首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 586 毫秒
1.
Stotzky , G., and Elsie A. Cox . (Central Research Labs., United Fruit Co., Norwood, Mass.) Seed germination studies in Musa. II. Alternating temperature requirement for the germination of Musa balbisiana. Amer. Jour. Bot. 49(7): 763–770. Illus. 1962.—Alternating temperatures were found to be required for the germination of seeds of Musa balbisiana. The temperature differentials optimal for germination in soil are dependent upon both the high and low temperatures, and range from 8–23 C. Germination is maximal when the seeds are held 6–12 hr at the high (27–35 C) and 12–18 hr at the low (12–18 C) temperatures. Some germination can be induced by short exposures to alternating temperatures followed by constant high temperatures, but continuous exposure to alternating temperatures is necessary for maximum germination. Excised embryos develop better at constant than at alternating temperatures, showing that the mechanisms affected by alternating temperatures reside elsewhere in the seed. Alternating temperatures are also required for germination of mechanically scarified seeds, although the temperature differentials are less than those necessary for intact seeds, indicating that the action of alternating temperatures is not on the permeability of the integuments.  相似文献   

2.
Abstract Seed germination is dependent on the interaction between the dormancy state of a seed and the presence of favourable environmental conditions. Thus, the spectacular pulse of seedling recruitment in many Australian vegetation communities following disturbances such as fire can be attributed to changes in microsite conditions and/or the dormancy‐breaking effect of the disturbance on accumulated seed banks. Grevillea rivularis is a threatened species endemic to the area immediately above Carrington Falls in the NSW Southern Highlands. Most of the population is confined to the riparian vegetation zone in woodland and heath, and is therefore subject to periodic disturbance from fire and flood. For this species, a pulse of seedling recruitment has been recorded after fire, flood and mechanical soil disturbance. The aims of this study were to examine the density and vertical distribution of the soil‐stored seed bank and to investigate the role of heat and scarification as cues for germination of fresh and soil‐stored seed. There was a large seed bank under the canopies of established individuals (194 ± 73 seeds m?2) and most seeds were found in the 0–2 cm and leaf‐litter layers of the soil profile. The germination response of soil‐stored and fresh seed was examined using a hierarchical series of laboratory experiments. Seeds of G. rivularis showed marked dormancy polymorphism. Thirty‐six percent of soil‐stored seed germinated without treatment, whereas no untreated fresh seeds germinated. Scarification or heating caused significant germination of dormant soil‐stored seed, but only scarification resulted in germination of dormant fresh seeds. These results highlight important differences in the dormancy state of soil‐stored and fresh seed. Thus, being a riparian species in a fire‐prone environment, the dormancy mechanisms in seeds of G. rivularis suit this species to disturbance by both fire and flood.  相似文献   

3.
The halophyte, Salicornia pacifica var. utahensis (Tiderstorm) Munz produces seed under high salinity conditions, and deposits its seed on saline soil. Experiments were conducted to determine the effect of salinity, temperature and growth regulators on germination. Results indicate that the seeds can germinate at very high salt concentration (5% NaCl). Germination was sensitive to the changes in temperature regimes. At higher 30–20 C, light-dark sequence, no germination occurred at 3, 4 and 5% NaCl treatments. On the other hand, 30% germination did occur at 5% NaCl treatment at a temperature regime of 15–5 C. These seeds required light for germination. Only 50% germination occurred in the non-saline control in the dark and the addition of NaCl further reduced germination. The GA3 partially alleviated the inhibitory effect of NaCl and darkness. Kinetin did not promote germination.  相似文献   

