首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduction: Cancer represents one of the major causes of human deaths. Identification of proteins as biomarkers for early detection of cancer and therapeutic targets for cancer treatment are important issues in precision medicine. Secretome of cancer cells represents the collection of proteins secreted or shed from cancer cells. Proteomic profiling of the cancer cell secretome has been proven to be a convenient and efficient way to discover cancer biomarker and/or therapeutic targets.

Areas covered: There have been numerous reviews describing the history and application of secretome analysis in cancer biomarker/therapeutic target research. The present review focuses on the technological advancement for profiling low-molecular-mass proteins in secretome, the latest information regarding the new candidate biomarkers and molecular mechanisms discovered on the basis of cancer cell secretome analysis, as well as the previously discovered candidate biomarkers that enter into clinical trials.

Expert commentary: Current technologies for protein sample preparation/separation and MS-based protein identification have allowed in-depth analysis of cancer cell secretome. Future efforts should focus on the comprehensiveness of cancer cell secretome, meta-analysis of different secretome datasets and integrated analysis via combining other omics datasets, as well as the incorporation of MS-based biomarker verification pipeline into both preclinical studies and clinical trials.  相似文献   


2.
Introduction: Mass spectrometry (MS) is the premier tool for discovering novel disease-associated protein biomarkers. Unfortunately, when applied to complex body fluid samples, MS has poor sensitivity for the detection of low abundance biomarkers (?10 ng/mL), derived directly from the diseased tissue cells or pathogens.

Areas covered: Herein we discuss the strengths and drawbacks of technologies used to concentrate low abundance analytes in body fluids, with the aim to improve the effective sensitivity for MS discovery. Solvent removal by dry-down or dialysis, and immune-depletion of high abundance serum or plasma proteins, is shown to have disadvantages compared to positive selection of the candidate biomarkers by affinity enrichment. A theoretical analysis of affinity enrichment reveals that the yield for low abundance biomarkers is a direct function of the binding affinity (Association/Dissociation rates) used for biomarker capture. In addition, a high affinity capture pre processing step can effectively dissociate the candidate biomarker from partitioning with high abundance proteins such as albumin.

Expert commentary: Properly designed high affinity capture materials can enrich the yield of low abundance (0.1–10 picograms/mL) candidate biomarkers for MS detection. Affinity capture and concentration, as an upfront step in sample preparation for MS, combined with MS advances in software and hardware that improve the resolution of the chromatographic separation can yield a transformative new class of low abundance biomarkers predicting disease risk or disease latency.  相似文献   

3.
ABSTRACT

Introduction: Chronic obstructive pulmonary disease (COPD) is a heterogeneous set of disorders, characterized by airflow limitation, and reduced lung function. Despite increasing knowledge regarding its pathophysiology, there has been limited advancement in therapeutics and the current treatment strategy is symptom management and prevention of exacerbations.

Areas covered: Biomarkers represent important tools for the implementation of precision medicine. As fundamental molecules of all living processes, proteins could provide crucial information about how genes interact with the environment. Proteomics studies could act as important tools in identifying reliable biomarkers to enable a more precise therapeutic approach. In this review, we will explore the most promising blood and sputum protein biomarkers in COPD that have been consistently reported in the literature.

Expert commentary: Given the complexity of COPD, no single protein biomarker has been able to improve the outcomes of COPD patients. According to preliminary studies, precision medicine in COPD will likely require a combination of different proteins in a biomarker panel for clinical translation. With advancements in current mass spectrometry techniques, an enhancement in the identification of new biomarkers will be observed, and improvements in sequence database search can fill in potential gaps between biomarker discovery and patient care.  相似文献   

4.
5.
Introduction: Extracellular vesicles are emerging sources of biomarkers for modern preventive and precision medicine. Extracellular vesicles in body fluids offer a unique opportunity for integrative biomarker approaches due to their complex biocargo that includes proteins, lipids, nucleic acids and metabolites. Mass spectrometry-based proteomics data suggest that a significant portion of human proteins are sorted into extracellular vesicles and amenable for biomarker discovery schemes.

Areas covered: this review focuses on key aspects of isolation, quality control and subsequent analysis of blood plasma- and conditioned medium-derived extracellular vesicle proteins, and summarizes the current state-of-the-art in the field. Furthermore, it provides introduction and guidelines for mass spectrometry-based proteomic analysis of extracellular vesicles.

