首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The leaf curl disease of tomato was observed in the Haldwani region of Uttarakhand, India during 2004–2007 with an average disease incidence of 49.8 and 73.7% during the month of October and February, respectively. The virus isolate from the infected tomato plants was transmissible to healthy tomato plants by whiteflies (Bemisia tabaci), and the inoculated plants showed typical leaf curl symptoms with a latent period of 16–18 days. The total DNA was extracted from the infected plants and subjected to polymerase chain reaction to amplify the genomic components. The coat protein (CP) gene of ~750 nt was amplified using a set of CP gene specific primer and sequenced (EU847240). Sequence analysis of 701 nt from the N′ terminal region revealed that it had a sequence identity of more than 90% with other isolates/strains of Tomato leaf curl New Delhi virus. A satellite molecule, DNA β of ~1.4 kb was also amplified using universal DNA β-specific primers, cloned and sequenced (EU847239). The isolated DNA β was 1370 nt in length and had a nucleotide sequence identity of 91–93% with DNA β associated with cowpea severe leaf curl and tomato leaf curl disease (TomLCD) reported from India and Pakistan, respectively, and followed by 79% with DNA β associated with TomLCDs reported from Rajasthan. This result showed that the satellite DNA β was associated with TomLCD in Haldwani.  相似文献   

2.
从中国广西靖西的烟草病株上分离到病毒分离物G102和G103,用双生病毒特异性引物均扩增出约500bp的片段,两者序列同源性达99%。对G102基因组DNA-A全序列测定表明,其全长为2728个核苷酸,与中国番茄黄化曲叶病毒(TYLCCNV)同源性最高,达96.5%。进一步研究发现,G102和G103都伴随有长为1342个核苷酸的卫星DNA分子(DNAβ),这两个DNAβ分子的全序列与TYLCCNV的DNAβ同源性最高,分别为92.9%和93.4%。这是首次明确广西分离的TYLCCNV也伴随有卫星分子。  相似文献   

3.
入侵我国的木尔坦棉花曲叶病毒及其为害   总被引:1,自引:0,他引:1  
棉花曲叶病是世界棉花生产上最具毁灭性的病毒病害,已在巴基斯坦、印度、苏丹、埃及和南非等国棉花产区广泛流行,造成巨大经济损失。目前,已克隆了与该病害相关的植物病毒8种,木尔坦棉花曲叶病毒(CLCuMV)即是其中之一,这些病毒均属双生病毒科菜豆金色花叶病毒属。CLCuMV是引起巴基斯坦、印度棉花曲叶病大流行的主要病原之一。该病毒由烟粉虱以持久方式传播,也可以嫁接传播,但不能通过机械摩擦接种传播和种子带毒传播;其基因组仅含有DNA-A组分,并伴随卫星β分子。自2006年首次在我国广东朱槿上检测与鉴定到该病毒以来,目前已在我国广东、广西和海南等多个地理区域发现该病毒引起的病害,受侵染寄主植物包括朱槿、黄秋葵、棉花和垂花悬铃花;同时,已入侵我国的CLCuMV及其卫星β分子的各地理区域和不同寄主来源的分离物DNA序列相似性均大于99%,遗传较稳定。基于文献报道及作者近年的研究,本文对棉花曲叶病的分布、病原、CLCuMV特性、已入侵我国的CLCuMV现状进行了较全面的综述,同时对入侵我国的CLCuMV来源及其威胁我国棉花生产的风险进行了讨论。CLCuMV"对我国棉花等作物的威胁日益加剧,本研究可为该病毒的防控提供参考。  相似文献   

4.

Background

Emerging whitefly transmitted begomoviruses are major pathogens of vegetable and fibre crops throughout the world, particularly in tropical and sub-tropical regions. Mutation, pseudorecombination and recombination are driving forces for the emergence and evolution of new crop-infecting begomoviruses. Leaf curl disease of field grown radish plants was noticed in Varanasi and Pataudi region of northern India. We have identified and characterized two distinct monopartite begomoviruses and associated beta satellite DNA causing leaf curl disease of radish (Raphanus sativus) in India.

