首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
宁夏典型温性天然草地固碳特征   总被引:1,自引:0,他引:1  
本文研究了宁夏草甸草原、温性草原、草原化荒漠和荒漠草原4种温性典型天然草地生态系统碳储量及其构成特征。结果表明: 草甸草原、温性草原、草原化荒漠和荒漠草原植被总生物量分别为1178.91、481.22、292.80和209.09 g·m-2。其中,地下根系生物量是构成草甸草原和温性草原植被总生物量的主体,分别占总生物量的73.1%和56.6%;地上植被生物量是构成草原化荒漠和荒漠草原植被总生物量的主体,分别占总生物量的50.3%和47.6%;枯落物生物量占比较低,分别仅为8.5%、8.0%、6.4%和16.2%。草甸草原、温性草原、草原化荒漠和荒漠草原4种天然草地生态系统碳储量分别为13.90、5.94、2.69和2.37 kg·m-2,其中植被碳储量分别为470.26、192.23、117.17、83.36 g·m-2,0~40 cm土层土壤有机碳储量分别为13.43、5.75、2.58和2.29 kg·m-2,土壤有机碳储量是构成宁夏典型天然草地碳储量的主体,分别占到了生态系统碳储量的96.6%、96.8%、95.6%和96.5%。4种草地类型植被总生物量、植被碳储量、土壤有机碳储量和生态系统碳储量均表现为:草甸草原>温性草原>草原化荒漠>荒漠草原。  相似文献   

2.
崇明东滩湿地不同盐沼植物群落土壤碳储量分布   总被引:2,自引:0,他引:2  
海岸带盐沼植被的高生产力对湿地土壤碳库的形成具有重要意义.本文研究了长江口崇明东滩湿地3种主要盐沼植物(芦苇、互花米草和海三棱藨草)群落生物量差异、土壤碳储量时空动态和垂向分布特征.结果表明: 湿地盐沼植被总生物量表现为互花米草群落(5750.7 g·m-2)>芦苇群落(4655.1 g·m-2)>海三棱藨草群落(812.7 g·m-2),且地上生物量在夏、秋季最高,地下生物量在冬季最高.湿地土壤碳储量(0~50 cm)在春季最低,随后逐渐增加,至冬季达到最大值.土壤碳储量年增量从高潮滩向低潮滩递减,表现为芦苇群落(711.8 g·m-2)>互花米草群落(646.2 g·m-2)>海三棱藨草群落(185.3 g·m-2)>光滩(65.6 g·m-2).光滩土壤碳储量在25~30 cm处最高,海三棱藨草、互花米草和芦苇群落土壤碳储量分别在10~15、30~35和30~40 cm处达到最大值,且不同群落土壤碳储量与植被地下生物量具有显著的线性关系.  相似文献   

3.
以青海省达日县高寒草甸原生高寒嵩草(Kobresia)草甸封育系统为对照,研究了土地退化对植被生产力的影响,检验了不同人工重建措施(两个人工种植处理:混播(HB)、翻耕单播(DBF)和1个退化草地封育自然恢复处理(NR)及1个退化草地自然状态(SDL))对植被生产力的相对影响程度。结果表明,原生植被封育处理(YF)地上总生物量为265.1 g·m-2,混播(HB)和翻耕单播(DBF)处理中地上总生物量分别为原生植被封育处理的116%和68%。退化草地封育自然恢复处理(NR)和重度退化自然状态下地上总生物量分别为原生植被封育的76%和53%。YF处理根系生物量远大于其它处理。原生植被封育系统中植被地上部分碳储量为 110.14 g·m-2,地下根系(0~30 cm)碳储量为2 957 g·m-2,植被总碳储量为 3 067.14 g·m-2;重度退化草地系统中植被地上部分碳储量为 57.07 g·m-2,地下根系(0~30 cm)碳储量为 357 g·m-2,植被总碳储量为 414.07 g·m-2。由此可见,高寒草甸严重退化后,通过植物组织流失的碳达到2 653.35 g·m-2,即86.5%的碳损失;原生植被封育系统植被总氮储量为 56.85 g·m-2,而重度退化草地植被总氮储量为 18.02 g·m-2,高寒草甸严重退化使植物组织68.30%氮损失。与重度退化地相比,由于恢复重建措施增加了植物的生物量输入和群落组成,除翻耕单播处理外,其它恢复重建措施均能恢复系统植被的碳氮储量。这些恢复重建措施将会逐步改善土壤的物理和化学特性,最终使这些生态系统逐步由碳源向碳汇方向的转变成为可能。  相似文献   