4.
FAWUSI  M. O. A. 《Annals of botany》1979,44(5):617-622
Three-month ‘old’ and ‘fresh’ seedsof Talinum triangulare were subjected to various treatmentsto induce early and rapid germination. Scarification and activated carbon were the most effective treatmentsin improving total germination in fresh seeds, while the 3 and5 per cent thiourea treatments were most effective in improvingtotal germination in old seeds. Activated carbon, scarificationand 5 per cent thiourea treatments enhanced early germinationin both old and fresh seeds. Cumulative percentage germinationwas very high in fresh seeds after scarification or after treatmentwith activated carbon and 5 per cent thiourea, and lowest inseeds treated with 3 per cent thiourea and hot water. In oldseeds, highest cumulative percentage germination was obtainedwith 3 and 5 per cent thiourea treatments and scarification.Generally, higher germination was obtained with fresh seedsthan with old seeds. Partial seed-coat removal and treatment with 5 per cent thiouriaresulted in a higher rate of and cumulative percentage germinationcompared with seeds with the coat partially removed but nottreated with thiourea. Constantly high temperature (34 °C) increased both rateand total germination compared with seeds planted at room temperature(20–23 °C). Treatments that did not induce germinationwere 1 per cent thiourea, H2SO4, cold water soaking at roomtemperature, 6 per cent hydrogen peroxide and soil planting.These treatments effected less than 3 per cent germination. Talinum triangulare L, seed scarification, activated charcoal, thiourea, germination  相似文献   

5.
The germination characteristics of a population of the winter annual Phacelia dubia (L.) Trel. var. dubia from the middle Tennessee cedar glades were investigated in an attempt to define the factor(s) regulating germination in nature. Factors considered were changes in physiological response of the seeds (after-ripening), temperature, age, light and darkness, and soil moisture. At seed dispersal (late May to early June), approximately 50 % of the seeds were non-dormant but, would germinate only at low temperatures (10–15 C). As the seeds aged from June to September, there was an increase in rate and total percent of germination at 10, 15, and 20 C, and the maximum temperature for germination increased to 25 C. Little or no germination occurred at the June, July, and August temperatures in 0- to 2-month-old seeds, even in seeds on soil that was kept continuously moist during this 3-month period. At the September, October, and November temperatures 3- to 5-month-old seeds germinated to high percentages. In all experiments seeds germinated better at a 14-hr photoperiod than in constant darkness. Inability of 0- to 2-month-old seeds to germinate at high summer temperatures allows P. dubia dubia to pass the dry summer in the seed stage, while increase in optimum and maximum temperatures for germination during the summer permits seeds to germinate in late summer and early fall when conditions are favorable for seedling survival and eventual maturation.  相似文献   

6.
Acacia senegal (L) Willd. is a small sized tree species of Tropical arid region of Southern West Pakistan. It is well-known for producing gum arabic. Fruits from dry streams with loamy sand soil type were of bigger size whereas seed output per pod and seed weight were higher in hilly regions. The seeds possess external dormancy (seed coat), which can be broken by mechanical and chemical scarification, water (cold and boiling) and dark treatments. Seeds gave high percentage of germination in fine sand in pot culture. Germination percentage was high in May–July. The growth rate of seedlings both in pot culture and field conditions was high in April, May, June and July. Seeds collected from different localities showed considerable variation in germination capacity. Percentage and rate of germination increased with the lapse of time. Correlation of growth and abundance ofAcacia senegal was found with topography, soil texture, soil structure, soil consistence, maximum water holding capacity, wilting coefficient (sub-surface soil), soil carbonates (surface soil) soil pH (surface soil) and community associates. The plant can be propagated by shoot cuttings. Smaller and thinner cuttings are easily propagated. The plant is infested by Buffaloe tree hopper and is also infected byCladosporium herbarum. Occasionally seedlings are attacked byFusarium sp. The relative turgidity of branches was found to be high throughout the study period, but the leaves showed considerable variation.  相似文献   

7.
Seed were collected from nine populations of Danthonia sericea on either wet or well-drained, sandy sites ranging from Georgia to New Jersey. Germination tests were conducted in the laboratory and in field plots established on contrasting habitat types. Factors considered were temperature, light, prechilling, scarification, and after-ripening. The majority of freshly harvested seed from all nine populations exhibited innate dormancy the intensity of which decreased with age. Dormancy was removed by scarification and prechilling treatments of 60 days. Seed from wet habitats showed significantly greater germination in light (alternating night-day) than in dark, while seed from well-drained habitats had a higher germination percentage in dark than in light. Both responses are considered to be physiological adaptations of the populations to their respective habitats. Alternating night-day temperatures of 15–25 C produced the greatest overall germination for the nine populations; 15–20 and 10–25 C produced the next highest responses. Field observations confirmed that peak germination occurred in the spring, at the time soil temperatures were in the same range found to be optimum in the laboratory. A comparison of the germination responses obtained from six New Jersey populations in field plots on contrasting habitat types further revealed distinctive physiological adaptations for populations from differing habitats.  相似文献   