Results

We demonstrate that RaLCD is caused by a complex of two Old World begomoviruses and their associated betasatellites. Radish leaf curl virus-Varanasi is identified as a new recombinant species, Radish leaf curl virus (RaLCV) sharing maximum nucleotide identity of 87.7% with Tomato leaf curl Bangladesh virus-[Bangladesh:2] (Accession number AF188481) while the virus causing radish leaf curl disease-Pataudi is an isolate of Croton yellow vein mosaic virus-[India] (CYVMV-IN) (Accession number AJ507777) sharing 95.8% nucleotide identity. Further, RDP analysis revealed that the RaLCV has a hybrid genome, a putative recombinant between Euphorbia leaf curl virus and Papaya leaf curl virus. Cloned DNA of either RaLCV or CYVMV induced mild leaf curl symptoms in radish plants. However, when these clones (RaLCV or CYVMV) were individually co-inoculated with their associated cloned DNA betasatellite, symptom severity and viral DNA levels were increased in radish plants and induced typical RaLCD symptoms. To further extend these studies, we carried out an investigation of the interaction of these radish-infecting begomoviruses and their associated satellite, with two tomato infecting begomoviruses (Tomato leaf curl Gujarat virus and Tomato leaf curl New Delhi virus). Both of the tomato-infecting begomoviruses showed a contrasting and differential interaction with DNA satellites, not only in the capacity to interact with these molecules but also in the modulation of symptom phenotypes by the satellites.

Conclusion

This is the first report and experimental demonstration of Koch's postulate for begomoviruses associated with radish leaf curl disease. Further observations also provide direct evidence of lateral movement of weed infecting begomovirus in the cultivated crops and the present study also suggests that the exchange of betasatellites with other begomoviruses would create a new disease complex posing a serious threat to crop production.  相似文献   

5.
从广州朱槿上分离到病毒分离物G6,全序列测定结果表明,G6 DNA-A全长为2 737个核苷酸.序列比较显示,G6 DNA-A与木尔坦棉花曲叶病毒(CLCuMV)各分离物的同源率均大于89%,其中与CLCuMV-[62]的同源率最高(96.1%),与拉贾斯坦棉花曲叶病毒(CLCuRV)的同源率87.1%~89.8%,而与其他菜豆金色花叶病毒属病毒同源率均在87%以下.DNA-A系统进化关系分析显示,G6与CLCuMV各分离物的亲缘关系最近,聚在一起形成一个分支,而与其他几种双生病毒的亲缘关系相对较远.利用DNAβ特异引物β01和β02,从G6中扩增到卫星DNA分子(DNAβ).序列分析结果表明,G6 DNAβ全长1 346个核苷酸,推导其互补链上编码一个ORF(C1).序列比较结果表明,G6 DNAβ与CLCuMV DNAβ的同源率最高(92.1%),与CLCuRV DNAβ的同源率为88.7%,而与其他已报道的DNAβ的同源率均在80%以下.DNAβ系统进化关系分析显示,G6 DNAβ与CLCuMV DNAβ形成一个独立的分支,再与CLCuRV及MYVV-[Y47]的DNAβ形成一个较大分支.从上述研究结果可以得出,侵染广东朱槿的病毒分离物G6应该是CLCuMV一个分离物.  相似文献   

6.
广东番茄曲叶病毒G2分离物基因组DNA-A的分子特征   总被引:4,自引:0,他引:4  
从采集于广东的番茄曲叶病病株上分离到病毒分离物G2 ,序列分析结果表明 ,其DNA_A为单链环状 ,全长2 74 4nt,共有 6个ORF ,其中病毒链上编码AV1(CP)、AV2 ,互补链上编码AC1、AC2、AC3和AC4。BLAST结果显示 ,与G2基因组有同源关系的病毒均属双生病毒科菜豆金色花叶病毒属。序列比较结果显示 ,G2与菜豆金色花叶病毒属病毒的DNA_A序列同源率均不超过 83% ,其中同源率最高的是PaLCuCNV_[G10 ](82 8% )。进一步比较发现 ,它们的基因间隔区 (IR)变异最大 (同源率为 30 9%~ 81 8% ) ;CP氨基酸序列的同源率较高 (77 6 %~ 99 2 % ) ,AC4蛋白氨基酸序列的同源率较低 (4 3 5 %~ 78 8% )。系统进化关系分析结果也显示 ,G2与已报道的菜豆金色花叶病毒属病毒的亲缘关系均较远。因此 ,G2可能是双生病毒科菜豆金色花叶病毒属中一个未报道的新种 ,命名为广东番茄曲叶病毒 (TomatoleafcurlGuangdongVirus ,ToLCGDV)  相似文献   

