首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Foliar ontogeny of Magnolia grandiflora was studied to elucidate possible unique features of evergreen leaves and their development. The apex of Magnolia grandiflora is composed of a biseriate or triseriate tunica overlying a central initial zone, a peripheral zone and a pith rib meristem. Leaf primordia are initiated by periclinal divisions on the apical flank of the tunica in its second layer. This initiation and expansion is seasonal just as in related deciduous magnolias. Following leaf initiation, a foliar buttress is formed and the leaf base gradually extends around the apex. As growth continues, separation of the leaf blade primordium from the stipule proceeds by intensified anticlinal divisions in the surface and subsurface layers near the base. Marginal growth begins in the blade primordium when it reaches approximately 200 μm in height and results in the formation of two wing-like extensions, the lamina. This young blade remains in a conduplicately folded position next to the stipule until bud break.  相似文献   

2.
Histochemical localization of total proteins, histories, nucleic acids, ascorbic acid and polysaccharides in the developing axillary bud ofMurraya koenigii and its vascular relationship with the main axis are investigated. All the above variable metabolites are richly distributed throughout the bud development. The shell zone is indicative of poor distribution of these metabolites. Histochemical tests prove that the axillary bud is metabolically very active. The initiation of the axillary bud is in the axil of the 2nd leaf where two cells of 2nd tunica layer become prominent and undergo periclinal divisions to give rise to the bud. The bud maintains tunica-corpus organization throughout its development. The cells of the shell zone at the base of the bud differentiate into pith meristem of the bud. The axillary bud has two bud traces which are associated with vascular strands that are not the traces of the subtending leaf.  相似文献   

3.
Shoot apices of Sansevieria trifasciata have a three-layered mantle, a zone of subapical initials, a central meristem, and a peripheral meristem. Leaf initiation begins with periclinal divisions in L-3 and is followed by periclinal divisions in L-2 and anticlinal divisions in L-l. At first, the primordium is a mound of tissue at one point on the flank, but it soon takes the form of a low ridge encircling the apex. An ephemeral adaxial meristem differentiates in L-2 of the primordium when it is about 50 μ high and is active until the primordium is about 450 μ high. Then it ceases basipetally and is not observable after the primordium is about 600μ high. As the adaxial meristem ceases at the base of the radial tip, its two lateral regions become the submarginal meristems of the expanded portion. Marginal meristems differentiate from the protoderm, and oblique-anticlinal divisions of the marginal initials result in the formation of an abaxial and adaxial epidermis. These derivatives undergo a few anticlinal divisions, increasing marginal width, and then they divide periclinally, increasing marginal thickness. After the primordium is about 600-700 μ high it continues to grow in length by a diffuse basal intercalary meristem. When the leaf is 3 dm long, an adaxial rounding meristem differentiates in the region just above the sheath. Leaf vasculature consists of parallel bundles which anastomose acropetally. Vascular bundles are arranged in a semicircle in the expanded portion and in a circle in the radial tip. There is one centrally located bundle at the apex as a result of lateral anastomoses. Present evidence from leaf ontogeny and mature vasculature in S. trifasciata is interpreted as supporting the concept that the liliaceous leaf is homologous with the phyllodes of A corns and Acacia.  相似文献   

4.
The spicate inflorescence of Saururus cernuus L. (Saururaceae) results from the activity of an inflorescence apical meristem which produces 200–300 primordia in acropetal succession. The inflorescence apex arises by conversion of the terminal vegetative apex. During transition the apical meristem increases greatly in height and width and changes its cellular configuration from one of tunica-corpus to one of mantle (with two tunica layers) and core. Primordia are initiated by periclinal divisions in the subsurface layer. These are “common” primordia, each of which subsequently divides to produce a floral apex above and a bract primordium below. The bract later elongates so that the flower appears borne on the bract. All common primordia are formed by the time the inflorescence is about 4.4 mm long; the apical meristem ceases activity at this stage. As cessation approaches, cell divisions become rare in the apical meristem, and height and width of the meristem above the primordia diminish, as primordia continue to be initiated on the flanks. Cell differentiation proceeds acropetally into the apical meristem and reaches the summital tunica layers last of all. Solitary bracts are initiated just before apical cessation, but no imperfect or ebracteate flowers are produced in Saururus. The final event of meristem activity is hair formation by individual cells of the tunica at the summit, a feature not previously reported for apical meristems.  相似文献   

