首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spiroplasma citri is transmitted from plant to plant by phloem-feeding leafhoppers. In an attempt to identify mechanisms involved in transmission, mutants of S. citri affected in their transmission must be available. For this purpose, transposon (Tn4001) mutagenesis was used to produce mutants which have been screened for their ability to be transmitted by the leafhopper vector Circulifer haematoceps to periwinkle plants. With one mutant (G76) which multiplied in leafhoppers as efficiently as S. citri wild-type (wt) strain GII-3, the plants showed symptoms 4 to 5 weeks later than those infected with wt GII-3. Thirty to fifty percent of plants exposed to leafhoppers injected with G76 remained symptomless, whereas for wt GII-3, all plants exposed to the transmission showed severe symptoms. This suggests that the mutant G76 was injected into plants by the leafhoppers less efficiently than wt GII-3. To check this possibility, the number of spiroplasma cells injected by a leafhopper through a Parafilm membrane into SP4 medium was determined. Thirty times less mutant G76 than wt GII-3 was transmitted through the membrane. These results suggest that mutant G76 was affected either in its capacity to penetrate the salivary glands and/or to multiply within them. In mutant G76, transposon Tn4001 was shown to be inserted into a gene encoding a putative lipoprotein (Sc76) In the ABCdb database Sc76 protein was noted as a solute binding protein of an ABC transporter of the family S1_b. Functional complementation of the G76 mutant with the Sc76 gene restored the wild phenotype, showing that Sc76 protein is involved in S. citri transmission by the leafhopper vector C. haematoceps.  相似文献   

2.
3.
Spiroplasma citri is a plant-pathogenic mollicute. Recently, the so-called nonphytopathogenic S. citri mutant GMT 553 was obtained by insertion of transposon Tn4001 into the first gene of the fructose operon. Additional fructose operon mutants were produced either by gene disruption or selection of spontaneous xylitol-resistant strains. The behavior of these spiroplasma mutants in the periwinkle plants has been studied. Plants infected via leafhoppers with the wild-type strain GII-3 began to show symptoms during the first week following the insect-transmission period, and the symptoms rapidly became severe. With the fructose operon mutants, symptoms appeared only during the fourth week and remained mild, except when reversion to a fructose+ phenotype occurred. In this case, the fructose+ revertants quickly overtook the fructose- mutants and the symptoms soon became severe. When mutant GMT 553 was complemented with the fructose operon genes that restore fructose utilization, severe pathogenicity, similar to that of the wild-type strain, was also restored. Finally, plants infected with the wild-type strain and grown at 23 degrees C instead of 30 degrees C showed late symptoms, but these rapidly became severe. These results are discussed in light of the role of fructose in plants. Fructose utilization by the spiroplasmas could impair sucrose loading into the sieve tubes by the companion cells and result in accumulation of carbohydrates in source leaves and depletion of carbon sources in sink tissues.  相似文献   

4.
Spiralin is the most abundant protein at the surface of the plant pathogenic mollicute Spiroplasma citri and hence might play a role in the interactions of the spiroplasma with its host plant and/or its insect vector. To study spiralin function, mutants were produced by inactivating the spiralin gene through homologous recombination. A spiralin-green fluorescent protein (GFP) translational fusion was engineered and introduced into S. citri by using an oriC-based targeting vector. According to the strategy used, integration of the plasmid by a single-crossover recombination at the spiralin gene resulted in the expression of the spiralin-GFP fusion protein. Two distinct mutants were isolated. Western and colony immunoblot analyses showed that one mutant (GII3-9a5) did produce the spiralin-GFP fusion protein, which was found not to fluoresce, whereas the other (GII3-9a2) produced neither the fusion protein nor the wild-type spiralin. Both mutants displayed helical morphology and motility, similarly to the wild-type strain GII-3. Genomic DNA analyses revealed that GII3-9a5 was unstable and that GII3-9a2 was probably derived from GII3-9a5 by a double-crossover recombination between plasmid sequences integrated into the GII3-9a5 chromosome and free plasmid. When injected into the leafhopper vector Circulifer haematoceps, the spiralinless mutant GII3-9a2 multiplied to high titers in the insects (1.1 x 10(6) to 2.8 x 10(6) CFU/insect) but was transmitted to the host plant 100 times less efficiently than the wild-type strain. As a result, not all plants were infected, and symptom production in these plants was delayed for 2 to 4 weeks compared to that in the wild-type strain. In the infected plants however, the mutant multiplied to high titers (1.2 x 10(6) to 1.4 x 10(7) CFU/g of midribs) and produced the typical symptoms of the disease. These results indicate that spiralin is not essential for pathogenicity but is required for efficient transmission of S. citri by its insect vector.  相似文献   