7.
Ageratum conyzoides, Croton bonpladianum and Malvastrum coromandelianum are common weeds found around agricultural fields. In several cases these were found to exhibit vein yellowing and yellow mosaic symptoms. Using degenerate primers specific for whitefly-transmitted geminiviruses (WTGs), and total DNA isolated from such infected plants (exhibiting the above symptoms) as a template, 1.2kbp fragments were amplified and were shown to have homology to DNA-A of Indian tomato leaf curl virus (ITLCV) by Southern hybridization. In control experiments the same primers failed to amplify any DNA fragments from the total DNA isolated from healthy plants (no symptoms as above). These results show that Ageratum, Croton and Malvastrum harbour geminivirus(es).  相似文献   

8.
Cotton is an important crop and its production is affected by various disease pathogens. Monopartite begomovirus associated betasatellites cause Cotton leaf curl disease (CLCuD) in Northern India. In order to access the occurrence and genetic variability of Cotton leaf curl betasatellites, an extensive field survey was conducted in states of Rajasthan, Punjab and Haryana. We selected the betasatellite sequence for analysis as they are reported as important for disease severity and sequence variability. Based on the field observations, the disease incidence ranged from 30% to 80% during the survey. Full genome and DNA β were amplified from various samples while no amplicon was obtained in some samples. The nucleotide sequence homology ranged from 90.0% to 98.7% with Cotton leaf curl virus (CLCuV), 55.2–55.5% with Bhendi yellow vein mosaic virus, 55.8% with Okra leaf curl virus and 51.70% with Tomato leaf curl virus isolates. The lowest similarity (47.8%) was found in CLCuV-Sudan isolate. Phylogenetic analysis showed that analyzed isolates formed a close cluster with various CLCuV isolates reported earlier. The analysis results show sequence variation in Cotton leaf curl betasatellite which could be the result of recombination. The results obtained by genome amplification and sequence variability indicate that some new variants are circulating and causing leaf curl disease in Rajasthan, Punjab and Haryana.Abbreviations: CLCuD, Cotton leaf curl disease; CLCuV, Cotton leaf curl virus; PCR, polymerase chain reaction; SCR, satellite conserved region  相似文献   

9.
Papaya leaf curl disease (PaLCuD) caused by papaya leaf curl virus (PaLCuV) not only affects yield but also plant growth and fruit size and quality of papaya and is one of the most damaging and economically important disease. Management of PaLCuV is a challenging task due to diversity of viral strains, the alternate hosts, and the genomic complexities of the viruses. Several management strategies currently used by plant virologists to broadly control or eliminate the viruses have been discussed. In the absence of such strategies in the case of PaLCuV at present, the few available options to control the disease include methods like removal of affected plants from the field, insecticide treatments against the insect vector (Bemisia tabaci), and gene-specific control through transgenic constructs. This review presents the current understanding of papaya leaf curl disease, genomic components including satellite DNA associated with the virus, wide host and vector range, and management of the disease and suggests possible generic resistance strategies.  相似文献   

10.
Hibiscus leaf curl disease (HLCuD) occurs widely in India. Infected hibiscus plants show vein thickening, upward curling of leaves and enations on the abaxial leaf surface, reduction in leaf size and stunting. The commonly‐occurring weeds (Ageratum conyzoides, Croton bonplandianum and Euphorbia geniculata), Nicotiana benthamiana, Nicotiana glutinosa and Nicotiana tabacum (var. Samsun, Xanthi), cotton and tomato were shown to be susceptible to HLCuD. One of the four species of hibiscus (Hibiscus rosa‐sinensis) and 75 of the 101 commercial hybrids/varieties grown in the Bangalore area of southern India were also susceptible. Two virus isolates associated with HLCuD from Bangalore, South India (Ban), and Bhubaneswar, North India (Bhu), were detected serologically and by PCR‐mediated amplification of virus genomes. The isolates were characterised by sequencing a fragment of DNA‐A component (1288 nucleotides) and an associated satellite DNA molecule of 682 nucleotides. Phylogenetic analyses of these DNA‐A sequences clustered them with Old World cotton‐infecting begomoviruses and closest to Cotton leaf curl Multan virus (CLCuMV) at 95–97% DNA‐A nucleotide identities. The 682‐nucleotide satellite DNA molecules associated with the HLCuD samples Ban and Bhu shared 96.9% sequence identity with each other and maximum identity (93.1–93.9% over positions 158–682) with ~1350‐nucleotide DNA‐β satellite molecules associated with cotton leaf curl disease in Pakistan and India (accession nos AJ298903, AJ316038). HLCuD in India, therefore, appears to be associated with strains of CLCuMV, a cotton‐infecting begomovirus from Pakistan, which is transmitted in a persistent manner by Bemisia tabaci.  相似文献   