5.
A stereological morphometric study of leaf primordia (P1 and P2) of Echinocereus engelmannii indicated that primordia are significantly different ultrastructurally from the shoot apical meristem tissues (tunica and peripheral zone) that produce the primordia. Leaf initiation involves readjustments of rates of synthesis and growth of cytoplasm, vacuoles, mitochondria, chloroplasts, and dictyosomes, such that leaf initiation must be a complex process in which different cell components are affected individually. Furthermore, leaf primordia are ultrastructurally distinct from spine primordia. Leaf and spine primordia as young as these are not yet irrevocably determined, thus different types of primordia, from the time of their inception and before their determination, have distinctly unique metabolisms; primordia are not merely generalized, uncommitted outgrowths whose developmental fate is set at some time later than inception.  相似文献   

6.
Plastochronic changes in the vegetative shoot apex and originand development of axillary and accessory buds are studied. The flat shoot apex shows structural and dimensional changesin a plastochron. They are described in three phases, the pre-leafinitiation, the leaf initiation, and the post-leaf initiation.The youngest axillary bud meristem is identified near the axilat the second node when the subtending leaf primordium is 200–12µ long. The corpus of the bud meristem has a more activerole in bud development than has the tunica layers. The shellzone associated with a young bud meristem persists until thebud has attained the structural and functional attributes ofthe main shoot apex. It loses its histological identity by producingderivatives which merge with the ground tissue and procambialcells of bud traces. In a developing bud the provascular systemof the bud appears as an arc, a loop, or as a ring in transversesections at different levels. These configurations are composedof anastomosing procambial strands of bud trace and residualmeristem, both being differentiated from developing bud meristem.  相似文献   

7.
Tepfer , Sanford S. (U. Oregon, Eugene.) The shoot apex and early leaf development in Clematis . Amer. Jour. Bot. 47 (8): 655–664. Illus. 1960.—The high-domed shoot apex comprises a 2-layered tunica and shallow corpus. The rib meristem at times extends to within 5 cells of the summit. The cells of tunica and corpus are uniform cytologically, distinguishable only by the orientation of division planes. No zonation is visible within the corpus. No evidence was found of the existence of a méristème d'attente; mitotic figures appear frequently in the central region of the tunica and corpus. Decussately arranged leaf primordia arise high on the flanks of the apex. Periclinal divisions in the inner tunica and outermost corpus layers mark the site of initiation. Details of the growth and early differentiation of the leaf primordia follow the usual pattern of buttress formation, growth through apical and subapical initials. Apical growth continues beyond the early stages of leaf ontogeny; the blade-forming marginal meristems do not appear until after leaflet primordia are formed. There are 5 primary leaflets, pinnately arranged. Each leaflet is 3- to 5-lobed. In primordium P3 expansion of the adaxial-lateral margins occurs at the base, but not above. This marks the upper limits of the basal pair of lateral leaflets. In P4 the upper limits of the upper lateral leaflets become demarcated in similar fashion.  相似文献   

8.
Passiflora foetida bears an unbranched tendril, one or two laterally situated flowers, and one accessory vegetative bud in the axil of each leaf. The vegetative shoot apex has a single-layered tunica and an inner corpus. The degree of stratification in the peripheral meristem, the discreteness of the central meristem, and its centric and acentric position in the shoot apex are important plastochronic features. The procambium of the lateral leaf trace is close to the site of stipule initiation. The main axillary bud differentiates at the second node below the shoot apex. Adaxial to the bud 1–3 layers of cells form a shell-zone delimiting the bud meristem from the surrounding cells. A group of cells of the bud meristem adjacent to the axis later differentiates as an accessory bud. A second accessory bud also develops from the main bud opposite the previous one. A bud complex then consists of two laterally placed accessory bud primordia and a centrally-situated tendril bud primordium. The two accessory bud primordia differentiate into floral branches. During this development the initiation of a third vegetative accessory bud occurs on the axis just above the insertion of the tendril. This accessory bud develops into a vegetative branch and does not arise from the tissue of the tendril and adjacent two floral buds. The trace of the tendril bud consists of two procambial strands. There is a single strand for the floral branch trace. The tendril primordium grows by marked meristematic activity of its apical region and general intercalary growth.  相似文献   

