首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
The elimination of cancer cells requires strong cellular immune responses, and these responses are induced by the activation of Th1 lymphocytes. In this work, the possibility of inducing a Th1 type of immune response in vivo by mixing a HER-2/neu synthetic CTL (cytotoxic T lymphocyte) peptide [HER-2/neu (789-797)], with poly-lactide (PLA) microspheres was investigated. Various formulations of the peptide were administered to HLA-A2.1 transgenic (HHD) mice. Cellular experiments, assessing proliferation and cytokine determination in splenocyte culture supernatants, were carried out in order to evaluate the type of immune response to the antigen. The in vivo administration of the peptide antigen admixed with the PLA microspheres induced a potent immune response which was comparable to that induced by the combination of the antigen in complete Freund's adjuvant (CFA). Furthermore, the cytokine profile produced by the T lymphocytes of the immunized animals indicated that the combination of the peptide antigen with the PLA microspheres induced a strong Th1 biased immune response to the antigen. The time of peptide incubation with the microspheres prior to administration did not affect the immune response, which further simplifies the preparation of this type of vaccine. The results justify further investigation of the possibility of inducing effective cellular immune responses against cancer cells overexpressing HER-2/neu molecules by simply mixing appropriate HER-2/neu peptide antigens with PLA microspheres.  相似文献   

2.
Listeria monocytogenes-based vaccines for HER-2/neu are capable of breaking tolerance in FVB/N rat HER-2/neu transgenic mice. The growth of implanted NT-2 tumors, derived from a spontaneously occurring tumor in the FVB/N HER-2/neu transgenic mouse, was significantly slower in these mice following vaccination with a series of L. monocytogenes-based vaccines for HER-2/neu. Mechanisms of T cell tolerance that exist in these transgenic mice include the absence of functional high avidity anti-HER-2/neu CD8+ T cells and the presence of CD4+CD25+ regulatory T cells. The in vivo depletion of these regulatory T cells resulted in the slowing in growth of tumors even without the treatment of mice with an anti-HER-2/neu vaccine. The average avidities of responsive CD8+ T cells to six of the nine epitopes in HER-2/neu we examined, four of which were identified in this study, are shown here to be of a lower average avidity in the transgenic mice versus wild type FVB/N mice. In contrast, the average avidity of CD8+ T cells to three epitopes that showed the lowest avidity in the wild-type mice did not differ between wild type and transgenic mice. This study demonstrates the ability of L. monocytogenes-based vaccines to impact upon tolerance to HER-2/neu in FVB/N HER-2/neu transgenic mice and further defines some of the aspects of tolerance in these mice.  相似文献   

3.
Dendritic cell-based cancer immunotherapy targeting MUC-1   总被引:3,自引:0,他引:3  
Vaccination therapy using dendritic cells (DC) as antigen presenting cells (APC) has shown significant promise in laboratory and animal studies as a potential treatment for malignant diseases. Pulsing of autologous DCs with tumor-associated antigens (TAA) is a method often used for antigen delivery and choice of suitable antigens plays an important role in designing an effective vaccine. We identified two HLA-A2 binding novel 9-mer peptides of the TAA MUC1, which is overexpressed on various hematological and epithelial malignancies. Cytotoxic T cells generated after pulsing DC with these peptides were able to induce lysis of tumor cells expressing MUC1 in an antigen-specific and HLA-restricted fashion. Within two clinical studies, we demonstrated that vaccination of patients with advanced cancer using DCs pulsed with MUC1 derived peptides is well tolerated without serious side effects and can induce immunological responses. Of 20 patients with metastatic renal cell carcinoma, 6 patients showed regression of metastases with 3 objective responses (1 CR, 2 PR). Furthermore, we found that in patients responding to treatment T cell responses for antigens not used for treatment occurred suggesting that antigen spreading in vivo might be a possible mechanism of mediating antitumor effects. These results demonstrate that immunotherapy in patients with advanced malignancies using autologous DCs pulsed with MUC1 derived peptides can induce immunological and clinical responses. However, further clinical studies are needed to identify the most potent treatment regimen that can consistently mediate an antitumor immune response in vivo. This article is a symposium paper from the conference “Progress in Vaccination against Cancer 2004 (PIVAC 4)”, held in Freudenstadt-Lauterbad, Black Forest, Germany, on 22–25 September 2004.  相似文献   