8.
Dormancy of Kosteletzkya virginica (L.) Presl. seeds is primarily due to the impermeability of the seed coat to water. The impermeable structure is assumed to be, in other Malvaceae, the palisade layer of the seed coat. The percentage of seeds capable of imbibition and germination increased with increasing time of storage at low temperatures, but the release from dormancy was not accompanied by decreased seed coat resistance to pressure. Under natural conditions, mechanical damage to the seed coat due to changes in temperature and/or abrasion may render the seeds water permeable. It is not clear what causes water permeability during storage under laboratory conditions. During seed maturation and drying, the inner epidermis of the tegmen partly separates from the rest of the seed coat and an air space, which makes the seed buoyant, is formed around the region of the chalazal cleft. The optimal temperature for germination of K. virginica seeds is between 28 and 30 C in light or darkness.  相似文献   

9.
硬实种子休眠的机制和解除方法   总被引:41,自引:1,他引:40  
硬实是植物中普遍存在的现象。硬实种子种皮透水透气性差和对胚生长的机械限制,引起种子休眠。遗传因素、母株环境、贮藏条件、采收方法、种子本身的成熟度、含水量、大小、形状及颜色都能影响种子硬实率。硬实的处理方法大体可分物理、化学和生物3类,这些方法通过改善种皮的通透性,促进气体交换和水分进入,消除机械限制而促进萌发。物理方法有机械损伤、低温和高温处理、干湿交错处理、辐射和高压处理等;化学方法有酸蚀、碱液浸泡和有机溶剂等处理。硬实休眠有利于植物调节种子萌发的时空分布,在种质保存上也具有特别重要的意义。  相似文献   

10.
硬实种子休眠的机制和解除方法   总被引:2,自引:0,他引:2  
硬实是植物中普遍存在的现象。硬实种子种皮透水透气性差和对胚生长的机械限制, 引起种子休眠。遗传因素、母株环境、贮藏条件、采收方法、种子本身的成熟度、含水量、大小、形状及颜色都能影响种子硬实率。硬实的处理方法大体可分物理、化学和生物3类, 这些方法通过改善种皮的通透性,促进气体交换和水分进入, 消除机械限制而促进萌发。物理方法有机械损伤、低温和高温处理、干湿交错处理、辐射和高压处理等; 化学方法有酸蚀、碱液浸泡和有机溶剂等处理。硬实休眠有利于植物调节种子萌发的时空分布, 在种质保存上也具有特别重要的意义。  相似文献   

11.
Luzula spicata L. seeds are completely dormant at maturity. A germination inhibitor is present at the micropylar end. Normally, the only effective means of eliciting germination is a precise scarification of the micropylar end which inactivates the inhibitor. Exogenous application of gibberellic acid, kinetin, KNO3, and thiourea have no affect on the dormancy of unscarified seeds. Scarification of the hilar end of the seed does not elicit germination, but when gibberellic acid is applied to the hilar scarified seeds moderate germination results. Presumably, these seeds are dormant due to a deficit of endogenous gibberellin; a condition which can be overcome by the application of gibberellic acid to seeds scarified at a site in itself ineffective in producing germination. Apparently the gibberellic acid serves to initiate amylase activity in the endosperm, overcoming the inhibitor block. Luzula spicata seed dormancy is apparently unique in that a germination inhibitor is operative in conjunction with the commonly recognized gibberellin-amylase mechanism.  相似文献   

12.
The tolerance of Musa balbisiana Colla seeds to gamma irradiation was found to be considerably greater than that of rhizomes of the parthenocarpic variety ‘Gros Michel': e.g., 11.8 krad reduced the germination of rhizomes 92% and of seeds approximately 15%. Intact seeds exposed to doses higher than 48 krad did not germinate in non-sterile soil, but, when scarified and cultured axenically after irradiation, seeds which received doses as high as 70 krad germinated. Embryos excised from seeds exposed to doses as high as 285 krad formed callus, indicating that not all metabolic processes were inhibited by these extremely high doses. There was considerable variation in radiation tolerance between seed lots which was not related to their age, moisture content, or pre-exposure viability. Germination of intact seeds appeared to be stimulated by doses of 3 or 9 krad. No lasting differences attributable to the level of irradiation were apparent in the development of seedlings derived from either intact or scarified seeds nor of plantlets derived from excised embryos. Conversely, there was a significant reduction, proportional to irradiation dose, in the growth of plants developing from rhizomes, emphasizing the greater radiation sensitivity of the vegetative propagule. The radiation tolerance of seed-borne microorganisms was considerably higher than that of the plant materials, indicating that gamma irradiation is not effective as a means of obtaining pathogen-free rhizomes or surface-sterilizing seeds of M. balbisiana.  相似文献   

