formation and declined at a rapid rate from pod filling to maturity. The response of PN to photosynthetic photon flux density (PPFD) (400–700 nm) was temperature-dependent during the day, i.e. on cool days the PN rates were lower for certain quanta of PPFD during the first half than during the second half of day, and vice versa on warm days. ET was affected both by crop cover and evaporative demand up to flowering, but thereafter it was independent of crop cover and followed the course of evaporative demand. ET was related to air temperature during the day while PN was related to PPFD. There was a lag of two to three hours between PNmax (around noon) and ETmax (around 2 p.m.). WUE increased from the vegetative stage through flowering but decreased thereafter to maturity.Abbreviations DAS days after planting - ET evapotranspiration - LAI leaf area index - PAR photosynthetically active radiation (in figures) is equivalent to PPFD (see below) - PN net photosynthetic rate - PPFD photosynthetic photon flux density - WUE water use efficiency (= PN/ET)  相似文献   

15.
Understanding the distribution of gas exchange within a plant is a prerequisite for scaling up from leaves to canopies. We evaluated whether leaf traits were reliable predictors of the effects of leaf ageing and leaf irradiance on leaf photosynthetic capacity (V(cmax) , J(max) ) in field-grown vines (Vitis vinifera L). Simultaneously, we measured gas exchange, leaf mass per area (LMA) and nitrogen content (N(m) ) of leaves at different positions within the canopy and at different phenological stages. Daily mean leaf irradiance cumulated over 10 d (PPFD(10) ) was obtained by 3D modelling of the canopy structure. N(m) decreased over the season in parallel to leaf ageing while LMA was mainly affected by leaf position. PPFD(10) explained 66, 28 and 73% of the variation of LMA, N(m) and nitrogen content per area (N(a) ), respectively. Nitrogen content per unit area (N(a) = LMA × N(m) ) was the best predictor of the intra-canopy variability of leaf photosynthetic capacity. Finally, we developed a classical photosynthesis-stomatal conductance submodel and by introducing N(a) as an input, the model accurately simulated the daily pattern of gas exchange for leaves at different positions in the canopy and at different phenological stages during the season.  相似文献   

16.
17.
In Tunisia, like in the other countries of the Mediterranean, tomato is ranked among the important vegetables in the economic sphere. Tunisia ranks as the first consumer of this vegetable in the world. However, tomatoes are exposed to multiple environmental stresses. In particular, salinity is the most stressful limiting factor to productivity. Salt tolerance of the tomato is susceptible to be ameliorated by genetic and physiologic ways. Salicylic acid (SA), a plant phenolic, is now considered as a hormone-like endogenous regulator, and its role in the defense mechanisms against biotic and abiotic stressors has been well documented. So, the aim of this study was to investigate the impact of exogenous application of SA (0.01 mM) on growth, nutritional behavior, and some metabolic parameters (total chlorophyll, soluble sugars, proline, and proteins) of tomato plants cv. Moneymaker exposed to NaCl (100 mM). Our results showed that the application of 0.01 mM SA to tomato plants via root drenching attenuate the depressive effect of salinity on plants. This amelioration results in stimulation of growth and development of plant. Under stress conditions, SA-treated plants exhibited more accumulation of photosynthetic pigments and K(+) contents. Thus, SA induces an increase in soluble sugars in roots and leaves; also, we noted the increase of proteins only in roots. Overall, the adverse effects of salt stress tomato plants were alleviated by the exogenous application of SA at vegetative stage, which upregulated nutrition and the accumulation of some organic solutes and osmoprotectors such sugars, proline, and proteins. So salicylic acid can be greatly used to enhance salt tolerance of tomato plants.  相似文献   

18.
Srivastava  N.K.  Misra  A.  Sharma  S. 《Photosynthetica》1997,33(1):71-79
Changes in growth, CO2 exchange rate, and distribution of photosynthetically fixed 14CO2 into the primary photosynthetic metabolic pool (sugars, amino acids and organic acids) and essential oil accumulation were determined in leaves (leaf positions 1-6 from apex) of developing peppermint grown in a solution culture at Zn concentrations of 0 and 0.05 g m-3. There was a significant decrease in 14C incorporation in total, ethanol-soluble and ethanol-insoluble fractions in Zn deficient plants at all leaf positions. 14C incorporated in essential oil and in sugars were significantly higher in leaf pairs 1 to 3 than in leaf pairs 4 to 6. 14C incorporation into amino acids and organic acids was higher in all leaf pairs in Zn deficient plants. Statistical analysis showed a positive significant association between Zn content of leaf and 14C incorporation into ethanol-soluble fraction and sugars and a negative correlation with 14C incorporation into amino acids and organic acids. Hence the content of sugars in leaves significantly influences essential oil accumulation under Zn stress. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

19.
This paper describes the physiological effects of abscisic acid (ABA) and 100 mM NaCl on citrus plants. Water potential, leaf abscission, ethylene production, photosynthetic rate, stomatal conductance, and chloride accumulation in roots and leaves were measured in plants of Salustiana scion [Citrus sinensis (L) Osbeck] grafted onto Carrizo citrange (Citrus sinensis [L.] Osbeck × Poncirus trifoliata [L.] Raf) rootstock. Plants under salt stress accumulated high amounts of chloride, increased ethylene production, and induced leaf abscission. Stomatal conductance and photosynthetic rates rapidly dropped after salinization. The addition of 10 mM ABA to the nutrient solution 10 days before the exposure to salt stress reduced ethylene release and leaf abscission. These effects were probably due to a decrease in the accumulation of toxic Cl- ions in leaves. In non-salinized plants, ABA reduced stomatal conductance and CO2 assimilation, whereas in salinized plants the treatment slightly increased these two parameters. The results suggest a protective role for ABA in citrus under salinity.  相似文献   

20.
We studied the interactions of the CO(2)-concentrating mechanism and variable light in the filamentous cyanobacterium Leptolyngbya sp. CPCC 696 acclimated to low light (15 μmol m(-2) s(-1) PPFD) and low inorganic carbon (50 μM Ci). Mass spectrometric and polarographic analysis revealed that mediated CO(2) uptake along with both active Na(+)-independent and Na(+)-dependent HCO(3)(-) transport, likely through Na(+)/HCO(3)(-) symport, were employed to concentrate Ci internally. Combined transport of CO(2) and HCO(3)(-) required about 30 kJ mol(-1) of energy from photosynthetic electron transport to support an intracellular Ci accumulation 550-fold greater than the external Ci. Initially, Leptolyngbya rapidly induced oxygen evolution and Ci transport to reach 40-50% of maximum values by 50 μmol m(-2) s(-1) PPFD. Thereafter, photosynthesis and Ci transport increased gradually to saturation around 1,800 μmol m(-2) s(-1) PPFD. Leptolyngbya showed a low intrinsic susceptibility to photoinhibition of oxygen evolution up to PPFD of 3,000 μmol m(-2) s(-1). Intracellular Ci accumulation showed a lag under low light but then peaked at about 500 μmol photons m(-2) s(-1) and remained high thereafter. Ci influx was accompanied by a simultaneous, light-dependent, outward flux of CO(2) and by internal CO(2)/HCO(3)(-) cycling. The high-affinity and high-capacity CCM of Leptolyngbya responded dynamically to fluctuating PPFD and used excitation energy in excess of the needs of CO(2) fixation by increasing Ci transport, accumulation and Ci cycling. This capacity may allow Leptolyngbya to tolerate periodic exposure to excess high light by consuming electron equivalents and keeping PSII open.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号