4.
研究秦岭南坡东段8、25、35、42和61年生油松人工林碳、氮储量和分配格局.结果表明: 油松人工林不同林龄乔木层碳、氮含量为441.40~526.21和3.13~3.99 g·kg-1,灌木层为426.06~447.25和10.62~12.45 g·kg-1,草本层为301.37~401.52和10.35~13.33 g·kg-1,枯落物层为382.83~424.71和8.69~11.90 g·kg-1,土壤层(0~100 cm)为1.51~18.17和0.29~1.45 g·kg-1.树干和树枝分别是乔木层的主要碳库和氮库,占乔木层碳储量的48.5%~62.7%和氮储量的39.2%~48.4%.林龄对生态系统碳、氮储量均有显著影响.生态系统碳储量随林龄增加而增加,35年时达最大值146.06 t·hm-2,成熟后碳储量有所下降.5个林龄段油松林生态系统氮储量的最大值为25年时的10.99 t·hm-2.植被层平均碳、氮储量分别为45.33 t·hm-2和568.55 kg·hm-2,土壤层平均碳、氮储量分别为73.12和8.57 t·hm-2,且土壤层中碳、氮的积累具有明显的表层富集现象.研究区油松人工林生态系统碳、氮储量主要分布在土壤层,其次为乔木层.生态系统碳储量空间分配格局为:土壤层(64.1%)>乔木层(30.0%)>灌草层和枯落物层(5.9%),氮储量为土壤层(93.2%)>乔木层(5.3%)>灌草层和枯落物层(1.5%).  相似文献   

5.
藏北高寒草地植被的碳密度与碳贮量   总被引:4,自引:0,他引:4  
采用实地调查与查阅文献相结合的方法估算藏北高寒草地植被碳密度和碳贮量。结果表明:1)藏北高寒草地总面积约39.059×106 hm2,植被地上平均碳密度12.158±4.7g·m-2,植被地下平均碳密度84.458±20.38g·m-2,植被地上部碳贮量5.171±0.95Tg,植被地下部碳贮量25.223±2.96Tg,植被总碳贮量为30.394±3.91Tg;2)不同草地组间植被碳密度和碳贮量差异显著。其中不同草地组间植被碳密度以丛生禾草组碳密度值最低,地上和地下碳密度分别为6.13±1.51g·m-2和26.04±5.8g·m-2,具灌木的半灌木组碳密度最高,地上和地下碳密度分别为31±3.4 g·m-2和244.59±6.9g·m-2;而不同草地组间,草地植被碳贮量以小莎草组最大,植被地上和地下碳贮量分别为2.24±0.32Tg和9.52±0.89Tg,半灌木组碳贮量最小,其地上和地下碳贮量分别为0.012 4±0.002Tg和0.098 1±0.002Tg。3)藏北高寒草地分布各县(区)碳密度和碳贮量的分布也存在显著差异。从碳密度来看,革吉县、札达县、噶尔县和措勤县碳密度较高,植被平均碳密度分别相当于藏北平均植被碳密度的1.76,1.47,1.11和1.06倍,从碳贮量来看,碳贮量集中分布于双湖特别区、札达、尼玛、日土、革吉和改则6县(区),六县(区)草地植被碳贮量为25.2±2.31Tg,占藏北总植被碳量的82.89%。  相似文献   

6.
黄土高原4种植被类型的细根生物量和年生产量   总被引:1,自引:0,他引:1  
邓强  李婷  袁志友  焦峰 《生态学杂志》2014,25(11):3091-3098
细根(≤2 mm)在陆地生态系统净初级生产力的分配中占有重要地位,在碳循环和水土保持方面具有重要意义. 本文采用土钻法和内生长法,以黄土高原刺槐人工林、落叶灌木、退耕草地和沙蒿群落4种主要植被类型为对象,研究0~40 cm土层细根生物量、垂直分布和细根年生产量. 结果表明: 细根生物量与纬度呈线性负相关. 4种植被类型0~40 cm土层细根生物量的大小顺序为落叶灌木(220 g·m-2)>刺槐人工林(163 g·m-2)≈退耕草地(162 g·m-2)>沙蒿群落(79 g·m-2). 退耕草地直径≤1 mm细根生物量占直径≤2 mm总细根生物量的74.1%,在4种植被类型中最高;4种植被类型细根生物量随着土层深度的增加而减少,最大值均出现在0~10 cm土层. 退耕草地0~10 cm土层细根生物量占0~40 cm土层总细根生物量的44.1%,显著高于其他3种植被类型;细根年生产量与纬度呈线性负相关. 4种植被类型0~40 cm土层细根年生产量大小顺序为退耕草地(315 g·m-2·a-1)>落叶灌木(249 g·m-2·a-1)>刺槐人工林(219 g·m-2·a-1)>沙蒿群落(115 g·m-2·a-1),其中退耕草地显著高于其他3种植被类型. 退耕草地0~10 cm土层细根生产量占0~40 cm土层总细根生产量的40.4%,在4种植被类型中最高. 退耕草地细根周转时间为0.51 a,低于其他3种植被类型.  相似文献   