9.
Flowers of Peperomia species are the simplest structurally of any of the members of the Piperaceae. The spicate inflorescences form terminally and in axillary position; in each, the apex first is zonate in configuration with a two-layered tunica while 3-4 leaves are initiated. Later, when the inflorescence apical meristem begins bract initiation, the biseriate tunica persists, but zonal distinctions diminish and the apex can be described in terms of a simple tunicacorpus configuration. The inflorescence apex aborts after producing 30-40 bracts in acropetal succession an abscission layer forms across the base of the apex, and the meristem dries and drops off. Bracts are produced by periclinal divisions in T2 (and occasionally also in the third layer as well); the later-formed floral apices arise by periclinal divisions in T2 and the third layer. Each floral apex is at first a long transverse ridge in the axil, perpendicular to the long axis of the inflorescence. This establishes bilateral symmetry in the flower, which persists throughout subsequent growth. The floral meristem becomes saddle-shaped, and two stamen primordia are delimited, one at either end and lower than the central floral apex. A solitary carpel is initiated abaxially, and soon forms a circular rim which heightens as a tube with an apical pore. Within the open carpel, a solitary ovule is initiated from the entire remains of the floral apical meristem; it, hence, is terminal in the flower, and its placentation is basal. Carpellary closure in P. metallica results from accelerated growth of the abaxial lip, and the two margins become appressed. Species differ greatly as to whether the abaxial or the adaxial lobe predominates in late stages of carpel development. In P. metallica, the receptive portion of the stigma forms from the shorter lobe which is overtopped. Stigmatoid tissue forms internal to the receptive stigma. The prevailing bilateral floral symmetry, absence of a perianth, and the spicate inflorescence are features which distinguish Peperomia (and Piperaceae) from the magnolialian line of angiosperms.  相似文献   

10.
Tucker Shirley C. (Northwestern U., Evanston, Ill.) Ontogeny and phyllotaxis of the terminal vegetative shoots of Michelia fuscata. Amer. Jour. Bot. 49(7): 722–737. Illus. 1962.—Two patterns of symmetry occur in Michelia fuscata In the lead shoots, leaves arise in a 2/5 spiral arrangement which may be either clockwise or counterclockwise. Other shoots are dorsiventrally organized; these shoots produce leaves in a modified ½ phyllotaxis in which the angle between the 2 files of leaves lies between 100° and 150°, according to the particular branch. Both types of shoot have a zonate apical meristem with a biseriate tunica a central initial zone, and a peripheral zone. The apical configuration of cells does not change appreciably during the plastochron. The flat to low-convex outline of the shoot apex is maintained by initiation of the leaves close to the summit of the apex; the diameter of the meristem diminishes greatly after such an initiation. Leaf inception in the subsurface tunica layer is followed by precocious activity of the marginal meristems which extend the stipular flanges completely around the base of the apical meristem. The stipular margins then fuse laterally and form a hood over the apex. A subapical initial meanwhile is active in the leaf blade, where it persists up to the time the leaf is 2 mm high. The most recent primordium is 300 μ high before another leaf is initiated. The vascular system of the stem is a cylindrical network of leaf traces, with 6–12 traces per leaf. The procambium develops acropetally from preexisting vascular strands in the stem below. Elements of the diverse sclereid system differ in shape in different tissues, according to the availability of intercellular space. Goebel's term “Pendelsymmetrie” is discussed with reference to apical activity in Michelia.  相似文献   

11.
DAVE  Y. S.; PATEL  N. D. 《Annals of botany》1975,39(4):701-705
The slipper spurge (Pedilanthus tithymaloides) is a small cactus-likeherbaceous plant. The shoot apex has a single tunica layer andsometimes the second layer also simulates it. There is a centralmeristem zone whose significance could not be determined. Thefirst bud meristem differentiates at the second node. The earliestbud meristem has a procambium but no shell zone was observed.The node is trilacunar. There are three bud traces and threeprophyll traces. The single prophyll is situated at right anglesto the subtending leaf.  相似文献   