13.
Mc Gahan , Merritt W. (Central Research Labs., United Fruit Co., Norwood, Massachusetts.) Studies on the seed of banana. II. The anatomy and morphology of the seedling of Musa balbisiana. Amer. Jour. Bot. 48(7): 630–637. Illus. 1961.—The first external evidence of germination of the seed of Musa balbisiana is the displacement of the micropylar plug by the elongation of the hypocotyl-radicle axis. As the hypocotyl and epicotyl emerge from the micropylar collar, the seminal adventitious roots become apparent and the cotyledonary sheath surrounding the epicotyl emerges as a coleoptile-like structure. Subsequent growth results in the elongation of the first leaves beyond the cotyledonary sheath and the rapid elongation of the adventitious root system. The vascular transition occurs between the cotyledon and the radicle. The sheath is considered to be only analogous to the coleoptile of the grasses.  相似文献   

14.
The germination ecophysiology of Arenaria glabra Michx., a characteristic winter annual plant species of granite and sandstone outcrops of southeastern United States, was investigated. Seeds germinate in early autumn, plants overwinter in the rosette stage and then flower, set seeds, and die in late spring; seeds are dispersed soon after maturity. Eighty-five to 90% of freshly-matured seeds were innately dormant, and the other 10–15% germinated only at temperatures lower than those that occur in the habitat at the time of seed dispersal in June. During the summer after-ripening period, seeds stored dry under ambient laboratory conditions exhibited progressive increases in rates and total percentages of germination, a widening of the temperature range for germination, and a loss of the light requirement. At a 14-hr daily photoperiod, seeds kept on continuously moist soil germinated to 83% at simulated July and August temperatures during July and August, and the remainder germinated at September temperatures in September. On the other hand, seeds subjected to alternate wetting and drying during July and August germinated to only 9% during those 2 months, and the remainder germinated after the soil was kept continuously moist, beginning on 1 September, at simulated habitat temperatures during September and October. Thus, the timing of germination of A. glabra in the field is controlled by an interplay of the seeds' physiological state with the dynamics of temperature and soil moisture conditions.  相似文献   

15.
Seed dimorphism influenced the germination behavior of Salicornia europaea L., with small seeds being more dormant and less salt tolerant than large seeds. All of the large less dormant seeds of S. europaea germinated prior to May, and all seedlings produced after this time were from small seeds. A persistent seed bank was maintained by the small dormant seeds. Survivorship was relatively constant during the normal germination season, but increasing salinity stress at any time during the spring reduces the chance of seedling survival. Little germination occurred from July through September because of the high surface soil salinities during this period.  相似文献   

16.
Abstract

This work evaluates the influence of storage and scarification in the germination of Passiflora caerulea L., in order to acquire the necessary knowledge to cultivate this economically important species. Seeds stored one month under different conditions (no storage, fermentation, desiccation) were submitted to various pre‐treatments (aril removal, mechanical and chemical scarification or combinations of these). Emergence was recorded periodically for 11 months in a greenhouse. Germination time, germination percentage and germination speed were calculated. Histochemical tests were applied to seeds maintained under the three storage conditions, for observing possible changes in the integument and storage tissue. Viability was maintained at least for the storage period tested, as germination occurred after that time. Because the seeds stored under desiccation germinated, the species is orthodox. Chemical scarification prevented germination in most cases. Although germination levels were low, they were higher in stored seeds (fermented and desiccated) than in fresh ones. Fermented seeds (which exhibited no storage tissue and less lignin in the integument) devoid of the aril germinated earlier, faster and in greater quantity. The type of dormancy of this species is discussed.  相似文献   

