首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
During infection, the functional status of the innate immune system is tightly regulated. Although signals resulting in activation have been well characterized, counterregulative mechanisms are poorly understood. Suppressor of cytokine signaling (SOCS) proteins have been characterized as cytokine-inducible negative regulators of Janus kinase/STAT signaling in cells of hemopoietic origin. To analyze whether SOCS proteins could also be induced by pathogen-derived stimuli, we investigated the induction of SOCS-1 and SOCS-3 after triggering of macrophage cell lines, bone marrow-derived dendritic cells, and peritoneal macrophages with CpG-DNA. In this study, we show that CpG-DNA, but not GpC-DNA, induces expression of mRNA for SOCS-1 and SOCS-3 in vitro and in vivo. SOCS mRNA expression could be blocked by chloroquine and was independent of protein synthesis. Inhibitors of the mitogen-activated protein kinase pathway triggered by CpG-DNA were able to impede induction of SOCS mRNA. CpG-DNA triggered synthesis of SOCS proteins that could be detected by Western blotting. SOCS proteins were functional because they inhibited IFN-gamma as well as IL-6- and GM-CSF-induced phosphorylation of STAT proteins. Furthermore, IFN-gamma-induced up-regulation of MHC class II molecules was also prevented. The same effects could be achieved by overexpression of SOCS-1. Hence, the results indicate a substantial cross-talk between signal pathways within cells. They provide evidence for regulative mechanisms of Janus kinase/STAT signaling after triggering Toll-like receptor signal pathways.  相似文献   

2.
3.
4.
Mycobacterium tuberculosis (MTB) persists inside macrophages despite vigorous immune responses. MTB and MTB 19-kDa lipoprotein inhibit class II MHC (MHC-II) expression and Ag processing by a Toll-like receptor 2-dependent mechanism that is shown in this study to involve a defect in IFN-gamma induction of class II transactivator (CIITA). Exposure of macrophages to MTB or MTB 19-kDa lipoprotein inhibited IFN-gamma-induced MHC-II expression, but not IL-4-induced MHC-II expression, by preventing induction of mRNA for CIITA (total, type I, and type IV), IFN regulatory factor-1, and MHC-II. MTB 19-kDa lipoprotein induced mRNA for suppressor of cytokine signaling (SOCS)1 but did not inhibit IFN-gamma-induced Stat1 phosphorylation. Furthermore, the lipoprotein inhibited MHC-II Ag processing in SOCS1(-/-) macrophages. MTB 19-kDa lipoprotein did not inhibit translocation of phosphorylated Stat1 to the nucleus or Stat1 binding to and transactivation of IFN-gamma-sensitive promoter constructs. Thus, MTB 19-kDa lipoprotein inhibited IFN-gamma signaling independent of SOCS1 and without interfering with the activation of Stat1. Inhibition of IFN-gamma-induced CIITA by MTB 19-kDa lipoprotein may allow MTB to evade detection by CD4(+) T cells.  相似文献   

5.
6.
7.
CD40 is a type I membrane-bound molecule belonging to the TNFR superfamily that is expressed on various immune cells including macrophages and microglia. The aberrant expression of CD40 is involved in the initiation and maintenance of various human diseases including multiple sclerosis, arthritis, atherosclerosis, and Alzheimer's disease. Inhibition of CD40 signaling has been shown to provide a significant beneficial effect in a number of animal models of human diseases including the aforementioned examples. We have previously shown that IFN-gamma induces CD40 expression in macrophages and microglia. IFN-gamma leads to STAT-1alpha activation directly and up-regulation of NF-kappaB activity due to the secretion and subsequent autocrine signaling of TNF-alpha. However, TNF-alpha alone is not capable of inducing CD40 expression in these cells. Suppressor of cytokine signaling 1 protein (SOCS-1) is a cytokine-inducible Src homology 2-containing protein that regulates cytokine receptor signaling by inhibiting STAT-1alpha activation via a specific interaction with activated Janus kinase 2. Given the important role of CD40 in inflammatory events in the CNS as well as other organ systems, it is imperative to understand the molecular mechanisms contributing to both CD40 induction and repression. We show that ectopic expression of SOCS-1 abrogates IFN-gamma-induced CD40 protein expression, mRNA levels, and promoter activity. Additionally, IFN-gamma-induced TNF-alpha secretion, as well as STAT-1alpha and NF-kappaB activation, are inhibited in the presence of SOCS-1. We conclude that SOCS-1 inhibits cytokine-induced CD40 expression by blocking IFN-gamma-mediated STAT-1alpha activation, which also then results in suppression of IFN-gamma-induced TNF-alpha secretion and subsequent NF-kappaB activation.  相似文献   