12.
DANIEL  P.; SHAH  J. J. 《Annals of botany》1971,35(2):373-387
The young reproductive apex in Bajra (Pennisetum typhoides S.& H.) possesses a biseriate tunica and a massive corpus.The cells of three or four peripheral layers and six to eightlayers at the summit of the apex are eumeristematic. The centralregion consists of elongated, highly vacuolated, and lightlystained cells arranged in files. The initiation of the spikeletbud is by periclinal divisions first in the corpus and laterin T2 cells. Similarly the longer bristle or the extension ofthe fascicular axis develops from the corpus and T2 cells. Theother bristles develop from the tunica layers. The chaff membersare initiated and develop like a leaf. The development of thestamen resembles that of a spikelet or an axillary bud. Thedevelopment of the carpel is similar to that of the leaf primordium.The origin and development of the male flower is like that ofan axillary bud.  相似文献   

13.
A study of the composition of long-branch terminal buds (LBTB) of Pinus banksiana Lamb. and the yearly periodicity associated with their formation, development, and elongation was undertaken. Each LBTB has lateral bud zones and zones of cataphylls lacking axillary buds. When present, staminate cone primordia differentiate from the lowest lateral buds in the lowest lateral bud zone of the LBTB. Ovulate cone primordia and lateral long-branch buds can differentiate from the upper lateral buds in any lateral bud zone. When both types of buds are present, lateral long-branch buds are uppermost. Dwarf-branch buds occur in all lateral bud zones. During spring LBTB internodes elongate, new cataphylls are initiated, dwarf branches elongate, needles form and elongate, pollen forms and is released, and ovulate cones are pollinated. During summer buds form in the axils of the newly formed cataphylls. By early fall the new LBTB are in overwintering condition and the four types of lateral buds are discernable. The cytohistological zonation of the LBTB shoot apex is similar to that of more than 20 other conifer species. Cells in shoot apices of pine are usually arranged in distinct zones: apical initials, subapical initials, central meristem, and peripheral meristem. Periclinal divisions occur in the surface cells of the apex; therefore no tunica is present. At any given time, shoot apex volume and shape vary among LBTB in various positions on a tree. In any one LBTB on a tree, shoot apex shape changes from a low dome during spring to a high dome during summer to an intermediate shape through fall and winter.  相似文献   

14.
A comparative histogenetic investigation of the unifacial foliage leaves of Acorus calamus L. (Araceae; Pothoideae) was initiated for the purposes of: (1) re-evaluating the previous sympodial interpretation of unifacial leaf development; (2) comparing the mode of histogenesis with that of the phyllode of Acacia in a re-examination of the phyllode theory of monocotyledonous leaves; and (3) specifying the histogenetic mechanisms responsible for morphological divergence of the leaf of Acorus from dorsiventral leaves of other Araceae. Leaves in Acorus are initiated in an orthodistichous phyllotaxis from alternate positions on the bilaterally symmetrical apical meristem. During each plastochron the shoot apex proceeds through a regular rhythm of expansion and reduction related to leaf and axillary meristem initiation and regeneration. The shoot apex has a three- to four-layered tunica and subjacent corpus with a distinctive cytohistological zonation evident to varying degrees during all phases of the plastochron. Leaf initiation is by periclinal division in the second through fourth layers of the meristem. Following inception early growth of the leaf primordium is erect, involving apical and intercalary growth in length as well as marginal growth in circumference in the sheathing leaf base. Early maturation of the leaf apex into an attenuated tip marks the end of apical growth, and subsequent growth in length is largely basal and intercalary. Marked radial growth is evident early in development and initially is mediated by a very active adaxial meristem; the median flattening of this leaf is related to accentuated activity of this meristematic zone. Differentiation of the secondary midrib begins along the center of the leaf axis and proceeds in an acropetal direction. Correlated with this centralized zone of tissue specialization is the first appearance of procambium in the center of the leaf axis. Subsequent radial expansion of the flattened upper leaf zone is bidirectional, proceeding by intercalary meristematic activity at both sides of the central midrib. Procambial differentiation is continuous and acropetal, and provascular strands are initiated in pairs in both sides of the primordium from derivatives of intercalary meristems in the abaxial and adaxial wings of the leaf. Comparative investigation of foliar histogenesis in different populations of Acorus from Wisconsin and Iowa reveals different degrees of apical and adaxial meristematic activity in primordia of these two collections: leaves with marked adaxial growth exhibit delayed and reduced expression of apical growth, whereas primordia with marked apical growth show, correspondingly, reduced adaxial meristematic activity at equivalent stages of development. Such variations in leaf histogenesis are correlated with marked differences in adult leaf anatomy in the respective populations and explain the reasons for the sympodial interpretation of leaf morphogenesis in Acorus and unifacial organs of other genera by previous investigators. It is concluded that leaf development in Acorus resembles that of the Acacia phyllode, thereby confirming from a developmental viewpoint the homology of these organs. Comparison of development with leaves of other Araceae indicates that the modified form of the leaf of Acorus originates through the accentuation of adaxial and abaxial meristematic activity which is expressed only slightly in the more conventional dorsiventral leaf types in the family.  相似文献   