5.
We have shown previously that the glucose PTS (phosphotransferase system) permease enzyme II of Spiroplasma citri is split into two distinct polypeptides, which are encoded by two separate genes, crr and ptsG. A S. citri mutant was obtained by disruption of ptsG through homologous recombination and was proved unable to import glucose. The ptsG mutant (GII3-glc1) was transmitted to periwinkle (Catharanthus roseus) plants through injection to the leaf-hopper vector. In contrast to the previously characterized fructose operon mutant GMT 553, which was found virtually nonpathogenic, the ptsG mutant GII3-glc1 induced severe symptoms similar to those induced by the wild-type strain GII-3. These results, indicating that fructose and glucose utilization were not equally involved in pathogenicity, were consistent with biochemical data showing that, in the presence of both sugars, S. citri used fructose preferentially. Proton nuclear magnetic resonance analyses of carbohydrates in plant extracts revealed the accumulation of soluble sugars, particularly glucose, in plants infected by S. citri GII-3 or GII3-glc1 but not in those infected by GMT 553. From these data, a hypothetical model was proposed to establish the relationship between fructose utilization by the spiroplasmas present in the phloem sieve tubes and glucose accumulation in the leaves of S. citri infected plants.  相似文献   

6.
To determine whether homologous recombination could be used to inactivate selected genes in Spiroplasma citri, plasmid constructs were designed to disrupt the motility gene scm1. An internal scm1 gene fragment was inserted into plasmid pKT1, which replicates in Escherichia coli but not in S. citri, and into the S. citri oriC plasmid pBOT1, which replicates in spiroplasma cells as well as in E. coli. Electrotransformation of S. citri with the nonreplicative, recombinant plasmid pKTM1 yielded no transformants. In contrast, spiroplasmal transformants were obtained with the replicative, pBOT1-derived plasmid pCJ32. During passaging of the transformants, the plasmid was found to integrate into the chromosome by homologous recombination either at the oriC region or at the scm1 gene. In the latter case, plasmid integration by a single crossover between the scm1 gene fragment carried by the plasmid and the full-length scm1 gene carried by the chromosome led to a nonmotile phenotype. Transmission of the scm1-disrupted mutant to periwinkle (Catharanthus roseus) plants through injection into the leafhopper vector (Circulifer haematoceps) showed that the motility mutant multiplied in the insects and was efficiently transmitted to plants, in which it induced symptoms similarly to the wild-type S. citri strain. These results suggest that the spiroplasmal motility may not be essential for pathogenicity and that, more broadly, the S. citri oriC plasmids can be considered promising tools for specific gene disruption by promoting homologous recombination in S. citri, a mollicute which probably lacks a functional RecA protein.  相似文献   