Expert commentary: Comparison of newly developed isolation and purification techniques with classical ultracentrifugation-based approaches are highly recommended. It is also essential to use multiple analytical approaches to characterize the isolated extracellular vesicles prior to characterization of their biocargo. Rigor in data reproducibility, critical data analysis, awareness of potential pitfalls, standardization and benchmarking are required for extracellular vesicle research to fulfil the current expectation that these subcellular structures can become a valid source of next generation biomarkers.  相似文献   


6.
ABSTRACT

Introduction: High-density lipoprotein (HDL) particles are heterogeneous and their proteome is complex and distinct from HDL cholesterol. However, it is largely unknown whether HDL proteins are associated with cardiovascular protection.

Areas covered: HDL isolation techniques and proteomic analyses are reviewed. A list of HDL proteins reported in 37 different studies was compiled and the effects of different isolation techniques on proteins attributed to HDL are discussed. Mass spectrometric techniques used for HDL analysis and the need for precise and robust methods for quantification of HDL proteins are discussed.

Expert opinion: Proteins associated with HDL have the potential to be used as biomarkers and/or help to understand HDL functionality. To achieve this, large cohorts must be studied using precise quantification methods. Key factors in HDL proteome quantification are the isolation methodology and the mass spectrometry technique employed. Isolation methodology affects what proteins are identified in HDL and the specificity of association with HDL particles needs to be addressed. Shotgun proteomics yields imprecise quantification, but the majority of HDL studies relied on this approach. Few recent studies used targeted tandem mass spectrometry to quantify HDL proteins, and it is imperative that future studies focus on the application of these precise techniques.  相似文献   

7.
Introduction: Major Depressive Disorder (MDD) is the leading cause of global disability, and an increasing body of literature suggests different cerebrospinal fluid (CSF) proteins as biomarkers of MDD. The aim of this review is to summarize the suggested CSF biomarkers and to analyze the MDD proteomics studies of CSF and brain tissues for promising biomarker candidates.

Areas covered: The review includes the human studies found by a PubMed search using the following terms: ‘depression cerebrospinal fluid biomarker’, ‘major depression biomarker CSF’, ‘depression CSF biomarker’, ‘proteomics depression’, ‘proteomics biomarkers in depression’, ‘proteomics CSF biomarker in depression’, and ‘major depressive disorder CSF’. The literature analysis highlights promising biomarker candidates and demonstrates conflicting results on others. It reveals 42 differentially regulated proteins in MDD that were identified in more than one proteomics study. It discusses the diagnostic potential of the biomarker candidates and their association with the suggested pathologies.

Expert commentary: One ultimate goal of finding biomarkers for MDD is to improve the diagnostic accuracy to achieve better treatment outcomes; due to the heterogeneous nature of MDD, using bio-signatures could be a good strategy to differentiate MDD from other neuropsychiatric disorders. Notably, further validation studies of the suggested biomarkers are still needed.  相似文献   


8.
Introduction: The clinical evaluation of neuromuscular symptoms often includes the assessment of altered blood proteins or changed enzyme activities. However, the blood concentration of many muscle-derived serum markers is not specific for different neuromuscular disorders and also shows alterations in the course of these diseases. Thus, the establishment of more reliable biomarker signatures for improved muscle diagnostics is required.

Areas covered: To address the lack of muscle disease-specific marker molecules, mass spectrometry-based proteomics was applied to the systematic identification and biochemical characterization of new serum biomarker candidates. This article outlines serum proteomics in relation to neuromuscular disorders and reviews the bioanalytical results from recent proteomic profiling studies of representative neuromuscular disorders, including motor neuron disease, muscular dystrophies and sarcopenia of old age. Pathophysiological changes in the skeletal muscle proteome are reflected by serum alterations in a variety of sarcomeric proteins, metabolic enzymes and signaling proteins.

Expert commentary: Based on the proteomic identification of actively secreted or passively released skeletal muscle proteins following pathophysiological insults, new biomarker candidates can now be used to develop liquid biopsy procedures for superior diagnostic approaches, design novel prognostic tools and establish more reliable methods for the systematic evaluation of experimental therapies to treat neuromuscular disease.  相似文献   


9.
Introduction: Neuroinflammation is a crucial mechanism in the pathophysiology of neurodegenerative diseases pathophysiology. Cerebrospinal fluid (CSF) YKL-40 – an indicator of microglial activation ? has recently been identified by proteomic studies as a candidate biomarker for Alzheimer’s disease (AD).