4.
The HER-2/neu (neu-N)-transgenic mice are a clinically relevant model of breast cancer. They are derived from the parental FVB/N mouse strain and are transgenic for the rat form of the proto-oncogene HER-2/neu (neu). In this study, we report the identification of a MHC class I peptide in the neu protein that is recognized by CD8(+) T cells derived from vaccinated FVB/N mice. This 10-mer was recognized by all tumor-specific FVB/N T cells generated regardless of the TCR Vbeta region expressed by the T cell or the method of vaccination used, establishing it as the immunodominant MHC class I epitope in neu. T cells specific for this epitope were able to cure FVB/N mice of transplanted neu-expressing tumor cells, demonstrating that this is a naturally processed peptide. Altered peptide analogs of the epitope were analyzed for immunogenicity. Vaccination with dendritic cells pulsed with a heteroclitic peptide provided FVB/N and neu-N mice with increased protection against tumor challenge as compared with mice immunized with dendritic cells loaded with either wild-type or irrelevant peptide. Discovery of this epitope allows for better characterization of the CD8(+) T cell responses in the neu-N mouse model in which neu-specific tolerance must be overcome to produce effective antitumor immunity.  相似文献   

5.
Immunotherapeutic approaches to cancer should focus on novel undertakings that modulate immune responses by synergistic enhancement of anti-tumor immunological parameters. Cancer vaccines should preferably be composed of multiple defined tumor antigen specific B- and T-cell epitopes. The main focus of this article is to briefly review the present status of Her-2/neu vaccine strategies and to describe the innovative strategies developed in my laboratory for a vaccine against HER-2/neu (ErbB-2) with emphasis on the humoral arm of the immune response. Elucidating the underlining mechanisms of anti-tumor effects elicited by peptide vaccines against a self-protein is a requirement for developing an immunotherapeutic strategy that might be effective in human cancer vaccines. Our approach entails the identification of biologically relevant epitopes, establishing relevant in vitro assays for monitoring vaccine efficacy, devising strategies to engineer conformationally dependent sequences, developing highly immunogenic vaccines for an outbred population and delivering the immunogen/vaccine in a safe and efficacious vehicle, utilizing transgenic animal models for assessing tumor development, and developing challenge models using transplantable tumors to study efficacy of vaccine constructs. We have developed a multi-HER-2/neu B-cell epitope approach and shown in preclinical studies that immunization with a combination of two B-cell epitope was more effective in preventing mammary tumors than a single epitope. We have translated that work to the clinic (OSU 0105) in an FDA approved, NCI sponsored “Phase 1 Active Immunotherapy trial with Chimeric and Multi-epitope based peptide vaccine targeting HER-2 oncoprotein and nor-MDP adjuvant in patients with metastatic and/or recurrent solid tumors” at the James Cancer Hospital at the Ohio State University. The correlation between overexpression of HER-2/neu and up-regulation of VEGF has been demonstrated in breast cancer patients. Thus, blocking angiogenesis is an attractive strategy to inhibit tumor growth, invasion, and metastasis. The hypothesis that combination of anti-angiogenic therapy and tumor immunotherapy of cancer may be synergistic is an important future goal. In this review, I will discuss insights into our preclinical studies that might aid in the design of the next generation of cancer vaccines and become an integrated component of prophylactic/preventive and therapeutic approach.  相似文献   