7.
The helical mollicute Spiroplasma citri, when growing on low-agar medium, forms fuzzy colonies with occasional surrounding satellite colonies due to the ability of the spiroplasmal cells to move through the agar matrix. In liquid medium, these helical organisms flex, twist, and rotate rapidly. By using Tn4001 insertion mutagenesis, a motility mutant was isolated on the basis of its nondiffuse, sharp-edged colonies. Dark-field microscopy observations revealed that the organism flexed at a low frequency and had lost the ability to rotate about the helix axis. In this mutant, the transposon was shown to be inserted into an open reading frame encoding a putative polypeptide of 409 amino acids for which no significant homology with known proteins was found. The corresponding gene, named scm1, was recovered from the wild-type strain and introduced into the motility mutant by using the S. citri oriC plasmid pBOT1 as the vector. The appearance of fuzzy colonies and the observation that spiroplasma cells displayed rotatory and flexional movements showed the motile phenotype to be restored in the spiroplasmal transformants. The functional complementation of the motility mutant proves the scm1 gene product to be involved in the motility mechanism of S. citri.  相似文献   

8.
The aster leafhopper (Macrosteles fascifrons), injected with an isolate of Spiroplasma citri obtained from brittle root-diseased horseradish (Armoracia rusticana), transmitted the spiroplasma to horseradish and China aster (Callistephus chinensis.) After feeding on plants infected with S. citri, M. fascifrons transmitted the spiroplasma from aster to aster and horseradish, from yellow rocket (Barbarea vulgaris) to aster, and from turnip (Brassica rapa) to turnip. Symptoms in infected horseradish were chlorosis and stunting of newly formed leaves, discoloration of root phloem, and reduced plant growth typical of brittle root disease. Chlorosis, stunting, and asymmetry of young leaves occurred in affected aster and turnip. Flowers of infected aster were small and pale in colour and occasionally showed other symptoms including asymmetry, petal distortion, or light green petals. Spiroplasmas were isolated from all plants showing symptoms. Transmission rates by M. fascifrons which acquired S. citri by feeding on infected plants were very low, but injected leafhoppers transmitted more frequently. This is the first report of the transmission of S. citri from diseased to healthy plants by M. fascifrons.  相似文献   

9.
To obtain mutants for the study of the basic biology and pathogenic mechanisms of mycoplasmas, the insertion site of transposon Tn 4001T was determined for 1700 members of a library of Mycoplasma pulmonis mutants. After evaluating several criteria for gene disruption, we concluded that 321 of the 782 protein coding regions were inactivated. The dispensable and essential genes of M. pulmonis were compared with those reported for Mycoplasma genitalium and Bacillus subtilis . Perhaps the most surprising result of the current study was that unlike other bacteria, ribosomal proteins S18 and L28 were dispensable. Carbohydrate transport and the susceptibility of selected mutants to UV irradiation were examined to assess whether active transposition of Tn 4001T within the genome would confound phenotypic analysis. In contrast to earlier reports suggesting that mycoplasmas were limited in their DNA repair machinery, mutations in recA , uvrA , uvrB and uvrC resulted in a DNA-repair deficient phenotype. A mutant with a defect in transport of N -acetylglucosamine was identified.  相似文献   

10.
"Corn stunt" caused by the mollicute Spiroplasma kunkelii (Whitcomb) is potentially one of the most severe diseases affecting the corn (Zea mays L.) crop in the Americas, and the leafhopper Dalbulus maidis (DeLong & Wolcott) is considered its most important vector. However, other insects seen quite frequently in corn crops might well be its vectors in Argentina To identify any leafhoppers species other than D. maidis that can transmit S. kunkelii, transmission assays were conducted, using individuals of Exitianus obscurinervis (St?l) collected in field and reared under controlled conditions. S. kunkelii was transmitted to corn plants by E. obscurinervis. The pathogen was transmitted to seven of the 11 plants, which showed characteristic corn stunt symptoms, and the presence of the pathogen was confirmed by DAS-ELISA. The presence of S. kunkelii in the E. obscurinervis individuals used in transmission experiments was confirmed by polymerase chain reaction and electron microscopy. The current study shows the existence of a new experimental vector of S. kunkelii, the leafhopper E. obscurinervis, which acquired spiroplasmas from infected plants and inoculated it to healthy plants.  相似文献   