Areas covered: We review the impact of CSF YKL-40 as a pathophysiological biomarker for AD and other neurodegenerative diseases. CSF YKL-40 concentrations have been shown to predict progression from prodromal mild cognitive impairment to AD dementia. Moreover, a positive association between CSF YKL-40 and other biomarkers of neurodegeneration – particularly total tau protein ? has been reported during the asymptomatic preclinical stage of AD and other neurodegenerative diseases. Albeit preliminary, current data do not support an association between APOE-ε4 status and CSF YKL-40 concentrations. When interpreting the diagnostic/prognostic significance of CSF YKL-40 concentrations in neurodegenerative diseases, potential confounders – including age, metabolic and cardiovascular risk factors, diagnostic criteria for selecting cases/controls – need to be considered.

Expert opinion/commentary: CSF YKL-40 represents a pathophysiological biomarker reflecting immune/inflammatory mechanisms in neurodegenerative diseases, associated with tau protein pathology. Besides being associated with tau pathology, CSF YKL-40 adds to the growing array of biomarkers reflecting distinct molecular brain mechanisms potentially useful for stratifying individuals for biomarker-guided, targeted anti-inflammatory therapies emerging from precision medicine.  相似文献   

10.
Objective: To derive a plasma biomarker protein panel from a list of 141 candidate proteins which can differentiate transient ischaemic attack (TIA)/minor stroke from non-cerebrovascular (mimic) conditions in emergency department (ED) settings.

Design: Prospective clinical study (#NCT03050099) with up to three timed blood draws no more than 36?h following symptom onset. Plasma samples analysed by multiple reaction monitoring-mass spectrometry (MRM-MS).

Participants: Totally 545 participants suspected of TIA enrolled in the EDs of two urban medical centres.

Outcomes: 90-day, neurologist-adjudicated diagnosis of TIA informed by clinical and radiological investigations.

Results: The final protein panel consists of 16 proteins whose patterns show differential abundance between TIA and mimic patients. Nine of the proteins were significant univariate predictors of TIA [odds ratio (95% confidence interval)]: L-selectin [0.726 (0.596–0.883)]; Insulin-like growth factor-binding protein 3 [0.727 (0.594–0.889)]; Coagulation factor X [0.740 (0.603–0.908)]; Serum paraoxonase/lactonase 3 [0.763 (0.630–0.924)]; Thrombospondin-1 [1.313 (1.081–1.595)]; Hyaluronan-binding protein 2 [0.776 (0.637–0.945)]; Heparin cofactor 2 [0.775 (0.634–0.947)]; Apolipoprotein B-100 [1.249 (1.037–1.503)]; and von Willebrand factor [1.256 (1.034–1.527)]. The scientific plausibility of the panel proteins is discussed.

Conclusions: Our panel has the potential to assist ED physicians in distinguishing TIA from mimic patients.  相似文献   

11.
Introduction: Urine is a highly desirable biospecimen for biomarker analysis because it can be collected recurrently by non-invasive techniques, in relatively large volumes. Urine contains cellular elements, biochemicals, and proteins derived from glomerular filtration of plasma, renal tubule excretion, and urogenital tract secretions that reflect, at a given time point, an individual’s metabolic and pathophysiologic state.

Areas covered: High-resolution mass spectrometry, coupled with state of the art fractionation systems are revealing the plethora of diagnostic/prognostic proteomic information existing within urinary exosomes, glycoproteins, and proteins. Affinity capture pre-processing techniques such as combinatorial peptide ligand libraries and biomarker harvesting hydrogel nanoparticles are enabling measurement/identification of previously undetectable urinary proteins.

Expert commentary: Future challenges in the urinary proteomics field include a) defining either single or multiple, universally applicable data normalization methods for comparing results within and between individual patients/data sets, and b) defining expected urinary protein levels in healthy individuals.  相似文献   


12.
13.
Abstract

Context: Pre-eclampsia (PE) is a common hypertensive disorder of pregnancy that substantially affects maternal and neonatal morbidity and mortality worldwide. The aetiology of the disease remains poorly understood with lack of reliable diagnostic tests. PE is a multisystem disorder so it is very unlikely that a single or a small group of biomarkers will accurately predict the disease. Mass spectrometry (MS) is indispensable analytical tool in protein analysis studies. MS-based proteomics have the ability to detect the entire protein complement to provide a useful window into a range of biological processes and allow the identification of differentially expressed proteins between samples.

Objective: The aim of this review is to summarise, discuss and evaluate the current predominant MS-based approaches applied for protein biomarker discovery. The paper also seeks to evaluate the current potential PE biomarkers described in the literature and identify issues that can guide future research.

