首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
With the rapid increase in the size of the genome sequence database, computational analysis of RNA will become increasingly important in revealing structure-function relationships and potential drug targets. RNA secondary structure prediction for a single sequence is 73 % accurate on average for a large database of known secondary structures. This level of accuracy provides a good starting point for determining a secondary structure either by comparative sequence analysis or by the interpretation of experimental studies. Dynalign is a new computer algorithm that improves the accuracy of structure prediction by combining free energy minimization and comparative sequence analysis to find a low free energy structure common to two sequences without requiring any sequence identity. It uses a dynamic programming construct suggested by Sankoff. Dynalign, however, restricts the maximum distance, M, allowed between aligned nucleotides in the two sequences. This makes the calculation tractable because the complexity is simplified to O(M(3)N(3)), where N is the length of the shorter sequence.The accuracy of Dynalign was tested with sets of 13 tRNAs, seven 5 S rRNAs, and two R2 3' UTR sequences. On average, Dynalign predicted 86.1 % of known base-pairs in the tRNAs, as compared to 59.7 % for free energy minimization alone. For the 5 S rRNAs, the average accuracy improves from 47.8 % to 86.4 %. The secondary structure of the R2 3' UTR from Drosophila takahashii is poorly predicted by standard free energy minimization. With Dynalign, however, the structure predicted in tandem with the sequence from Drosophila melanogaster nearly matches the structure determined by comparative sequence analysis.  相似文献   

5.
We have examined translational regulation conferred by the 5' untranslated region (UTR) of PKCepsilon on expression of the luciferase reporter gene in vitro, using rabbit reticulocyte lysates and in vivo, in contact-inhibiting mouse Swiss 3T3 fibroblasts and non-contact-inhibiting Swiss 3T6 fibroblasts. In rabbit reticulocyte lysates, the 5' UTR of PKCepsilon significantly represses translation. In 3T3 and 3T6 cells, the 5' UTR of PKCepsilon reduces luciferase activity, but not to the same extent as it does in vitro. In rabbit reticulocyte lysate, the degree of repression mediated by different PKCepsilon 5' UTR-deletion constructs correlates with the free energy (DeltaG) of their predicted secondary structures. However, in cells, secondary structure is not the only determinant of repression; an internal region of the 5' UTR is both necessary and sufficient for repression. Mutation of an upstream AUG (uAUG) motif in this region partially relieves repression. We conclude that the 5' UTR of PKCepsilon can mediate translational regulation and that translation inhibition in vivo involves the uAUG motif. Our findings also suggest that there are factors present in fibroblasts, but not in rabbit reticulocyte lysates that substantially overcome the repressive qualities of the long, structured 5' UTR. Thus, we have identified a potential new level of regulation of PKC in mammalian cells.  相似文献   

6.
Parsch J  Braverman JM  Stephan W 《Genetics》2000,154(2):909-921
A novel method of RNA secondary structure prediction based on a comparison of nucleotide sequences is described. This method correctly predicts nearly all evolutionarily conserved secondary structures of five different RNAs: tRNA, 5S rRNA, bacterial ribonuclease P (RNase P) RNA, eukaryotic small subunit rRNA, and the 3' untranslated region (UTR) of the Drosophila bicoid (bcd) mRNA. Furthermore, covariations occurring in the helices of these conserved RNA structures are analyzed. Two physical parameters are found to be important determinants of the evolution of compensatory mutations: the length of a helix and the distance between base-pairing nucleotides. For the helices of bcd 3' UTR mRNA and RNase P RNA, a positive correlation between the rate of compensatory evolution and helix length is found. The analysis of Drosophila bcd 3' UTR mRNA further revealed that the rate of compensatory evolution decreases with the physical distance between base-pairing residues. This result is in qualitative agreement with Kimura's model of compensatory fitness interactions, which assumes that mutations occurring in RNA helices are individually deleterious but become neutral in appropriate combinations.  相似文献   

7.
8.
Chen MH  Frey TK 《Journal of virology》1999,73(4):3386-3403
Thermodynamically predicted secondary structure analysis of the 3'-terminal 305 nucleotides (nt) of the rubella virus (RUB) genome, a region conserved in all RUB defective interfering RNAs, revealed four stem-loop (SL) structures; SL1 and SL2 are both located in the E1 coding region, while SL3 and SL4 are within the 59-nt 3' untranslated region (UTR) preceding the poly(A) tract. SL2 is a structure shown to interact with human calreticulin (CAL), an autoantigen potentially involved in RUB RNA replication and pathogenesis. RNase mapping indicated that SL2 and SL3 are in equilibrium between two conformations, in the second of which the previously proposed CAL binding site in SL2, a U-U bulge, is not formed. Site-directed mutagenesis of the 3' UTR with a RUB infectious clone, Robo302, revealed that most of the 3' UTR is required for viral viability except for the 3'-terminal 5 nt and the poly(A) tract, although poly(A) was rapidly regenerated during subsequent replication. Maintenance of the overall SL3 structure, the 11-nt single-stranded sequence between SL3 and SL4, and the sequences forming SL4 were all important for viral viability. Studies on the interaction between host factors and the 3' UTR showed the formation of three RNA-protein complexes by gel mobility shift assay, and UV-induced cross-linking detected six host protein species, with molecular masses of 120, 80, 66, 55, 48, and 36 kDa, interacting with the 3' UTR. Site-directed mutagenesis of SL2 by nucleotide substitutions showed that maintenance of SL2 stem rather than the U-U bulge was critical in CAL binding since mutants having the U-U bulge base paired had a similar binding activity for CAL as the native structure whereas mutants having the SL2 stem destabilized had much lower binding activity. However, all of these mutations gave rise to viable viruses when introduced into Robo302, indicating that binding of CAL to SL2 is independent of viral viability.  相似文献   