7.
以长白落叶松和水曲柳混交林为研究对象,根据长白落叶松和水曲柳的栽植行数比选择4种不同行状混交比例的林分(类型Ⅰ:5∶3;类型Ⅱ:6∶4;类型Ⅲ:5∶5;类型Ⅳ:1∶1),建立长白落叶松和水曲柳生物量似乎不相关模型,分析林分各林层和生态系统碳储量的差异及其分配规律。结果表明: 不同林分类型的乔木层碳储量为39.86~50.12 t·hm-2,类型Ⅰ、Ⅱ和Ⅳ的乔木层碳储量显著高于类型Ⅲ;林下植被层碳储量为0.10~0.30 t·hm-2,类型Ⅱ的林下植被层碳储量显著高于其他类型;凋落物层碳储量为4.43~6.96 t·hm-2,类型Ⅱ、Ⅲ凋落物层碳储量显著高于其他类型;土壤层碳储量为34.97~54.66 t·hm-2,类型Ⅱ土壤层碳储量显著高于其他类型。在整个生态系统中,林分类型Ⅰ~Ⅳ碳储量分别为90.43、108.27、85.83、89.92 t·hm-2,类型Ⅱ生态系统碳储量显著高于其他类型。乔木层和土壤层为生态系统主要碳库,分别占生态系统碳储量的43.3%~55.7%和38.7%~50.5%。建议在未来的营林造林中,以6行长白落叶松和4行水曲柳交替种植。  相似文献   

8.
在生物量调查的基础上,对广西7、29和32 a格木人工林生态系统碳储量及其分配特征进行了研究.结果表明: 格木各器官碳含量在509.0~572.4 g·kg-1,大小顺序为:树干>树枝>树根>树皮>树叶;不同林龄间格木人工林的灌木层、草本层和凋落物层碳含量无显著差异;土壤层(0~100 cm)碳含量随土层深度的增加而降低,随林龄的增加而增大.7、29和32 a格木人工林乔木层碳储量分别为21.8、100.0和121.6 t·hm-2,各器官碳储量大小顺序与碳含量一致;生态系统碳储量分别为132.6、220.2和242.6 t·hm-2,乔木层和土壤层为主要碳库,占生态系统碳储量的97%以上.乔木层碳储量分配随着林龄的增加而增大,土壤碳储量分配则减小,而林龄对灌木层、草本层和凋落物层碳储量分配的影响无明显规律.  相似文献   

9.
利用第八次森林资源连续清查数据和不同树种的树干密度、含碳率等参数,运用生物量清单法,估算了西藏自治区森林乔木层植被碳储量和碳密度.结果表明: 西藏森林生态系统乔木层植被总碳储量为1.067×109 t,平均碳密度为72.49 t·hm-2.不同林分乔木层碳储量依次为:乔木林>散生木>疏林>四旁树.不同林种乔木层碳储量大小依次为:防护林>特殊用途林>用材林>薪炭林,其中前两者所占比例为88.5%;不同林种乔木层平均碳密度为88.09 t·hm-2.不同林组乔木层碳储量与其分布面积排序一致,依次为:成熟林>过熟林>近熟林>中龄林>幼龄林.其中,成熟林乔木层碳储量占不同林组乔木层总碳储量的50%,并且不同林组乔木层碳储量随着林龄的增加呈先上升后下降的趋势.  相似文献   