8.
9.
10.
Trophoblast cells (TBCs) form the blastocyst-derived component of the placenta and play essential roles in fetal maintenance. The proinflammatory cytokine IFN-gamma plays a central role in activating cellular immunity, controlling cell proliferation, and inducing apoptosis. IFN-gamma is secreted by uterine NK cells in the placenta during pregnancy and in mice is required for proper formation of the decidual layer and remodeling of the uterine vasculature. Despite the presence of IFN-gamma in the placenta, TBCs do not express either MHC class Ia or class II Ags, and are resistant to IFN-gamma-mediated apoptosis. In this study, we demonstrate that IFN-gamma-induced expression of multiple genes is significantly reduced in human trophoblast-derived choriocarcinoma cells relative to HeLa epithelial or fibroblast cells. These results prompted us to investigate the integrity of the JAK/STAT-1 pathway in these cells. Choriocarcinoma cells and HeLa cells express comparable levels of the IFN-gamma receptor. However, tyrosine phosphorylation of JAK-2 is compromised in IFN-gamma-treated choriocarcinoma cells. Moreover, phosphorylation of STAT-1 at tyrosine 701 is substantially reduced in both IFN-gamma-treated human choriocarcinoma and primary TBCs compared with HeLa cells or primary foreskin fibroblasts. A corresponding reduction of both IFN regulatory factor 1 mRNA and protein expression was observed in IFN-gamma-treated TBCs. Treatment of choriocarcinoma cells with the tyrosine phosphatase inhibitor pervanadate significantly enhanced IFN-gamma-inducible JAK and STAT-1 tyrosine phosphorylation and select IFN-gamma-inducible gene expression. We propose that phosphatase-mediated suppression of IFN-gamma signaling in TBCs contributes to fetal maintenance by inhibiting expression of genes that could be detrimental to successful pregnancy.  相似文献   

11.
Mesenchymal stromal cells (MSC) possess immunosuppressive properties, yet when treated with IFN-gamma they acquire APC functions. To gain insight into MSC immune plasticity, we explored signaling pathways induced by IFN-gamma required for MHC class II (MHC II)-dependent Ag presentation. IFN-gamma-induced MHC II expression in mouse MSC was enhanced by high cell density or serum deprivation and suppressed by TGF-beta. This process was regulated by the activity of the type IV CIITA promoter independently of STAT1 activation and the induction of the IFN regulatory factor 1-dependent B7H1/PD-L1 encoding gene. The absence of direct correlation with the cell cycle suggested that cellular connectivity modulates IFN-gamma responsiveness for MHC II expression in mouse MSC. TGF-beta signaling in mouse MSC involved ALK5 and ALK1 TGF-beta RI, leading to the phosphorylation of Smad2/Smad3 and Smad1/Smad5/Smad8. An opposite effect was observed in human MSC where IFN-gamma-induced MHC II expression occurred at the highest levels in low-density cultures; however, TGF-beta reduced IFN-gamma-induced MHC II expression and its signaling was similar as in mouse MSC. This suggests that the IFN-gamma-induced APC features of MSC can be modulated by TGF-beta, serum factors, and cell density in vitro, although not in the same way in mouse and human MSC, via their convergent effects on CIITA expression.  相似文献   