9.
10.
B Hsue  P S Masters 《Journal of virology》1997,71(10):7567-7578
The 3' untranslated region (UTR) of the positive-sense RNA genome of the coronavirus mouse hepatitis virus (MHV) contains sequences that are necessary for the synthesis of negative-strand viral RNA as well as sequences that may be crucial for both genomic and subgenomic positive-strand RNA synthesis. We have found that the entire 3' UTR of MHV could be replaced by the 3' UTR of bovine coronavirus (BCV), which diverges overall by 31% in nucleotide sequence. This exchange between two viruses that are separated by a species barrier was carried out by targeted RNA recombination. Our results define regions of the two 3' UTRs that are functionally equivalent despite having substantial sequence substitutions, deletions, or insertions with respect to each other. More significantly, our attempts to generate an unallowed substitution of a particular portion of the BCV 3' UTR for the corresponding region of the MHV 3' UTR led to the discovery of a bulged stem-loop RNA secondary structure, adjacent to the stop codon of the nucleocapsid gene, that is essential for MHV viral RNA replication.  相似文献   

11.
Na H  Fabian MR  White KA 《RNA (New York, N.Y.)》2006,12(12):2199-2210
The 3' untranslated regions (UTRs) of positive-strand RNA viruses often form complex structures that facilitate various viral processes. We have examined the RNA conformation of the 352 nucleotide (nt) long 3' UTR of the Tomato bushy stunt virus (TBSV) genome with the goal of defining both local and global structures that are important for virus viability. Gel mobility analyses of a 3'-terminal 81 nt segment of the 3' UTR revealed that it is able to form a compact RNA domain (or closed conformation) that is stabilized by a previously proposed tertiary interaction. RNA-RNA gel shift assays were used to provide the first physical evidence for the formation of this tertiary interaction and revealed that it represents the dominant or "default" structure in the TBSV genome. Further analysis showed that the tertiary interaction involves five base pairs, each of which contributes differently to overall complex stability. Just upstream from the 3'-terminal domain, a long-distance RNA-RNA interaction involving 3' UTR sequences was found to be required for efficient viral RNA accumulation in vivo and to also contribute to the formation of the 3'-terminal domain in vitro. Collectively, these results provide a comprehensive overview of the conformational and functional organization of the 3' UTR of the TBSV genome.  相似文献   

12.
Retinoic acid inducible gene-I (RIG-I) is a key regulator of antiviral immunity. RIG-I is generally thought to be activated by ssRNA species containing a 5'-triphosphate (PPP) group or by unphosphorylated dsRNA up to ~300 bp in length. However, it is not yet clear how changes in the length, nucleotide sequence, secondary structure, and 5' end modification affect the abilities of these ligands to bind and activate RIG-I. To further investigate these parameters in the context of naturally occurring ligands, we examined RNA sequences derived from the 5' and 3' untranslated regions (UTR) of the influenza virus NS1 gene segment. As expected, RIG-I-dependent interferon-β (IFN-β) induction by sequences from the 5' UTR of the influenza cRNA or its complement (26 nt in length) required the presence of a 5'PPP group. In contrast, activation of RIG-I by the 3' UTR cRNA sequence or its complement (172 nt) exhibited only a partial 5'PPP-dependence, as capping the 5' end or treatment with CIP showed a modest reduction in RIG-I activation. Furthermore, induction of IFN-β by a smaller, U/A-rich region within the 3' UTR was completely 5'PPP-independent. Our findings demonstrated that RNA sequence, length, and secondary structure all contributed to whether or not the 5'PPP moiety is needed for interferon induction by RIG-I.  相似文献   

13.
The translation initiation step in eukaryotes is highly regulated and rate-limiting. During this process, the 40S ribosomal subunit is usually recruited to the 5' terminus of the mRNA. It then migrates towards the initiation codon, where it is joined by the 60S ribosomal subunit to form the 80S initiation complex. Secondary structures in the 5' untranslated region (UTR) can impede binding and movement of the 40S ribosome. The canonical eukaryotic translation initiation factor eIF4A (also known as DDX2), together with its accessory proteins eIF4B and eIF4H, is thought to act as a helicase that unwinds secondary structures in the mRNA 5' UTR. Growing evidence suggests that other helicases are also important for translation initiation and may promote the scanning processivity of the 40S subunit, synergize with eIF4A to 'melt' secondary structures or facilitate translation of a subset of mRNAs.  相似文献   