10.
丁一阳  毛子军  张玲  丁力 《植物研究》2015,35(4):604-611
土壤有机碳含量是全球生态系统碳储量变化的重要指标之一,本研究以空间替代时间序列的方法,分别选取了小兴安岭地区原始阔叶红松林和枫桦次生林并测定土壤有机碳库、土壤全氮含量、土壤微生物量碳及土壤相关理化性质,结果表明,土壤有机碳含量(SOC)、土壤全氮含量(TN)、土壤微生物量碳(MBC)、土壤含水率等指标随着土壤层的深度增加而逐渐减少最后趋于稳定,而土壤容重随着土壤层的加深而增大。在原始林中0~10和10~20cm层的SOC、TN含量差异不显著,而次生林则差异显著。原始阔叶红松林和枫桦次生林的土壤有机碳密度(SOCD)分别为21.46和21.3 kg·m-2,差异不显著。原始林和次生林的平均有机碳含量分别为35.79,28.6 g·kg-1,土壤全氮含量分别为2.86,1.83 g·kg-1,枫桦次生林MBC与SOC的线性相关性高于原始林。结果表明原始林土壤肥力高于次生林,在今后次生林的管理中应适当混栽针叶树种,原始林中应适当间伐使地下碳储量增加。  相似文献   

11.
闽江河口湿地植物氮磷吸收效率的季节变化   总被引:9,自引:0,他引:9  
以闽江河口湿地土著种芦苇与入侵种互花米草为研究对象,测定了二者地上生物量和氮、磷吸收效率.结果表明:芦苇和互花米草地上生物量的季节变化呈典型的单峰值曲线,芦苇夏季地上生物量最大,达到2195.33 g·m-2,互花米草则秋季最大,达到3670.02 g·m-2;不同季节芦苇和互花米草氮、磷吸收效率均呈单峰值曲线,芦苇氮、磷吸收效率分别在夏季和秋季达到最高(21.06 和1.12 g·m-2),互花米草均在秋季达到峰值(26.76和3.23 g·m-2);芦苇和互花米草的氮吸收效率极显著大于磷(P<0.01),且互花米草的氮、磷吸收效率显著大于芦苇(P<0.05);植物N/P、C/N和C/P对植物氮、磷吸收效率有一定指示意义.  相似文献   

12.
人为干扰对大兴安岭北坡兴安落叶松林粗木质残体的影响   总被引:2,自引:0,他引:2  
比较了兴安落叶松天然林和两种不同干扰类型兴安落叶松林(一次干扰林、二次干扰林)之间活立木蓄积、粗木质残体(CWD)蓄积和组成的差异.结果表明:天然林、一次干扰林和二次干扰林的活立木蓄积量分别为161.6、138.3和114.8 m3·hm-2,粗木质残体的蓄积量分别为69.77、36.64和32.61 m3·hm-2.天然林粗木质残体大部分径级在20~40 cm,其中倒木、枯立木分别占总材积的72%和28%;一次干扰林和二次干扰林粗木质残体大部分径级在10~30 cm,其中倒木、枯立木和伐桩分别占各自总材积的70%、14%、16%和57%、15%、28%.人为干扰造成兴安落叶松林粗木质残体蓄积减少,改变了粗木质残体的组成.  相似文献   

13.
人为干扰对大兴安岭北坡兴安落叶松林粗木质残体的影响   总被引:4,自引:0,他引:4  
比较了兴安落叶松天然林和两种不同干扰类型兴安落叶松林(一次干扰林、二次干扰林)之间活立木蓄积、粗木质残体(CWD)蓄积和组成的差异.结果表明:天然林、一次干扰林和二次干扰林的活立木蓄积量分别为161.6、138.3和114.8 m3·hm-2,粗木质残体的蓄积量分别为69.77、36.64和32.61 m3·hm-2.天然林粗木质残体大部分径级在20~40 cm,其中倒木、枯立木分别占总材积的72%和28%;一次干扰林和二次干扰林粗木质残体大部分径级在10~30 cm,其中倒木、枯立木和伐桩分别占各自总材积的70%、14%、16%和57%、15%、28%.人为干扰造成兴安落叶松林粗木质残体蓄积减少,改变了粗木质残体的组成.  相似文献   