11.
The Staphylococcus aureus transposon Tn4001 and derivatives thereof have been transformed successfully in several mycoplasma species. In order to expand the versatility of Tn4001 for other genetic manipulations and for use in mycoplasma species resistant to gentamicin (Gm), chloramphenicol acetyltransferase (Cat) from S. aureus was evaluated as a selectable marker. The cat gene was cloned in both orientations into a modified Tn4001 and transformed into Mycoplasma pneumoniae, conferring resistance to Cm and Gm. Replacement of the gene for GmR in Tn4001 with cat likewise conferred CmR when transformed into M. pneumoniae. The minimum inhibitory concentration to Cm in transformants with cat derivatives of Tn4001 was 300-500 microg/ml, and Cat enzyme activity was demonstrated by using a fluorescent substrate.  相似文献   

12.
Several leafhopper variants of the Circulifer tenellus complex were collected in “citrus stubborn” affected areas in Israel. Two of these variants transmitted the Spiroplasma citri to Matthiola incana after being injected with the disease agent. The variant from Atriplex halimus was designated Circulifer tenellus-A (CTA) and the variant from Portulaca oleracea was designated Circulifer tenellus-? (CTP). Transmission characteristics were determined for both leafhoppers. A high rate of transmission (43.3%) was obtained by single CTA leafhoppers that were injected with the Amiad S. citri isolate from the Upper Galilee, compared with 7% transmission obtained with the CTP leafhoppers. The Gilgal S. citri isolate from the Jordan Valley, was not transmitted by either. Injection was more effective than acquisition access feeding to render the leafhopper infective for both CTA and CTP. The minimum acquisition access period needed for the CTA variant to transmit the Amiad isolate was 1 h. Longer AAPs did not necessarily result in a higher rate of transmission. The minimum incubation period was 6 days and the maximum was 32 days. The LP50 calculated from the logarithmic curve y = 45.74Ln(x)–53.68 was 9.64 days. The minimum inoculation access period (IAP) was lh. The same transmission parameters for the CTP variant could not be determined, as no transmission was obtained even when groups of five-six insects were placed on a single plant.  相似文献   

13.
A bacterial parasite (designated as BEV) of the leafhopper Euscelidius variegatus, which is passed transovarially to offspring, was transmitted from insect to insect via feeding of the insects in plants. The rate of bacterial infection of leafhoppers fed upon plants that had previously been exposed to BEV-infected leafhoppers declined with an increase in the time that infected leafhoppers had been off rye grass. Transmission of BEV also occurred on sugar beet and barley but not celery. The bacterium was also transmitted to and acquired from membrane-encased artificial diets. There was no evidence that the bacterium was transmitted via plant surfaces, but transmission and direct culture assays from plants indicated that the bacterium did not multiply or move within plants. This parasite-host relationship may represent a primitive stage in either the evolution of intracellular symbiosis with its insect host or to alternative parasitization of plant and insect hosts via insect transmission, as is the case for insect-vectored plant pathogens.Correspondence to: A.H. Purcell.  相似文献   

14.
Spiroplasmas are the causal agents of citrus little-leaf disease   总被引:1,自引:0,他引:1  
A spiroplasma isolated from citrus with little-leaf disease was grown in a cell-free medium and injected into leafhoppers (Euscelis plebejus) Injected leafhoppers, but not those fed on infected plants, transmitted the spiroplasma to white clover (Trifolium repens cv. S100) and sweet orange (Citrus sinensis cv. Valencia). Infected clover plants were severely stunted; infected sweet orange plants showed typical symptoms of citrus little-leaf disease. The spiroplasma was detected in clover and sweet orange plants by electron microscopy; the helical morphology of the organisms was most easily recognizable in sections 150–200 nm thick. The organism was re-isolated in cell-free media both from infected plants and from injected E. plebejus. The original isolate and those re-isolated from experimentally infected clover and sweet orange appeared by morphological, cultural, biochemical and serological criteria to be identical to each other and to the R8-A2 (type) and C-189 strains of Spiroplasma citri. Serological tests and electrophoretic analysis of protein preparations indicated no relationship to Acholeplasma laidlawii, although this organism survived for at least 10 wk after injection into E. plebejus. Our results show that the causal agent of little-leaf disease is related to S. citri.  相似文献   

