首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Silicon can increase the natural defence of plants against stresses including herbivorous insects. Silicon dioxide (SiO2) is one of the forms of silicon, and despite its wide use in the industrial sector, its use in agriculture is still poorly adopted. The aim of this study was to evaluate the effectiveness of foliar application of SiO2 in inducing defence against Spodoptera frugiperda in soybean. The experiments were conducted in a completely randomised design with four treatments (0%, 1%, 2.5%, and 5% of SiO2). The effect on cannibalism, biological parameters (mortality, duration of the larval stage, duration of the pupal stage and pupal weight) and wear on the mandible of S. frugiperda were evaluated. The foliar silicon content was also determined. The supply of SiO2 prolonged the duration of the larval and pupal stages of the S. frugiperda by 0.56 and 0.17 days for each 1% of SiO2 applied, respectively. The use of SiO2 at 5% increased the mortality rate of caterpillars in the larval stage by approximately 25%. There was no effect of SiO2 application on cannibalism and weight of S. frugiperda pupae. There was wear on the caterpillars' jaws in the third and fourth instar at the highest SiO2 concentration. The application of SiO2 promoted greater accumulation of silicon in soybean leaves. It is concluded that the foliar application of SiO2 affects the biological performance of S. frugiperda through the induction of defence in the soybean crop and presents itself as a promising strategy in integrated pest management programmes.  相似文献   

2.
In this paper, polyethylenimine (PEI) and Chitosan were simultaneously one‐step doped into silicon dioxide (SiO2) nanoparticles to synthesize PEI/Chitosan/SiO2 composite nanoparticles. The polymer PEI contained a large amount of amino groups, which can realize the amino functionalized SiO2 nanoparticles. And, the good pore forming effect of Chitosan was introduced into SiO2 nanoparticles, and the resulting composite nanoparticles also had a porous structure. In pH 7.4 phosphate buffer solution (PBS), the amino groups of PEI had positive charges, and therefore the fluorescein sodium dye molecule can be loaded into the channels of PEI/Chitosan/SiO2 composite nanoparticles by electrostatic adsorption. Furthermore, utilizing the diversity of DNA molecular conformation, we designed a high sensitive controllable assembly of DNA gated fluorescent sensor based on PEI/Chitosan/SiO2 composite nanoparticles as loading materials. The factors affecting the sensing performance of the sensor were investigated, and the sensing mechanism was also further studied.  相似文献   

3.
The increasing applications of silicon dioxide (SiO2) nanomaterials have been widely concerned over their biological effects and potential hazard to human health. In this study, we explored the effects of SiO2 nanoparticles (15, 30, and 100 nm) and their micro-sized counterpart on cultured human epidermal Keratinocyte (HaCaT) cells. Cell viability, cell morphology, reactive oxygen species (ROS), DNA damage (8-OHdG, γH2AX and comet assay) and apoptosis were assessed under control and SiO2 nanoparticles exposed conditions. As observed in the Cell Counting Kit-8 (CCK-8) assay, exposure to 15, 30 or 100 nm SiO2 nanoparticles at dosage levels between 0 and 100 μg/ml decreased cell viability in a concentration- and size dependent manner and the IC50 of 24 hour exposure was 19.4 ± 1.3, 27.7 ± 1.5 and 35.9 ± 1.6 μg/ml for 15, 30 and 100 nm SiO2 nanoparticles, respectively. Morphological examination revealed cell shrinkage and cell wall missing after SiO2 nanoparticle exposure. Increase in intracellular ROS level and DNA damage as well as apoptosis were also observed in SiO2 nanoparticle-exposed HaCaT cells. Exposure to SiO2 nanoparticles results in a concentration- and size-dependent cytotoxicity and DNA damage in cultural HaCaT cells which is closely correlated to increased oxidative stress.  相似文献   

4.
By adopting the novel surface molecular imprinting technique put forward by us not long ago, a creatinine molecule-imprinted material with high performance was prepared. The functional macromolecule polymethacrylic acid (PMAA) was first grafted on the surfaces of micron-sized silica gel particles in the manner of “grafting from” using 3-methacryloxypropyltrimethoxysilane (MPS) as intermedia, resulting in the grafted particles PMAA/SiO2. Subsequently, the molecular imprinting was carried out towards the grafted macromolecule PMAA using creatinine as template and with ethylene glycol diglycidyl ether (EGGE) as crosslinker by right of the intermolecular hydrogen bonding and electrostatic interaction between the grafted PMAA and creatinine molecules. Finally, the creatinine-imprinted material MIP-PMAA/SiO2 was obtained. The binding character of MIP-PMAA/SiO2 for creatinine was investigated in depth with both batch and column methods and using N-hydroxysuccinimide and creatine as two contrast substances, whose chemical structures are similar to creatinine to a certain degree. The experimental results show that the surface-imprinted material MIP-PMAA/SiO2 has excellent binding affinity and high recognition selectivity for creatinine. Before imprinting, PMAA/SiO2 particles nearly has not recognition selectivity for creatinine, and the selectivity coefficients of PMAA/SiO2 for creatinine relative to N-hydroxysuccinimide and creatine are only 1.23 and 1.30, respectively. However, after imprinting, the selectivity coefficients of MIP-PMAA/SiO2 for creatinine in respect to N-hydroxysuccinimide and creatine are remarkably enhanced to 11.64 and 12.87, respectively, displaying the excellent recognition selectivity and binding affinity towards creatinine molecules.  相似文献   