11.
The present work describes cloning of genomic components of whitefly transmitted geminivirus infecting Lablab purpureus syn. Dolichos lablab (commonly known as Dolichos bean or Hyacinth bean). The genome characterization using PCR with geminiviral degenerate primers and DNA sequencing were used to describe the bipartite virus associated with yellow mosaic disease of Dolichos lablab. Full-length DNA-A and DNA-B clones were obtained. The DNA-A sequence analysis showed that the isolate was similar to other Mungbean yellow mosaic India virus (MYMIV) isolates reported earlier. The nucleotide sequence analysis of the full-length DNA-A of virus isolate revealed more than 97% homology with Mungbean yellow mosaic India virus-[Cowpea] (AF481865), while the DNA-B also showed >95% homology with MYMIV-[Cp] (AF503580) and MYMIV-[Sb] (AY049771). The phylogenetic analysis of present isolate showed close relationship to legume geminiviruses. The nucleotide sequence analysis showed presence of six open reading frames (ORFs) in DNA-A, with 2 ORFs aligned in sense and 4 ORFs in antisense orientation. Similarly, DNA-B contained two open reading frames (ORFs), one in sense and another in antisense orientation.  相似文献   

12.
A functional analysis of the V2 protein of two monopartite begomoviruses, Papaya leaf curl virus (PaLCuV) and Cotton leaf curl Kokhran virus (CLCuKoV), has been performed. Expression of the V2 gene from a Potato virus X (PVX) vector resulted in severe leaf curling followed by a hypersensitive response (HR) in Nicotiana benthamiana and N. tabacum , demonstrating that the V2 protein is a pathogenicity determinant and a target of host defence responses. Agroinfiltration of a PVX vector expressing the V2 protein resulted in cell death in the infiltrated area. Subsequently, a systemic HR developed that was associated with the long-distance spread of the virus and led to the death of the plant. V2 amino acid sequences encompassing a conserved putative protein kinase C (PKC) phosphorylation motif were shown to be essential for the elicitation of cell death. In co-inoculation experiments, the transient expression of the C2 protein of PaLCuV or Cotton leaf curl Multan virus under the control of the Cauliflower mosaic virus 35S promoter inhibited the HR induced by V2 in the agroinfiltrated area. These findings demonstrate that the V2 protein of monopartite begomoviruses is a pathogenicity determinant and induces an HR that can be suppressed by the C2 protein. The induction and suppression of HR have been demonstrated previously in bipartite begomoviruses and our results extend this to monopartite begomoviruses.  相似文献   

13.
CLCuD in southern Asia is caused by a complex of multiple begomoviruses (whitefly transmitted, single-stranded [ss]DNA viruses) in association with a specific ssDNA satellite; Cotton leaf curl Multan betasatellite (CLCuMuB). A further single ssDNA molecule, for which the collective name alphasatellites has been proposed, is also frequently associated with begomovirus-betasatellite complexes. Multan is in the center of the cotton growing area of Pakistan and has seen some of the worst problems caused by CLCuD. An exhaustive analysis of the diversity of begomoviruses and their satellites occurring in 15 Gossypium species (including G. hirsutum, the mainstay of Pakistan's cotton production) that are maintained in an orchard in the vicinity of Multan has been conducted using φ29 DNA polymerase-mediated rolling-circle amplification, cloning and sequence analysis. The non-cultivated Gossypium species, including non-symptomatic plants, were found to harbor a much greater diversity of begomoviruses and satellites than found in the cultivated G. hirsutum. Furthermore an African cassava mosaic virus (a virus previously only identified in Africa) DNA-A component and a Jatropha curcas mosaic virus (a virus occurring only in southern India) DNA-B component were identified. Consistent with earlier studies of cotton in southern Asia, only a single species of betasatellite, CLCuMuB, was identified. The diversity of alphasatellites was much greater, with many previously unknown species, in the non-cultivated cotton species than in G. hirsutum. Inoculation of newly identified components showed them to be competent for symptomatic infection of Nicotiana benthamiana plants. The significance of the findings with respect to our understanding of the role of host selection in virus diversity in crops and the geographical spread of viruses by human activity are discussed.  相似文献   