15.
Abstract Cytadherence and subsequent parasitism of host cells by the human pathogens, Mycoplasma pneumoniae and Mycoplasma genitalium , are mediated by adhesins and adherence-related accessory proteins. In this report we demonstrate the use of transposon Tn 4001 to generate Tn-induced transformants displaying cytadherence-deficient characteristics. Mycoplasma pneumoniae Tn-generated transformant, designated 8R, lacked the high-molecular weight adherence-accessory proteins HMW1/4 and was deficient in hemadsorption and cytadherence capabilities. In transformant 8R, Tn 4001 was not localized in or near the hmw 1 gene or in the upstream adhesin (p30/hmw3) locus, suggesting an alternate site associated with the regulation of hmw 1 gene expression. Sequence analysis identified the transposon insertion site at the crl locus previously reported, although the protein characteristics of transformant 8R differed from the earlier described transformants. The M. genitalium Tn-transformant, designated G26, was also defective in hemadsorption and cytadherence. However, transformant G26 synthesized adhesins P140 and P32 suggesting that Tn 4001 transposed into a new gene or site previously unlinked to cytadherence, namely ORF MG032. This study demonstrates the utility of Tn 4001 mutagenesis for both M. pneumoniae and M. genitalium which, in the latter case, has special relevance in light of the recent complete characterization of its continuous total genomic sequence.  相似文献   

16.
Chickpea chlorotic dwarf geminivirus (CCDV) is one of the viruses associated with chickpea stunt disease. It is transmitted by the leafhopper Orosius orientalis. The minimum acquisition access period (AAPmin) and inoculation access period (IAPmin) were found to be less than 2 min, while the minimum latency period (LPmin) was less than 2 h. The median AAP, IAP and LP were 8.0 h, 2.3 h and 27.7 h, respectively. No difference in transmission rates (proportion of leafhoppers able to transmit) was observed between male and female leafhop-pers. In serial transmission experiments, transmission was shown to be persistent, and after a 2-day AAP about 80% of the leafhoppers transmitted the virus for most of their life. The virus could be detected in individual leafhoppers by DAS-ELISA. It did not multiply in the leafhopper, but, instead, decreased in concentration during leafhopper feeding on a non-host of the virus.  相似文献   

17.
Evidence for and against the spiroplasmal etiology of aster yellows (AY) disease is examined. A spiroplasma, serologically identical to Spiroplasma citri, was cultivated by some workers from lettuce (Lactuca sativa L.) plants claimed to be naturally infected with AY. The isolated spiroplasma was shown to be infectious by injecting Macrosteles fascifrons with the cultured organisms and then confining the injected leafhoppers on healthy plants. The reports claiming that a spiroplasma is the etiological agent of AY, however, exist only in astract form, and several essential questions still need to be answered to substantiate the claim. Evidence against the claim is based on significant differences that have been observed between the behavior of S. citri and the AY agent in the leafhoppers as well as in the plant. Also, helical organisms could not be found in AY-infected plants by either scanning or immunosorbent electron microscopy, and S. citri is serologically unrelated to the mycoplasma-like organisms found in AY-infected plants. These results strongly support the conclusion that the classical AY disease is not caused by a variant of S. citri.  相似文献   