5.
We investigated the effect of SiO2 spacer layer thickness between the textured silicon surface and silver nanoparticles (Ag NPs) on solar cell performance using quantum efficiency analysis. Separation of Ag NPs from high index silicon with SiO2 layer led to modified absorption and scattering cross-sections due to graded refractive index medium. The forward scattering from Ag NPs is very sensitive to SiO2 layer thickness in plasmonic silicon cell performance due to the evanescent character of generated near-fields around the NPs. With the optimized ~30–40 nm SiO2 spacer layer, we observed an enhancement of solar cell efficiency from ~8.7 to ~10 %, which is due to the photocurrent enhancement in the off-resonance surface plasmon region. We also estimated minority carrier diffusion lengths (L eff) from internal quantum efficiency data, which are also sensitive to SiO2 spacer layer thickness. We observed that the L eff values are enhanced from ~356 to ~420 μm after placing Ag NPs on ~40 nm spacer layer due to improved forward (angular) scattering of light from the Ag NPs into silicon.  相似文献   

6.
To study the process of activation of macrophages by silicon dioxide particles, use was made of an electrode-free method for measuring the O2 consumption rate. It was discovered that within the first minute of interaction with silicon dioxide particles the rate of O2 consumption by peritoneal macrophages rose 3-4-fold.  相似文献   

7.
In order to assess the contributions of anti‐reflective and passivation effects in microstructured silicon‐based solar light harvesting devices, thin layers of aluminum oxide (Al2O3), silicon dioxide (SiO2), silicon‐rich silicon nitride (SiNx), and indium tin oxide (ITO), with a thickness ranging from 45 to 155 nm, are deposited onto regularly packed arrays of silicon micropillars with radial p/n junctions. Atomic layer deposition of Al2O3 yields the best conformal coating over the micropillars. The fact that layers made by low‐pressure chemical vapor deposition (SiO2 and SiNx) are not conformally deposited on the sidewalls of the Si micropillars do not influence the photoelectrical efficiency. For ITO, a change in composition along the micropillar height is measured, which leads to poor performance. For Al2O3, deconvolution of the contributions of passivation and anti‐reflection to the overall efficiency gain exhibits the importance of passivation in micro/nano‐structured Si devices. Al2O3‐coated samples perform the best, for both n/p and p/n configured pillars, yielding (relative) increases of 116% and 37% in efficiency of coated versus non‐coated samples for p‐type and n‐type base micropillar arrays, respectively.  相似文献   

8.
Saccharomyces cerevisiae was grown under aerobic and substrate-limiting conditions for efficient biomass production. Under these conditions, where the sugar substrate was fed incrementally, the growth pattern of the yeast cells was found to be uniform, as indicated by a constant respiratory quotient during the entire growing period. The effect of carbon dioxide was investigated by replacing portions of the nitrogen in the air stream with carbon dioxide, while maintaining the oxygen content at the normal 20% level, so that identical oxygen transfer rate and atmospheric pressure were maintained for all experiments with different partial pressures of carbon dioxide. Inhibition of yeast growth was negligible below 20% CO2 in the aeration mixture. Slight inhibition was noted at the 40% CO2 level and significant inhibition was noted above the 50% CO2, level, corresponding to 1.6 × 10?2M of dissolved CO2 in the fermentor broth. High carbon dioxide content in the gas phase also inhibited the fermentation activity of baker's yeast.  相似文献   

9.
Liu  Jian-Xiao  Xie  Xun  Du  Peng  Liu  Yu-Jie  Yang  Hong-Wei 《Plasmonics (Norwell, Mass.)》2019,14(2):353-357

The electromagnetic property of graphene is studied by finite-difference time-domain (FDTD) method. As the graphene has excellent electrical conductivity and high transparency, it has certain advantages as a transparent electrode for solar cells. This paper designs a three-layer film structure composed of graphene, silicon, and silicon dioxide (SiO2). Then, the effects of the chemical potential and the scattering rate of the graphene on the light absorption of the film are studied. The study found that the electromagnetic property of graphene is relatively stable, which is not easily influenced by the external environment. After changing its chemical potential, scattering rate, and other parameters, it is found that the film absorption rate is less affected unless the large range of chemical potential changes; it will lead to a decline in the absorption rate of light.