17.
Germination of Nemophila insignis seed is inhibited by light over a wide range of temperatures. At low temperatures the light intensity required for inhibition is higher. At 25 C there is little germination (in darkness as well as in light); at 27.5 C germination is inhibited altogether. Virtually complete germination in light is obtained when the endosperm directly covering the radicle is removed. This operation also improves germination in darkness at 25 C. Mechanical scarification performed elsewhere in the seed is without effect. As with Phacelia tanacetifolia, Nemophila seed apparently fails to germinate in light because the endosperm restrains the expansive growth of the embryo. The embryo of dark-imbibed seed develops a force which enables it to overcome the physical resistance of the endosperm. Light inhibits the process which leads to generation of “expansive force.” Gibberellic acid at 5 × 10–4 m stimulates germination in light and in the dark. Abscisic acid at 10-4 m inhibits germination; at 10-6 m it inhibits only root growth. The inhibition of germination or root growth caused by abscisic acid cannot be reversed by gibberellic acid. Eighty per cent oxygen under certain conditions promotes germination. The rate of O2 uptake is enhanced in oxygen-enriched atmosphere; however, there is no corresponding increase in the rate of CO2 output. Thus high oxygen tension enhances an oxidative process other than respiration. This reaction is favorable to seed germination.  相似文献   

18.
Dormancy in the hard seed coats of Mediterranean species is considered a strategy that enables persistent seed banks to be formed in the soil. An important factor related to seed coat fracture and dormancy breakage in Mediterranean ecosystems is heat. Nevertheless, the effect of factors other than heat on dormancy breakage in these species has hardly been studied. To investigate the different ecological factors involved in germination, in the laboratory we applied several scarification treatments to seeds with chromatic polymorphism. We evaluated the effect of soil seed depth during experimental burns by sowing seeds at −1, −3 and −5 cm in the soil profile, and we also studied the effect of seed origin on the posterior germination of seeds from 4 and 10 year-old shrubs as well as from the soil seed bank. U. parviflorus shows clear chromatic polymorphism: its brown seeds present higher dormancy levels than its yellow seeds. The different techniques of dormancy breakage result in different degrees of germination; the highest degree of germination is generated by the mechanical treatment, followed by the acid and the heat treatments, in that order. The depth of the seeds in the soil determines the temperature thresholds and the residence times of these temperatures and whether they stimulate a massive germination at the −1 cm soil profile or only a slight germination at the −5 cm depth. Seeds recently produced by the plant show higher dormancy levels than seeds extracted from soil seed banks. Dormancy levels also depend on the shrubland age used for extracting the soil samples (3>9 years old). In effect, from the point of view of dormancy, the germination behaviour of U. parviflorus seeds seems to follow a multiresponse strategy based on different seed populations and involving both biological and abiotic processes to break dormancy.  相似文献   

19.
Mc Gahan , Merritt W. (United Fruit Co., Norwood, Mass.) Studies on the seed of banana. I. Anatomy of the seed and embryo of Musa balbisiana. Amer. Jour. Bot. 48(3): 230–238. Illus. 1961.—The seed coat of Musa balbisiana Colla consists of a relatively thick outer integument and a 2–cell-layered inner integument. The entire seed coat is sclerified, but routine tests for lignin are negative. Within the outer integument there is a zone of unusual sclereids tentatively termed “multiluminate.” Between the inner integument and the remnants of the nucellus is a cuticle 10–12 μ thick. The micropylar plug and collar are typical of the genus. The chalazal mass is an annular region of gelatinous cells. The mature embryo is comprised of a massive cotyledon, an epicotyl with 1 leaf primordium, a primary root primordium, and several adventitious root primordia. Procambium is well developed, but no mature vascular elements are present in the embryo.  相似文献   

20.
The tree Caesalpinia paraguariensis grows in the Chaco region, Argentina. Fruits are indehiscent with many seeds. This species is an important source of wood and the fruits are consumed by cattle in Salta province. We studied seed germination under chemical, mechanical and biological scarification. Seeds from controls (without scarification) and those with biological scarification had a smaller (and similar) germination rate. The non-germinated seeds from biological treatments were mechanically scarified and their germination rate was similar to others under the mechanical treatment. Passage by digestive tracts would not enhance germination because viable seeds are still dormant due to their hard coats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号