14.
镉胁迫对金银花生理生态特征的影响   总被引:33,自引:0,他引:33  
采用水培试验方法,研究了不同浓度镉(Cd)(0、5、10、25和50 mg·L-1) 胁迫条件下藤本植物金银花的生长和生理特性.结果表明: 与对照相比,Cd胁迫对金银花的生长未造成明显影响,在5~50 mg·L-1 Cd处理下,其生物量无明显差异(P>0.05),在低浓度Cd(5 mg·L-1)处理下生物量有所增加,叶、根生物量和总生物量分别增加了2.88%、2.33%和1.25%,说明金银花对Cd具有较强的抗性.在低浓度Cd胁迫下,植物各器官的含水量和可溶性蛋白含量均有所降低,而根系和叶片的丙二醛含量分别增加51.90%和23.07%,叶绿素和类胡萝卜素含量则增加15.87%和24.89%,超氧化物歧化酶活性也显著增强.随着Cd浓度的增高,金银花体内的叶绿素和类胡萝卜素含量,以及超氧化物歧化酶活性均有所降低.  相似文献   

15.
采用复合网袋法,研究了冬季南京紫金山三角枫落叶在无干扰溪流和生态恢复溪流中的分解过程.结果表明:112 d后,三角枫落叶无灰干质量剩余率为31%~62%,分解速率符合指数衰减模型(P<0.05).在生态恢复溪流和无干扰溪流的流水生境中, 三角枫落叶的分解速率分别为0.0030 d-1和0.0064 d-1,静水生境中分别为0.0018 d-1和0.0016 d-1.流水生境中,无干扰溪流网袋内的大型底栖动物多度和生物量显著高于恢复溪流(P<0.05),而静水中无显著差异(P>0.05).无干扰溪流中的撕食者多度比例最高(70.4%),以栉水虱为主;生态恢复溪流中滤食者的多度比例最高(37.8%),以长跗摇蚊属为主.流水生境中三角枫落叶的分解速率与撕食者物种丰富度和多度相关性显著(P<0.01),而与生物量的相关性不显著(P>0.05).说明冬季溪流中撕食者的物种丰富度和多度决定三角枫落叶的分解速率.  相似文献   

16.
岩溶区青冈栎整树蒸腾的季节变化   总被引:1,自引:0,他引:1  
应用Granier热消散树干液流技术,在裸露岩溶区坡地上对青冈栎样树的树干液流和整树蒸腾过程变化及其驱动因子进行了研究.结果表明:青冈栎树干液流密度与树木胸径大小的关系是随机的,日间液流密度峰值出现在13:30—14:30;日液流密度峰值夏季最大,为56.00 g H2O·m-2·s-1,春季最小,在35.86 g H2O·m-2·s-1.岩溶区单树日蒸腾量随着天气变化起伏较大,单树日蒸腾量与水汽压亏缺和太阳辐射呈显著的幂函数相关关系(R=0.97,P<0.01).平均整树日蒸腾量变化格型为夏季高冬春低,秋季(旱季)随土壤水分的减少由高到低变化.与其他地区的树种相比,即使受旱季的干燥少土双重胁迫,裸露岩溶区坡地上的青冈栎整树日蒸腾量仍然较高,推断在岩溶区旱季青冈栎的水分来源可能很大程度上依赖于富水的表层岩溶带.  相似文献   

17.
苦瓜叶提取物对美洲斑潜蝇取食和产卵行为的抑制作用   总被引:2,自引:0,他引:2  
美洲斑潜蝇是危害蔬菜、观赏植物的重大害虫之一.苦瓜叶乙醇提取物(浓度为2000~4000 μg·ml-1)对美洲斑潜蝇成虫的取食和产卵都具有较强的抑制作用.用环己烷、乙酸乙酯、正丁醇和水依次对乙醇提取物进行萃取,并测试了4种萃取物对美洲斑潜蝇成虫取食和产卵的抑制作用.结果表明: 环己烷、乙酸乙酯、正丁醇和水萃取物在浓度为1000 μg·ml-1时,处理后2 d对美洲斑潜蝇成虫的拒食率分别是11.08%、34.89%、22.99%和 0,产卵抑制率分别是0、30.91%、6.45%和 0.其中,乙酸乙酯萃取物的活性最强,当其浓度为4000 μg·ml-1时,处理后2 d对美洲斑潜蝇成虫的拒食率和产卵忌避率分别为70.95% 和69.49%.乙酸乙酯萃取物经硅胶柱层析分离得到(19S,23E)-5β,19-环氧-19-甲氧葫芦素-6,23-二烯-3β,25-二醇 (化合物1)、(19R,23E)-5β,19-环氧-19-甲氧葫芦素-6,23-二烯-3β,25-二醇(化合物2) 和3β,7β,25-三羟基葫芦素-5,23-二烯-19-醛缩-3-O-β-D-吡喃葡糖苷(化合物3),3种化合物在供试的浓度(100~400 μg·ml-1)条件下对美洲斑潜蝇的取食和产卵行为都有明显的抑制作用.在400μg·ml-1浓度时,化合物1、化合物2和化合物3对美洲斑潜蝇成虫的拒食率分别是66.89%、53.53%和78.02%,产卵抑制率分别是76.32%、58.36%和78.36%.  相似文献   