  相似文献   

10.
In order to develop a bactericidal agent operating under visible light irradiation, a silica gel-supported dihydroxo(tetraphenylporphyrinato)antimony(V) complex (SbTPP/SiO2) was prepared. The SbTPP/SiO2 particles irradiated by fluorescent light in a test tube induced remarkable bactericidal activity for Escherichia coli cells. The bactericidal activity of the SbTPP/SiO2 was affected by both the concentration of the SbTPP/SiO2 and the light intensity. Under irradiation by visible light, the SbTPP/SiO2 photocatalyst showed much superior bactericidal activity to the commercially available TiO2. Moreover, under irradiation by sunlight, bactericidal activity of the SbTPP/SiO2 was observed, and the bactericidal effect of the SbTPP/SiO2 particles was effective for continuous treatment on a column photoreactor under fluorescent-light irradiation.  相似文献   

11.
The influence of silicon treatment on the levels of trace elements zinc (Zn), copper (Cu), and iron (Fe) in serum and tissues was studied in rats. The concentrations of silicon, iron, and zinc were estimated in samples of sera and tissues of rats receivingper os a soluble, inorganic silicon compound—sodium metasilicate nonahydrate (Na2SiO3·9H2O), dissolved in the drinking water. An increase of copper concentrations in liver and aortic walls in the experimental group was observed, with simultaneous reduction of zinc amounts in serum and all the tissue samples in the course of the experiment. The iron concentrations in the analyzed samples did not show any significant changes between both groups. The silicon levels in serum and in all the examined tissues were significantly higher in the tested group. The results provide evidence for the silicon interaction with copper and zinc, which could result in a number of metabolic process modifications, antiatheromatous activity among them.  相似文献   

12.
In this paper, a convenient reverse‐phase microemulsion method for the synthesis of SiO2 nanoparticles (NPs) by simply introducing the chitosan and fluorescent dye of lucigenin during the formation reaction of SiO2 NPs was proposed. Addition of chitosan can make the SiO2 NPs porous, and increases lucigenin molecule incorporation into chitosan/SiO2 NPs nanopores based on electrostatic interaction and supermolecular forces. Therefore, fluorescence quantum yield of the lucigenin/chitosan/SiO2 composite nanoparticles was increased by introduction of chitosan and compared with lucigenin/SiO2 NPs without chitosan. Because the number of negative charges carried when using single‐stranded DNA (ssDNA) was different from that of double‐stranded DNA (dsDNA), the numbers of lucigenin/chitosan/SiO2 composite nanoparticles with positive charge adsorbed using ssDNA or dsDNA were different. Consequently, fluorescence intensity caused using ssDNA or dsDNA/miRNA was clearly discriminative. With increase in target DNA/miRNA concentration, the difference in fluorescence intensity also increased, resulting in a good linear relationship between fluorescence intensity sensitizing value and target miRNA concentrations. Therefore, a new fluorescence analysis method for direct detection of let‐7a in human gastric cancer cell samples without enzyme, label free and no immobilization was established using lucigenin/chitosan/SiO2 composite nanoparticles as a DNA hybrid indicator. The proposed method had high sensitivity and selectivity, low cost and the detection limit was 10 fM (S/N = 3).  相似文献   

13.
Long-persistent phosphorescent smart paints have the ability to continue glowing in the dark for a prolonged time period to function as energy-saving products. Herein, new epoxy/silica nanocomposite paints were prepared with different concentrations of lanthanide-doped aluminate nanoparticles (LAN; SrAl2O4:Eu2+,Dy3+). The LAN pigment was firstly coated with silicon dioxide (SiO2) utilizing the heterogeneous precipitation technique to provide LAN-encapsulated between SiO2 nanoparticles (LAN@SiO2). The epoxy/silica/lanthanide-doped aluminate nanoparticles (ESLAN) nanocomposite paints were coated on steel. The prepared ESLAN paints were studied by transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray fluorescence (XRF) analysis, and energy-dispersive X-ray spectroscopy (EDS). The transparency and coloration properties of the nanocomposite coated films were explored by CIE Lab parameters and photoluminescence spectra. The ultraviolet-induced luminescence properties of the transparent coated films demonstrated greenish phosphorescence at 518 nm upon excitation at 368 nm. Both hardness and hydrophobic activities were investigated. The anticorrosion activity of the nanocomposite films coated onto mild steel substrates immersed in aqueous sodium chloride (NaCl(aq)) (3.5%) was studied by electrochemical impedance spectroscopy (EIS). The silica-containing coatings were monitored to exhibit anticorrosion properties. Additionally, the nanocomposite films with LAN@SiO2 (25%) exhibited the optimized long-lasting luminescence properties in the dark for 90 min. The nanocomposite films showed highly reversible and durable long-lived phosphorescence.  相似文献   