15.
Investigation of the development and organography of the shoot systems of Microgramma vacciniifolia and M. squamulosa was undertaken for the purpose of determining: (1) the features of shoot growth that are responsible for the distinctive vining character of these epiphytic ferns; and (2) the mode of origin of branches and their contrast with leaf initiation. Shoots of both species are dorsiventral and plagiotropic (i.e., parallel to the substrate) in habit. Since the shoot apical meristem is radial in transectional symmetry, shoot dorsiventrality in Microgramma is a postgenital or secondary developmental event, and its inception is related to the initiation of lateral appendages. Leaves and buds arise in a distichous phyllotaxis and occupy opposite and alternating positions on the dorsal surfaces and flanks of the rhizome. Endogenous roots are initiated in two rows from the ventral surface of the stem, in the vicinity of the rhizome meristem; however, they do not emerge from the rhizome until some distance behind the tip and do not elongate until the region of substrate contact. We conclude that the vining nature of this fern rhizome is a result of precocious internodal elongation and the concomitant delay of leaf and bud expansion in the region of stem elongation. In addition, observation of branch origin confirms previous suggestions that branching in Microgramma is strictly lateral and extra-axillary and not a dichotomous derivative as proposed by some workers. Leaf and bud primordia differ not only in the nature of their respective vascular supplies but also in their actual course of initiation. In the case of the leaf, the primordium is precociously emergent and exhibits a lenticular apical cell at its summit when it is only one plastochron removed from the flanks of the apical meristem. By contrast, initials of the bud primordium divide less actively and remain in a sunken position for at least 5–6 plastochrons; only when the bud apex becomes expanded and emergent does a tetrahedral apical cell become recognizable at the tip of the bud promeristem. Because of the distinctive pattern of branch and leaf origin, as well as the lack of adventitious and phyllogenous origin of branch primordia, we suggest that the shoot of Microgramma is a useful test organism for the re-examination of the problem of leaf and bud determination in the ferns.  相似文献   

16.
SHAH  J. J.; DAVE  Y. S. 《Annals of botany》1971,35(3):627-635
The ontogenetic development of the tendril and its associatedorgans is investigated in 17 species of Passiflora. The shootapex shows a single tunica layer though the second layer simulatestunica. The cytohistological zonation is not a constant feature.In P. caerulea Linn., it is distinct at leaf initiation butin P. pruinosa Mast., P. vespertilio Linn., and P. watsonianaMast., it is indistinct. The main axillary bud differentiatesfrom the peripheral meristem of the shoot apex. The differentiationof this bud into floral and tendril menstems occurs at a nodeimmediately below the shoot apex in P. minima Blanco. and Pracemosa Brot. In other species this differentiation generallyoccurs at the lower nodes. The floral meristem is initiatedas an accessory bud from this bud, thus forming a bud complex.The residuum of the bud complex develops as a tendril. The thirdaccessory bud which does not originate from this bud complex,develops into a vegetative branch. The fundamental nature ofthe vascular relationship between the flower, tendril, accessorybud, subtending leaf, and the axis is similar in most of theinvestigated species.  相似文献   