6.
Virosomes as new carrier system for cancer vaccines   总被引:1,自引:0,他引:1  
HER-2/neu, a tumor-associated antigen (TAAg), plays a critical role in oncogenesis of various tumor types, and its selective overexpression by malignant tumor cells makes it an ideal target for immunotherapy. A prerequisite for clinical vaccines is the construction of safe and highly immunogenic reagents able to generate efficient immune responses against TAAg. Previous protein vaccines, consisting of the extracellular domain of HER-2/neu (pNeuECD), were shown to elicit an immune response that did not provide protection from transplantable tumors expressing HER-2/neu. Here we showed that virosomes, which consist of reconstituted viral envelopes without viral genetic material, can act as a carrier and an adjuvant for a truncated protein pNeuECD . Mice vaccinated with pNeuECD either encapsulated in virosomes or bound to the virosomal membrane (Vir-pNeuECD), generated rNeu-specific humoral and cytotoxic immune responses. In addition, Vir-pNeuECD induced significant tumor rejection and additionally did not lead to delayed tumor formation when compared with free pNeuECD in complete Freunds adjuvant. There was no difference between the virosomal constructs. Taken together these results suggest that virosomes, as clinically approved safe vaccines, can be used to elicit both humoral and cell-mediated responses against TAAg and induce tumor rejection. Our model is providing important preclinical data to design human vaccination trials for patients with tumors overexpressing HER-2/neu, either as a primary vaccination or as a boost in combination with other vaccines in a context of an adjuvant treatment plan.Ruth Schwaninger and Ernst Waelti contributed equally to this article  相似文献   

7.
 Carbohydrate antigens such as GM2, GD2 and GD3 (gangliosides), Lewisy and globo-H (neutral glycolipids and glycoproteins), and Tn, TF and sTn (glycoproteins) are overexpressed in a variety of cancers. Antibodies against several of these carbohydrate antigens have been detected in sera from patients treated with cancer vaccines, and have been associated with a more favorable prognosis. Clinical responses have been reported after treatment with monoclonal antibodies against some of these antigens. Hence cell-surface carbohydrate antigens have been identified as suitable targets for immune attack by both active and passive immunotherapies. Different approaches have been adopted to induce immune responses against these carbohydrate antigens. These includes vaccination with whole or lysed tumor cells, purified or synthetic carbohydrates, immunogenic carbohydrate derivatives, or carbohydrates conjugated with immunogenic carriers and administered with immunological adjuvants. In the case of gangliosides, immunization with either whole tumor cells or cell lysates has only occasionally induced responses against carbohydrate antigens, and the antibodies were generally IgM antibodies of low titer. Compared with other methods of vaccination, conjugate vaccines have consistently induced the highest titer of IgM and IgG antibodies against gangliosides and other carbohydrate antigens. Preclinical and clinical studies with conjugate carbohydrate vaccines have induced IgM and IgG antibody responses capable of inducing complement-mediated cytotoxicity of tumor cells in vitro and associated with prolonged disease-free and overall survival in patients. Received: 6 August 1996 / Accepted: 20 September 1996  相似文献   

8.
Trastuzumab is a growth-inhibitory humanized Ab targeting the oncogenic protein HER-2/neu. Although trastuzumab is approved for treatment of advanced breast cancer, a number of concerns exist with passive immunotherapy. Treatment is expensive and has a limited duration of action, necessitating repeated administrations of the mAb. Active immunotherapy with conformational B cell epitopes affords the possibility of generating an enduring immune response, eliciting protein-reactive high-affinity anti-peptide Abs. The three-dimensional structure of human HER-2 in complex with trastuzumab reveals that the Ag-binding region of HER-2 spans residues 563-626 that comprises an extensive disulfide-bonding pattern. To delineate the binding region of HER-2, we have designed four synthetic peptides with different levels of conformational flexibility. Chimeric peptides incorporating the measles virus fusion "promiscuous" T cell epitope via a four-residue linker sequence were synthesized, purified, and characterized. All conformational peptides were recognized by trastuzumab and prevented the function of trastuzumab inhibiting tumor cell proliferation, with 563-598 and 597-626 showing greater reactivity. All epitopes were immunogenic in FVB/N mice with Abs against 597-626 and 613-626 recognizing HER-2. The 597-626 epitope was immunogenic in outbred rabbits eliciting Abs which recognized HER-2, competed with trastuzumab for the same epitope, inhibited proliferation of HER-2-expressing breast cancer cells in vitro and caused their Ab-dependent cell-mediated cytotoxicity. Moreover, immunization with the 597-626 epitope significantly reduced tumor burden in transgenic BALB-neuT mice. These results suggest the peptide B cell immunogen is appropriate as a vaccine for HER-2-overexpressing cancers because the resulting Abs show analogous biological properties to trastuzumab.  相似文献   