14.
15.
Kumari S  Bugaut A  Balasubramanian S 《Biochemistry》2008,47(48):12664-12669
Nucleic acid secondary structures in the 5' untranslated regions (UTRs) of mRNAs have been shown to play a critical role in translation regulation. We recently demonstrated that a naturally occurring, conserved, and stable RNA G-quadruplex element (5'-GGGAGGGGCGGGUCUGGG-3'), located close to the 5' cap within the 5' UTR of the NRAS proto-oncogene mRNA, modulates gene expression at the translational level. Herein, we show that the translational effect of this G-quadruplex motif in NRAS 5' UTR is not uniform, but rather depends on the location of the G-quadruplex-forming sequence. The RNA G-quadruplex-forming sequence represses translation when situated relatively proximal to the 5' end, within the first 50 nt, in the 5' UTR of the NRAS proto-oncogene, whereas it has no significant effect on translation if located comparatively away from the 5' end. We have also demonstrated that the thermodynamic stability of the RNA G-quadruplex at its natural position within the NRAS 5' UTR is an important factor contributing toward its ability to repress translation.  相似文献   

16.
17.
The 3' untranslated region (UTR) of bamboo mosaic potexvirus (BaMV) genomic RNA was found to fold into a series of stem-loop structures including a pseudoknot structure. These structures were demonstrated to be important for viral RNA replication and were believed to be recognized by the replicase (C.-P. Cheng and C.-H. Tsai, J. Mol. Biol. 288:555-565, 1999). Electrophoretic mobility shift and competition assays have now been used to demonstrate that the Escherichia coli-expressed RNA-dependent RNA polymerase domain (Delta 893) derived from BaMV open reading frame 1 could specifically bind to the 3' UTR of BaMV RNA. No competition was observed when bovine liver tRNAs or poly(I)(C) double-stranded homopolymers were used as competitors, and the cucumber mosaic virus 3' UTR was a less efficient competitor. Competition analysis with different regions of the BaMV 3' UTR showed that Delta 893 binds to at least two independent RNA binding sites, stem-loop D and the poly(A) tail. Footprinting analysis revealed that Delta 893 could protect the sequences at loop D containing the potexviral conserved hexamer motif and part of the stem of domain D from chemical cleavage.  相似文献   

18.
Barley yellow dwarf virus RNA lacks both a 5' cap and a poly(A) tail, yet it is translated efficiently. It contains a cap-independent translation element (TE), located in the 3' UTR, that confers efficient translation initiation at the AUG closest to the 5' end of the mRNA. We propose that the TE must both recruit ribosomes and facilitate 3'-5' communication. To dissect its function, we determined the secondary structure of the TE and roles of domains within it. Nuclease probing and structure-directed mutagenesis revealed that the 105-nt TE (TE105) forms a cruciform secondary structure containing four helices connected by single-stranded regions. TE105 can function in either UTR in wheat germ translation extracts. A longer viral sequence (at most 869 nt) is required for full cap-independent translation in plant cells. However, substantial translation of uncapped mRNAs can be obtained in plant cells with TE105 combined with a poly(A) tail. All secondary structural elements and most primary sequences that were mutated are required for cap-independent translation in the 3' and 5' UTR contexts. A seven-base loop sequence was needed only in the 3' UTR context. Thus, this loop sequence may be involved only in communication between the UTRs and not directly in recruiting translational machinery. This structural and functional analysis provides a framework for understanding an emerging class of cap-independent translation elements distinguished by their location in the 3' UTR.  相似文献   

19.
Shen R  Miller WA 《Journal of virology》2004,78(9):4655-4664
RNAs of many viruses are translated efficiently in the absence of a 5' cap structure. The tobacco necrosis virus (TNV) genome is an uncapped, nonpolyadenylated RNA whose translation mechanism has not been well investigated. Computational analysis predicted a cap-independent translation element (TE) within the 3' untranslated region (3' UTR) of TNV RNA that resembles the TE of barley yellow dwarf virus (BYDV), a luteovirus. Here we report that such a TE does indeed exist in the 3' UTR of TNV strain D. Like the BYDV TE, the TNV TE (i) functions both in vitro and in vivo, (ii) requires additional sequence for cap-independent translation in vivo, (iii) has a similar secondary structure and the conserved sequence CGGAUCCUGGGAAACAGG, (iv) is inactivated by a four-base duplication in this conserved sequence, (v) can function in the 5' UTR, and (vi) when located in its natural 3' location, may form long-distance base pairing with the viral 5' UTR that is conserved and probably required. The TNV TE differs from the BYDV TE by having only three helical domains instead of four. Similar structures were found in all members of the Necrovirus genus of the Tombusviridae family, except satellite tobacco necrosis virus, which harbors a different 3' cap-independent translation domain. The presence of the BYDV-like TE in select genera of different families indicates that phylogenetic distribution of TEs does not follow standard viral taxonomic relationships. We propose a new class of cap-independent TE called BYDV-like TE.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号