17.
The third petiolar bud ofHypolepis punctata appears on the basiscopic lateral side of the petiole above the fairly developed first petiolar bud. This investigation clarified the fact that the third bud is formed neither by the activity of the meristem of the first bud nor by the meristem directly detached from the shoot apical meristem, but is initiated in the cells involved in the abaxial basal part of the elevated portion of the leaf primordium. Thus the third bud is of phyllogenous origin. This investigation further revealed that the cells to initiate the third bud are originally located in the abaxial side of the leaf apical cell complex like the cells to initiate the first bud, but are not incorporated into the meristem of the first. After the first, second and third petiolar buds have been initiated, they are carried up into fairly high regions on the petiolar base by the intercalary growth which occurs in the leaf base below the insertion level of the first and the second buds.  相似文献   

18.
Pratt , Charlotte . (N. Y. State Agri. Expt. Sta., Geneva.) Radiation damage in shoot apices of Concord Grape. Amer. Jour. Bot. 46(2) : 103-109. Illus. 1959.—Dormant rooted cuttings of ‘Concord’ grape were exposed either to 200-6000 r of X rays or to 2-6 hr. of thermal neutrons (average total dose of 4.80 × 1011 to 1:59 × 1013 neutrons/cm.2). Percentage of plants surviving in the field tended to decrease with dosage beginning with 2000 r of X rays or 2 hr. of thremal neutrons. It showed a sharp drop in lots which had received doses of 4000 r of X rays or 4 hr. of thermal neutrons. Frequency of hudless shoots (shoots lacking a terminal bud after the first leaves emerged) increased with dosage, beginning with groups which had received 2000 r of X rays or 2 hr. of thermal neutrons. Microscopic examination of radiation-damaged shoot apices showed one or more of the following characteristics: (1) shape and organization of the apical meristem different from that of the untreated shoot apex, which is described; (2) no young primordia; (3) acropetal advance of maturation of cells; in 4 cases cells with spirally thickened, lignified walls were found 1-4 cells deep in the meristem; (4) collapse of cells in the tunica and corpus; formation of periderm and deeper, cambium-like divisions below the wound; (5) site of the former apical meristem either carried up on the base of a single terminal leaf or remaining a flat area between terminal leaves. Aspects of radiation sensitivity of the shoot and theories of shoot organization with reference to natural and induced chimeras are discussed.  相似文献   

19.
The shoot apex of Triticum aestivum cv. Ramona 50 was investigated histologically to describe cell lineages and events during leaf initiation. During histogenesis three periclinal divisions occurred in the first apical layer, with one or two divisions in the second apical layer. This sequence of cell divisions initially occurred in one region and spread laterally in both directions to encircle the meristem. Cells of the third apical layer were not involved in leaf histogenesis. Initially, young leaf primordia were produced from daughter cells of periclinal divisions in the two outer apical layers. Nuclear contents of protein, histone, and RNA in the shoot apex were evaluated as ratios to DNA by means of semiquantitative histochemistry. Daughter cells of periclinal divisions in the outer apical layer which produced the leaf primordia had higher histone/DNA ratios than cells of the remaining meristem. However, protein/DNA and RNA/DNA ratios were similar in both regions. Leaf initial cells had a higher 3H-thymidine labeling index, a higher RNA synthesis rate, and smaller nuclear volumes than cells of the residual apical meristem.  相似文献   

20.
Tendrils on long shoots of Parthenocissus inserta occur in a regular pattern opposite the alternate distichous leaves at two successive nodes of each three nodes. Ontogenetic study shows that the tendril is initiated at the flank of the shoot apex during the second plastochron in an essentially axillary position. It is carried upward with growth of the internode above the axillant leaf and ultimately is situated opposite the next younger leaf. In a rhythmic pattern a different group of appendages is produced by the shoot apex at each node in the sequence of three. In acropetal order these are: at the tendrilless node the leaf subtends an axillary bud complex which in turn subtends a tendril; the leaf at the lower tendril-bearing node directly subtends a tendril, and the leaf at the upper tendril-bearing node subtends an axillary bud. Tendril primordia were not induced to develop as foliaceous shoots when cultured in vitro or in decapitation experiments, indicating that the meristem which becomes a tendril is determined early in its inception. Although built on a shoot pattern, the tendril is regarded as an organ sui generis with a possible relationship to the inflorescence. The morphological nature of the tendril is discussed in the light of theories postulated in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号