18.
大兴安岭呼中林区粗木质残体贮量及其环境梯度   总被引:5,自引:0,他引:5  
对大兴安岭呼中林区主要植被类型、兴安落叶松不同林型内粗木质残体贮量进行对比研究,并利用除趋势典范对应分析对其环境梯度进行定量分析.结果表明:云杉林粗木质残体贮量较高,为0.20 m3·hm-2,且不同植被类型之间呈显著性差异;兴安落叶松不同林型粗木质残体贮量在0~0.28 m3·hm-2,其中偃松群落最高,为0.28 m3·hm-2,泥炭藓-杜香-落叶松林最低(0),且各林型之间差异不显著.粗木质残体贮量分布格局较复杂,受多因素交叉影响;海拔、坡位等地形因子和林分年龄、郁闭度等林分条件是影响森林粗木质残体贮量的主要环境因子,二者综合作用表达了该地区森林粗木质残体贮量的空间生态梯度.  相似文献   

19.
对四川西部亚高山地区连香树、糙皮桦、云南松和云杉4种主要人工林生态系统的生物量、土壤及林木器官C、N含量进行了测定.结果表明:林木体内C的分布与器官年龄的关系不明显,而N和C/N的分布与年龄的关系较为密切.幼嫩器官中的N含量大于老化器官,老化器官中的C/N比值大于幼嫩器官,且针叶林地枯落叶中的C/N比值大于阔叶林地.C、N在土壤表层具有明显的富集作用,在整个人工林生态系统(包括林木、枯落物和土壤0~40 cm)中的积累量分别达 176.75~228.05 t·hm-2和 11.06~16.54 t·hm-2,在土壤-枯落物分室和林木分室中的分配比例为C (1.9~3.3)∶1,N (15.6~41.5)∶1,且针叶林的“C汇”功能大于阔叶林.阔叶林地的凋落叶分解速率一般大于针叶林地,周转期分别为2.2~3.7 a和3.9~4.2a;在凋落叶分解过程中,C在所有林地均呈超速释出态势,周转期为1.9~3.4 a;N在连香树和糙皮桦林地呈超速释出态势,周转期为1.9~3.2 a,在云南松和云杉林地呈慢速释出态势,周转期为6.7~8.5 a.  相似文献   

20.
中国东北羊草草原生长季内产量生态模拟及信息参数应用   总被引:3,自引:0,他引:3  
通过对中国北方羊草草原生物量动态、生物量垂直空间格局及其与环境因子相互关系等主要产量生态数量特征的模拟与内在相关性的研究 ,结果表明 ,草地地上生物量的生长规律呈“单峰”型 ,最大地上生物量出现在 8月 5日 ,其值为1 97.3g· m- 2 干物质 ,而后下降 ;在达到峰值前 ,符合 logistic模型 ,进一步分析模型有关特征值获得了草地有效管理期为返青后的第 73天到第 1 1 9天等十分重要的产量生态信息参数。生长季内地上生物量动态与前一个月的平均气温 ( R=0 .82 87)和积累降雨量 ( R=0 .8932 )均呈极显著正相关 ,这是实施科学水肥管理的重要参数 ;而地上部生物量最大绝对增长速率 ( AGR)出现在 6月 2 0日至 7月 5日 ,平均为 3.35 33g· m- 2 · d- 1干物质 ;而地上部生物量最大相对增长速率( RGR)出现在 5月 2 0日至 6月 5日 ,平均为 0 .0 6 6 2 g· g- 1· d- 1干物质 ;在生长后期绝对增长速率和相对增长速率均出现负值 ,这表明地上部生物量的生长效率在生长初期最高。地上生物量垂直空间格局由下向上呈幂函数变化 ,其模型为 :Bn=a Xb,其中 93%的产量集中在 4 0 cm以下 ,这对不同的家畜的选择利用与刈割利用提供了依据 ;不同种群对草原牧草产量形成的作用是不同的 ,羊草种群对草原牧草产量形成的正向  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号