Conclusion: MS-based proteomics studies are promising alternatives to classical hypothesis-driven approaches to discover novel biomarkers and provide new insights into the underlying phathophysiological mechanisms of PE. This should aid in the early diagnosis of PE and the understanding of the aetiology of the disease.  相似文献   

14.
Evaluation of: Di Girolamo F, Boschetti E, Chung MC, Guadagni F, Righetti PG. ‘Proteomineering’ or not? The debate on biomarker discovery in sera continues. J. Proteomics 74(5), 589–594 (2011).

The combinatorial peptide ligand library in association with mass spectrometry can greatly enhance the dynamic range of the analysis of low- and very low-abundance proteins constituting the vast majority of species in any sample. When compared with untreated samples, the increment in detection of low-abundance species appears to be at least fourfold. Recently, the combinatorial peptide ligand library has been challenged; however, it has been clearly demonstrated in the evaluated paper that the protocols for elution of the captured polypeptides make the difference. Therefore, the solid-phase ligand library made of hexapeptides remains a promising and unique tool for biomarker discovery.  相似文献   

15.
BackgroundReelin is an extracellular glycoprotein involved in several functions of brain development, synaptogenesis and dendritic proliferation. Numerous studies found perturbation in the reelin system and altered serum reelin levels in neuropsychiatric patients using the western blot procedure. In the international literature, this is the first study that made use of an enzyme-linked immunosorbent assay to analyze serum reelin protein concentration quantitatively.RationaleIn order to study possible alterations in reelin blood levels in schizophrenia, we analyzed this signal in schizophrenic patients with a first episode hallucinatory and paranoid syndrome and control subjects in a pilot study design.ResultsWe found increased blood reelin protein concentration in schizophrenic patients compared to healthy controls.DiscussionOur findings point to a relevant role of reelin metabolism in the pathogenesis of schizophrenia.Reelin could be a biomarker for the course of disease or psychopharmacological treatment.ConclusionWe conclude that the reelin protein blood concentration might be a relevant signal with respect to the pathophysiology of schizophrenia.  相似文献   

16.
Abstract

A definitive replicable genetic linkage for a major locus underlying the susceptibility to schizophrenia has not been identified to date. Although there are several possible explanations for the failure to find linkage in schizophrenia, one major problem is that the range of phenotypic expressions of the genes for schizophrenia has not been clarified. A more refined understanding of the various phenotypic expressions of a gene related to schizophrenia would enhance the power of studies designed to detect a genetic linkage with a major chromosomal locus and would benefit other strategies for understanding the etiology of schizophrenia.

The genes for schizophrenia may be frequently expressed in relatives of schizophrenic patients, although with less severe symptoms than those of chronic schizophrenia. Two series of findings support this notion. Nonschizophrenic relatives of schizophrenic patients demonstrate an increased incidence of nonpsychotic schizophrenia‐like symptoms and traits, and they manifest deficit performances on several different laboratory tests of neurocognitive functioning. A more refined phenotypic expression of a schizophrenia‐related gene may thus be indicated by personality traits and subclinical neurocognitive deficits.

These personality traits and neurocognitive deficits are considered here as possible aids in the identification of affected cases in genetic linkage studies of schizophrenia. Terminology for different indicators of neurocognitive deficits is introduced, and the relative utility of personality traits and indicators of neurocognitive deficit for genetic linkage studies is discussed. As specific examples, schizophrenia‐related personality traits that are unrelated to affective symptoms and performance deficits on tasks of eye tracking and continuous attention are considered for strategies for broadening phenotype characterization without reducing the specificity of affected case identification.  相似文献   

17.
Orun  Oya  Özden  Sevgi  Kılınç  Olca  Mega Tiber  Pınar  Yonar  Pelin  Özgen  Zerrin  Özyurt  Hazan 《Molecular biology reports》2022,49(9):8461-8472
Background

Preoperative chemoradiotherapy has long been accepted as a method to improve survival and lifetime quality of rectal cancer patients. However, physiologic effects of these therapies largely depend on the resistance of cells to the radiation, type of chemotherapeutic agents and individual responses. As one of the signaling cascades involved in chemo- or radiation- resistance, the present study focused on several proteins involved in pTEN/Akt/mTOR pathway to explore their prognostic significance.

Materials and methods

Samples from advanced stage rectal cancer patients were analyzed to detect expression levels of pTEN/Akt/mTOR pathway related proteins pTEN, mLST8, REDD1, BNIP3, SAG and NOXA, together with p53, by RT-qPCR. Kaplan–Meier analysis was used to assess expression-survival relation and correlations among all proteins and clinicopathological features were statistically analyzed.