18.
Spiralin is the most abundant protein at the surface of the plant pathogenic mollicute Spiroplasma citri and hence might play a role in the interactions of the spiroplasma with its host plant and/or its insect vector. To study spiralin function, mutants were produced by inactivating the spiralin gene through homologous recombination. A spiralin-green fluorescent protein (GFP) translational fusion was engineered and introduced into S. citri by using an oriC-based targeting vector. According to the strategy used, integration of the plasmid by a single-crossover recombination at the spiralin gene resulted in the expression of the spiralin-GFP fusion protein. Two distinct mutants were isolated. Western and colony immunoblot analyses showed that one mutant (GII3-9a5) did produce the spiralin-GFP fusion protein, which was found not to fluoresce, whereas the other (GII3-9a2) produced neither the fusion protein nor the wild-type spiralin. Both mutants displayed helical morphology and motility, similarly to the wild-type strain GII-3. Genomic DNA analyses revealed that GII3-9a5 was unstable and that GII3-9a2 was probably derived from GII3-9a5 by a double-crossover recombination between plasmid sequences integrated into the GII3-9a5 chromosome and free plasmid. When injected into the leafhopper vector Circulifer haematoceps, the spiralinless mutant GII3-9a2 multiplied to high titers in the insects (1.1 × 106 to 2.8 × 106 CFU/insect) but was transmitted to the host plant 100 times less efficiently than the wild-type strain. As a result, not all plants were infected, and symptom production in these plants was delayed for 2 to 4 weeks compared to that in the wild-type strain. In the infected plants however, the mutant multiplied to high titers (1.2 × 106 to 1.4 × 107 CFU/g of midribs) and produced the typical symptoms of the disease. These results indicate that spiralin is not essential for pathogenicity but is required for efficient transmission of S. citri by its insect vector.  相似文献   

19.

Background

Spiroplasma citri is a wall-less bacterium that colonizes phloem vessels of a large number of host plants. Leafhopper vectors transmit S. citri in a propagative and circulative manner, involving colonization and multiplication of bacteria in various insect organs. Previously we reported that phosphoglycerate kinase (PGK), the well-known glycolytic enzyme, bound to leafhopper actin and was unexpectedly implicated in the internalization process of S. citri into Circulifer haematoceps cells.

Methodology/Principal Findings

In an attempt to identify the actin-interacting regions of PGK, several overlapping PGK truncations were generated. Binding assays, using the truncations as probes on insect protein blots, revealed that the actin-binding region of PGK was located on the truncated peptide designated PGK-FL5 containing amino acids 49–154. To investigate the role of PGK-FL5-actin interaction, competitive spiroplasma attachment and internalization assays, in which His6-tagged PGK-FL5 was added to Ciha-1 cells prior to infection with S. citri, were performed. No effect on the efficiency of attachment of S. citri to leafhopper cells was observed while internalization was drastically reduced. The in vivo effect of PGK-FL5 was confirmed by competitive experimental transmission assays as injection of PGK-FL5 into S. citri infected leafhoppers significantly affected spiroplasmal transmission.

Conclusion

These results suggest that S. citri transmission by its insect vector is correlated to PGK ability to bind actin.  相似文献   

20.
Genetic analysis of Staphylococcus aureus with Tn4001.   总被引:2,自引:1,他引:1       下载免费PDF全文
Tn4001, a 4.5-kilobase composite transposon with IS256 ends that confers resistance to gentamicin (Gmr), tobramycin, and kanamycin in Staphylococcus aureus, can transpose to diverse chromosomal sites in S. aureus. Chromosomal insertions of Tn4001 were isolated either after UV irradiation of transducing lysates carrying pII147::Tn4001 or by selection for thermoresistant Gmr isolates with strains containing thermosensitive derivatives of plasmids pI258 and pII147 carrying Tn4001. Frequent integration of the entire delivery plasmid occurred under these selective conditions in recombination-proficient hosts. When selection for thermoresistant Gmr isolates was done with these plasmids in recombination-deficient hosts, 99% or more of the Gmr isolates resulted from transposition of Tn4001 in the absence of plasmid integration. Efficient isolation of Tn4001 insertions near markers of interest and the isolation of insertional auxotrophs were achieved. Reversion frequencies of insertional auxotrophs were between 10(-6) and 10(-7) (higher than those observed with Tn551 and Tn917). About 50% of the prototrophic revertants were Gms, and these are attributed to precise excision of Tn4001. The Gmr prototrophic revertants were due to intergenic suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号