14.
番茄曲叶病及其血清学和PCR测定   总被引:11,自引:0,他引:11  
我国曾报道的番茄病毒病有多种,其中最常见的是黄瓜花叶病毒(CMV)和烟草花叶病毒(TMV)引起的花叶病。柯冲等(1964)在大陆首次报道烟粉虱(Bemisia tabaci)传播的番茄病毒病——番茄黄顶病,此病在50~60年代曾在广州市郊流行,造成大面积减产。Green等(1984)报道台湾发生番茄黄曲叶病,此病与日本的番茄黄矮病(Tomato yellow dwarf)相似,并且与烟草曲叶病毒(TLCV)有血清学关系。印度、委内瑞拉等国也曾报道发生由烟粉虱传播的番茄曲叶病和番茄黄曲叶病。1991和1992年秋,在广西南宁市郊发现一种症状表现为植株矮缩,叶片向上向内卷曲,叶背面产生耳状或杯状增生物,对光看有时可见叶脉呈墨绿色,不结果或少结果的番茄病害。1992年秋广西农业科学院的番茄试验地发病率高达6.8%,对当地秋番茄生产构成了威胁。作者对病害症状、传播、血清学反应及PCR分析等方面与烟草曲叶病毒进行了比较研究,证实了该病的病原与烟草曲叶病毒有很高的同源性。现将研究结果简报如下。  相似文献   

15.
Squash leaf curl virus (SLCV) was detected for the first time in Jordan using degenerated oligonucleotide primers. Two isolates of the virus, SLCV‐E and SLCV‐R, were detected using specific oligonucleotide primers in symptomatic Cucurbita pepo. SLCV was also found to occur naturally in Malva parviflora, which showed severe leaf curling, yellowing and stunting of the whole plants. The full‐length genomes of Squash leaf curl virus‐Malva (SLCV‐Malva) isolate were amplified using the bacteriophage Φ DNA polymerase enzyme. Nucleotide sequence analysis showed that SLCV‐Malva shared high nucleotide identity (98% and 97%) with SLCV‐EG and SLCV‐E from Egypt and USA, respectively. A survey using dot‐blot hybridization indicated that squash leaf curl disease occurred in all surveyed areas. The highest disease incidence (95%) was recorded in Dir Alla area, whereas disease incidence did not exceed 69% in squash samples collected from North Ghor.  相似文献   

16.
A stock culture of cotton leaf curl virus from Pakistan (CLCuV-PK), was transmitted by whiteflies (Bemisia tabaci) to seven plant species, including French bean, okra, tobacco and tomato, and caused vein thickening and leaf curl symptoms. It was readily detected in triple antibody sandwich ELISA (TAS-ELIS A) by 11 out of 31 monoclonal antibodies raised against the particles of three other geminiviruses: African cassava mosaic, Indian cassava mosaic and okra leaf curl viruses. Reaction strength was enhanced when the tissue extraction fluid contained sodium sulphite. Minor variations in epitope profile were found among virus isolates from cotton (Gossypium hirsutum) collected from different districts in Pakistan over a 5-year period. These epitope profiles were distinguishable from that of cotton leaf curl virus from G. barbadense in southern India but indistinguishable from the profiles of viruses causing yellow vein disease of okra in India or Pakistan, or leaf curl of okra {Abelmoschus esculentus), Hibiscus tiliaceus, radish or sunflower in Pakistan, suggesting that these plants are putative natural hosts of CLCuV-PK. The viruses in cotton, and in okra with leaf curl or yellow vein symptoms, were also detected by PCR with three pairs of CLCuV-PK-specific primers. Five additional whitefly-transmitted geminiviruses were found among isolates from 11 other naturally-infected species in Pakistan, and were distinguished by their epitope profiles. These viruses were associated, respectively, with tobacco leaf curl, squash yellow blotch, tomato yellow leaf curl, watermelon leaf crinkle and soybean yellow mosaic diseases. The first four of these viruses were detected readily by PCR with geminivirus general primers but only weakly, if at all, with two pairs of CLCuV-PK-specific primers. Pakistani crops are infected with a range of distinguishable but relatively closely related whitefly-transmitted geminiviruses, some of which resemble those found in India.  相似文献   

17.
Cluster bean (Cyamopsis tetragonoloba) is a legume that is grown widely on the Indian subcontinent. Leaf curl symptoms of cluster bean plants collected in the Punjab, Pakistan, were shown to be associated with the begomovirus Papaya leaf curl virus; the first time this virus has been identified infecting cluster bean in Pakistan. The virus was shown to be associated with Tomato leaf curl betasatellite. Additionally, some cluster bean plants were shown to also harbour Cotton leaf curl Multan alphasatellite. The significance of these findings is discussed.  相似文献   