Results.

Except p53, none of the proteins showed prognostic significance. High p53 expression presented clear impact on overall survival and disease free survival. It was also significantly related to pathologic complete response. p53 showed high correlation to local recurrence as well. On the other hand, strong correlation was observed with PTEN expression and tumor response, but not with survival. High associations were also observed between mLST8/REDD1, PTEN and NOXA, confirming their role in the same cascade.

Conclusion

The contentious role of p53 as a prognostic biomarker in colorectal cancer was further affirmed, while PTEN and REDD1 could be suggested as potential candidates. Additionally, NOXA emerges as a conjunctive element for different signaling pathways.

  相似文献   

18.
Abstract

Objective: We previously demonstrated that plasma levels of F-actin and Thymosin Beta 4 differs among patients with septic shock, non-infectious systemic inflammatory syndrome and healthy controls and may serve as biomarkers for the diagnosis of sepsis. The current study aims to determine if these proteins are associated with or predictive of illness severity in patients at risk for sepsis in the Emergency Department (ED).

Methods: Prospective, biomarker study enrolling patients (>18?years) who met the Shock Precautions on Triage Sepsis rule placing them at-risk for sepsis.

Results: In this study of 203 ED patients, F-actin plasma levels had a linear trend of increase when the quick Sequential Organ Failure Assessment (qSOFA) score increased. F-actin was also increased in patients who were admitted to the Intensive Care Unit (ICU) from the ED, and in those with positive urine cultures. Thymosin Beta 4 was not associated with or predictive of any significant outcome measures.

Conclusion: Increased levels of plasma F-actin measured in the ED were associated with incremental illness severity as measured by the qSOFA score and need for ICU admission. F-actin may have utility in risk stratification of undifferentiated patients in the ED presenting with signs and symptoms of sepsis.  相似文献   

19.
ABSTRACT

Introduction: Metalloproteinases play key roles in health and disease, by generating novel proteoforms with variable structure and function.

Areas covered: This review focuses on the role of endogenous [a Disintegrin and Metalloproteinase (ADAMs), ADAMs with thrombospondin motifs (ADAMTS), and matrix metalloproteinases (MMPs)] and exogenous metalloproteinases in various disease conditions, and describes the application of mass spectrometry-based proteomics to detect qualitative and quantitative changes in protein profiles in tissues and body fluids in disease. Emphasis is placed on the proteomic analysis of exudates collected from affected tissues, including methods that enrich newly generated protein fragments derived from proteolysis in cells, stroma, or extracellular matrix. The use of proteomic analysis of exudates in the study of the local tissue damage induced by metalloproteinases derived from viperid snake venoms is discussed, particularly in relation to extracellular matrix degradation and to the overall pathology of these envenomings.

Expert commentary: The information provided by these proteomics approaches is paving the way for the identification of biomarkers based on particular proteolytic signatures associated with different pathologies. Together with other methodological approaches, a comprehensive view of the mechanisms and dynamics of diseases can be achieved. Such basis of knowledge allows for the design of novel diagnostic and therapeutic approaches within the frame of ‘precision’ or ‘personalized’ medicine.  相似文献   

20.
Introduction: Amyotrophic lateral sclerosis (ALS) is a progressive degenerative motor neuron disease, which usually leads to death within a few years. The diagnosis is mainly based on clinical symptoms and there is a need for ALS-specific biomarkers to make an early and precise diagnosis, for development of disease-modifying drugs and to gain new insights into pathophysiology.

Areas covered: In the present review, we summarize studies using mass spectrometric (MS) approaches to identify protein alterations in the cerebrospinal fluid (CSF) of ALS patients. In total, we identified 11 studies fulfilling our criteria by searching in the PubMed database using the keywords ‘ALS’ and ‘CSF’ combined with ‘proteome’, ‘proteomic’, ‘mass spectrometry’ or ‘protein biomarker’. Ten proteins were differently regulated in ALS CSF compared to controls in at least 2 studies. We will discuss the relevance of the identified proteins regarding the frequency of identification, extent of alteration and brain-specificity.

Expert commentary: Most of the identified CSF biomarker candidates are irreproducible or mainly blood-derived. We assign the missing success of CSF proteomic studies in biomarker discovery to a lack of sensitivity, unsuitable normalization, low quality assurance and variations originating from sample preparation. These issues must be improved in future proteomic studies in CSF.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号