14.
The influence of silicon-treatment on the levels of TSH and thyroid hormones was studied in rats. Concentrations of thyrotropin (TSH), triiodothyronine (T3), and thyroxine (T4) were estimated in sera of rats receiving per os a soluble silicon compound—sodium metasilicate nonahydrate (Na2SiO3·9H2O), dissolved in the animals' drinking water. An increase in the TSH level in the tested group was observed, without statistically significant differences in T3 and T4 concentrations between the two groups of animals. The results provide evidence for the influence of silicon on the endocrine balance. They could also prove that this chemical element is capable of modifying the rate of some hormones' synthesis.  相似文献   

15.
The results of anodization of aluminum and silicon in an oxygen plasma are presented. The plasma was generated by a non-self-sustained glow discharge with a hollow cathode excited by an electron beam at the oxygen pressure of 20 Pa. The density of the current flowing through the anodized specimen did not exceed 1.5 mA/cm2, and its temperature was 200–250°C. Continuous Al2O3 and SiO2 films were formed on the aluminum and silicon surfaces. The growth rate of the oxide layers was 150–200 nm/h for Al2O3 and 400–800 nm/h for SiO2.  相似文献   

16.
Living cells are observed to be the source of rapidly oscillating electric fields. These can be detected under the microscope by watching their accumulation of highly polarizable particles as compared to their behavior with relatively unpolarized particles, e.g. BaTiO3 vs. BaSO4, or NaNbO3 vs. SiO2. The ac fields produced by the cells are divergent. This can evoke dielectrophoretic motion of tiny test particles about them, a process called micro-dielectrophoresis. The microdielectrophoretic effect of yeast cells is observed to peak during the mitotic phase. This indicates that the electric fields are associated with cell division.  相似文献   

17.
The influence of silicon treatment on the levels of calcium and magnesium in blood serum and tissues was studied in rats. The concentrations of both elements were estimated in samples of sera and tissues of rats receiving per os a soluble, inorganic silicon compound—sodium metasilicate nonahydrate (Na2SiO3·9H2O (REACHIM, USSR)), dissolved in the animals' drinking water. A decrease of magnesium concentration in serum was observed with accompanying elevation of registered calcemia. Moreover, a reduction of tissue calcium levels was found with a simultaneous increase of magnesium tissue pool. The results provide evidence for silicon involvement in mineral metabolism. It could result in a modification of pathological processes concerning bone tissue.  相似文献   

18.
Silica particles of ~800 nm size were functionalized using 3-amino propyl triethoxysilane molecules on which gold particles (~20 nm size) were deposited. The resulting particles appeared to form speckled SiO2@Au core–shell particles. The surface roughness, along with hot spots, due to nanogaps between the gold nanoparticles was responsible for the enhancement of the Raman signal of crystal violet molecules by ~3.2?×?107 and by ~1.42?×?108 of single-wall carbon nanotubes. It has also been observed that the electromagnetic excitation near surface plasmon resonance (SPR) of core–shell particles is more effective than off resonance SPR excitation.  相似文献   

19.
The aim of the study was to examine the effect of silicon on spring wheat subjected to salt stress. The experiment was conducted in hydroponic conditions on 10-day old wheat seedlings. Salt stress was induced by sodium chloride at the concentration of 70 and 100 mM added to nutrient medium. Silicon (H4SiO4) at the doses of 1.0 and 1.5 mM significantly increased the shoots and roots weight of wheat seedlings and the content of photosynthetic pigments (chlorophyll a and b, as well as carotenoids) in leaves. It reduced a detrimental effect of salt stress and restricted peroxidation of membrane lipids. We also observed a greater accumulation of nitrates and the decrease in malondialdehyde concentration in plant tissues as a result of silicon addition. Under osmotic stress, silicon did not change the content of sugars in wheat shoots and roots. Silicon did not clearly affect proline content. In general, the obtained results point out that silicon can be used for the alleviation of adverse effect of salinity on plants status.  相似文献   

20.
Reagents that can precipitate the disease-associated prion protein (PrPSc) are vital for the development of high sensitivity tests to detect low levels of this disease marker in biological material. Here, a range of minerals are shown to precipitate both ovine cellular prion protein (PrPC) and ovine scrapie PrPSc. The precipitation of prion protein with silicon dioxide is unaffected by PrPSc strain or host species and the method can be used to precipitate bovine BSE. This method can reliably concentrate protease-resistant ovine PrPSc (PrPres) derived from 1.69 μg of brain protein from a clinically infected animal diluted into either 50 ml of buffer or 15 ml of plasma. The introduction of a SiO2 precipitation step into the immunological detection of PrPres increased detection sensitivity by over 1,500-fold. Minerals such as SiO2 are readily available, low cost reagents with generic application to the concentration of diseases-associated prion proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号