9.
It is well known that DNA vaccines induce protective humoral and cell-mediated immune responses in several animal models. Antrodia camphorata (AC) is a unique basidiomycete fungus of the Polyporaceae family that only grows on the aromatic tree Cinnamomum kanehirai Hayata (Lauraceae) endemic to Taiwan. Importantly, AC has been shown to be highly beneficial in the treatment and prevention of cancer. The goal of this study was to investigate whether AC is able to augment the antitumor immune properties of a HER-2/neu DNA vaccine in a mouse model in which p185neu is overexpressed in MBT-2 tumor cells. Compared with the mice that received the HER-2/neu DNA vaccine alone, co-treatment with AC suppressed tumor growth and extended the survival rate. This increase in the antitumor efficacy was attributed to the enhancement of the Th1-like cellular immune response by the HER-2/neu DNA vaccine–AC combination. Evidence for this came from the marked increase in the IFN-γ mRNA expression in CD4+ T cells in the draining inguinal lymph nodes, an increase in the number of functional HER-2/neu-specific CTLs, and the increased tumor infiltration of both CD4+ and CD8+ T cells, depletion of which abolishes the antitumor effect of the HER-2/neu DNA vaccine–AC therapy. Our results further indicate that the treatment of mice with AC enhanced DC activation and production of Th1-activating cytokines (e.g. IL-12, and IFN-α) in the draining lymph nodes, which were sufficient to directly stimulate T cell proliferation and higher IFN-γ production in response to ErbB2. Overall, these results clearly demonstrate that AC represents a promising immunomodulatory adjuvant that could enhance the therapeutic potency of HER-2/neu DNA vaccines in cancer therapy.  相似文献   

10.
HER-2/neu oncoprotein is overexpressed in a variety of human tumors and is associated with aggressive disease. Immunogenic HER-2/neu CTL epitopes have been used as vaccines for the treatment of HER-2/neu positive malignancies with limited success. By applying prediction algorithms for MHC class I ligands and proteosomal cleavages, in this study, we describe the identification of HER-2/neu decamer LIAHNQVRQV spanning residues 85-94 (HER-2(10(85))). HER-2(10(85)) proved to bind with high affinity to HLA-A2.1 and was stable for 4 h in an off-kinetics assay. This peptide was immunogenic in HLA-A2.1 transgenic (HHD) mice inducing peptide-specific CTL, which responded to tumor cell lines of various origin coexpressing human HER-2/neu and HLA-A2.1. This demonstrates that HER-2(10(85)) is naturally processed from endogenous HER-2/neu. Five of sixteen HER-2/neu+ HLA-A2.1+ breast cancer patients analyzed had HER-2(10(85))-reactive T cells ranging from 0.35-0.70% of CD8+ T cells. Depletion of T regulatory cells from PBMC enabled the rapid expansion of HLA-A2.1/HER-2(10(85))pentamer+/CD8+ cells (PENT+/CD8+), whereas significantly lower numbers of CTL could be generated from unfractionated PBMC. HER-2(10(85))-specific human CTL recognized the HER-2/neu+ HLA-A2.1+ tumor cell line SKBR3.A2, as determined by IFN-gamma intracellular staining and in the high sensitivity CD107alpha degranulation assay. Finally, HER-2(10(85)) significantly prolonged the survival of HHD mice inoculated with the transplantable ALC.A2.1.HER tumor both in prophylactic and therapeutic settings. These data demonstrate that HER-2(10(85)) is an immunogenic peptide, capable of eliciting CD8-mediated responses in vitro and in vivo, providing the platform for further exploitation of HER-2(10(85)) as a possible target for anticancer immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号