18.
Tobacco leaf curl is widespread in several states in India including Andhra Pradesh, Gujarat, Karnataka, Bihar and West Bengal. Tobacco leaf curl virus (TbLCV) isolates collected from five different parts of India induced four distinct symptom phenotypes (group I, II, III & IV) on tobacco cultivars Samsun and Anand 119 (Valand & Muniyappa, 1992). PCR was performed on DNA extracted from group I and IV leaf curl‐affected tobacco from Karnataka, India using degenerate begomovirus‐specific primers. Subsequent cloning and sequencing of PCR products revealed preliminary evidence for the presence of at least three begomoviruses in the affected material following alignment of a 333 bp region of the coat protein gene (CP). The complete CP and common region (CR) of two putative begomoviruses, Tobacco leaf curl virus‐Karnataka1 (TbLCV‐Kar1) and Tobacco leaf curl virus‐Karnataka2 (TbLCV‐Kar2), were sequenced using PCR clones obtained with designed sequence‐specific primers. Phylogenetic analysis of the CP and CR of TbLCV‐Kar1 and TbLCV‐Kar2 placed them in the Asian Old World begomovirus cluster. The two viruses differed from each other significantly in both the CP gene and the CR (< 90% nucleotide sequence identity). This difference, in conjunction with distinct iterative sequences strongly suggests that these begomoviruses are distinct from one another. Group I and IV tobacco were also found to harbour a possible third begomovirus following the 333 bp CP alignment. Comparison of TbLCV‐Kar1 and TbLCV‐Kar2 with other geminiviruses, showed that both sequences shared high nucleotide sequence identity (> 90%) with other begomoviruses in either the CP or CR, thereby suggesting these viruses to be possible strains of other reported begomoviruses. Combined comparison of the CP and CR sequences however, suggests that the two viruses are not strains of other reported begomoviruses, but may be distinct begomoviruses that could have arisen through recombination events during mixed infections. Phylogenetic comparison demonstrated no significant homology between the Indian tobacco begomoviruses and a tobacco‐infecting begomovirus from Zimbabwe, again showing that as with other geminiviruses, there is a geographic basis for phylogenetic relationships rather than an affiliation with tobacco as a host.  相似文献   

19.
Tomato leaf curl Hainan virus (ToLCHnV) was previously reported as a distinct begomovirus infecting tomato in Hainan, China. To investigate the infectivity of ToLCHnV, an infectious clone of ToLCHnV‐[CN: HaNHK7] was constructed and agro‐inoculated into Solanum lycopersicum, Nicotiana benthamiana, Nicotiana glutinosa, Petunia hybrida, Cucumis sativus, Solanum melongena and Capsicum annuum plants; it induced severe leaf curling and crinkling symptoms in these plant species except C. sativus, S. melongena and C. annuum. The induced symptoms were compared with those induced by Papaya leaf curl China virus.  相似文献   

20.
A modified viral satellite DNA that suppresses gene expression in plants   总被引:17,自引:0,他引:17  
DNAbeta is a type of single-stranded (ss) circular satellite DNA found in association with monopartite-genome begomoviruses, such as Tomato yellow leaf curl China virus isolate Y10 (TYLCCNV-Y10). Y10 DNAbeta is required for symptom expression in plants but depends on TYLCCNV-Y10 genomic DNA (DNA-A) for replication and encapsidation. When we converted DNAbeta into a gene-silencing vector (modified DNAbeta (DNAmbeta)) by replacing its C1 open-reading frame (ORF) with a multiple cloning site (MCS), it was replicated but no longer induced symptoms in association with TYLCCNV-Y10 DNA-A, so allowing the effects of gene inserts to be recognized easily. Insertion into DNAmbeta of sequences from any of the three host genes (proliferating cell nuclear antigen (PCNA), phytoene desaturase (PDS), and sulfur (Su)), or from a transgene (green fluorescent protein (GFP)), resulted in silencing of the cognate gene in Nicotiana benthamiana. The silencing persisted for more than a month and was associated with decreased levels of mRNA of the gene targeted. Although DNAmbeta probably does not enter meristematic tissue, the PCNA gene could be silenced there. DNAmbeta was an effective silencing vector in tested N. glutinosa, N. tabacum Samsun (NN or nn), and Lycopersicon esculentum plants, and was able to silence two genes simultaneously. This satellite DNA vector-based form of virus-induced gene silencing (VIGS) promises to be applicable to other begomovirus/DNAbeta systems, which are recently reported to occur in several dicotyledonous crop species, thereby providing a powerful approach to gene discovery and the analysis of gene function in these crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号