12.
One important mechanism of cross-regulation by opposing cytokines is inhibition of signal transduction, including inhibition of Janus kinase-STAT signaling by suppressors of cytokine signaling. We investigated whether IFN-gamma, a major activator of macrophages, inhibited the activity of IL-10, an important deactivator. Preactivation of macrophages with IFN-gamma inhibited two key anti-inflammatory functions of IL-10, the suppression of cytokine production and of MHC class II expression. Gene expression profiling showed that IFN-gamma broadly suppressed the ability of IL-10 to induce or repress gene expression. Although IFN-gamma induced expression of suppressor of cytokine signaling proteins, IL-10 signal transduction was not suppressed and IL-10 activation of Janus kinases and Stat3 was preserved. Instead, IFN-gamma switched the balance of IL-10 STAT activation from Stat3 to Stat1, with concomitant activation of inflammatory gene expression. IL-10 activation of Stat1 required the simultaneous presence of IFN-gamma. These results demonstrate that IFN-gamma operates a switch that rapidly regulates STAT activation by IL-10 and alters macrophage responses to IL-10. Dynamic regulation of the activation of different STATs by the same cytokine provides a mechanism by which cells can integrate and balance signals delivered by opposing cytokines, and extends our understanding of cross-regulation by opposing cytokines to include reprogramming of signaling and alteration of function.  相似文献   

13.
NO overproduction has been suggested to contribute to the immunopathology related to malaria infection. Even though a role for some parasite molecules (e.g., GPI) in NO induction has been proposed, the direct contribution of hemozoin (HZ), another parasite metabolite, remains to be established. Therefore, we were interested to determine whether Plasmodium falciparum (Pf) HZ and synthetic HZ, beta-hematin, alone or in combination with IFN-gamma, were able to induce macrophage (Mphi) NO synthesis. We observed that neither Pf HZ nor synthetic HZ led to NO generation in B10R murine Mphi; however, they significantly increased IFN-gamma-mediated inducible NO synthase (iNOS) mRNA and protein expression, and NO production. Next, by investigating the transductional mechanisms involved in this cellular regulation, we established that HZ induces extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase phosphorylation as well as NF-kappaB binding to the iNOS promoter, and enhances the IFN-gamma-dependent activation of both second messengers. Of interest, cell pretreatment with specific inhibitors against either NF-kappaB or the ERK1/2 pathway blocked the HZ + IFN-gamma-inducible NF-kappaB activity and significantly reduced the HZ-dependent increase on IFN-gamma-mediated iNOS and NO induction. Even though selective inhibition of the Janus kinase 2/STAT1alpha pathway suppressed NO synthesis in response to HZ + IFN-gamma, HZ alone did not activate this signaling pathway and did not have an up-regulating effect on the IFN-gamma-induced Janus kinase 2/STAT1alpha phosphorylation and STAT1alpha binding to the iNOS promoter. In conclusion, our results suggest that HZ exerts a potent synergistic effect on the IFN-gamma-inducible NO generation in Mphi via ERK- and NF-kappaB-dependent pathways.  相似文献   

14.
MHC class II induction by cytokines has been suggested to play a major role in the initiation and propagation of immune and autoimmune processes. TNF-alpha has been found both to enhance and also to inhibit IFN-gamma-induced MHC class II expression. In the present studies, the effect of TNF-alpha on IFN-gamma induced MHC class II expression was tested in various cell lines. On the basis of the data, we propose that, depending on the stage of differentiation and maturation of the cells, TNF-alpha might synergize or antagonize the affects of IFN-gamma on the regulation of MHC class II expression. Thus, in immature cells such as HL-60 or THP-1, TNF-alpha enhances IFN-gamma-induced class II expression. However, when differentiation was induced in these cells by TPA or IFN-gamma, the additive effect of TNF-alpha on the IFN-gamma induced DR expression was eliminated. Furthermore, TNF-alpha down-regulates the IFN-gamma-induced class II expression in differentiated cells such as human skin fibroblasts or activated macrophages. In bone marrow cells induced to differentiate in vitro, TNF-alpha decreased the IFN-gamma-induced MHC class II expression in a maturation-dependent fashion. These results provide a rational explanation for the conflicting reports regarding the effect of TNF-alpha on IFN-gamma-induced class II expression. But more importantly they may be relevant to the biologic function of TNF-alpha. Thus, we show that TNF-alpha-treated mice have reduced level of Ia expression on peritoneal macrophages and in vivo treatment with TNF-alpha antagonizes the ability of IFN-gamma to induce class II expression on these macrophages.  相似文献   

15.
16.
17.
The production of eotaxin, which is a critical mediator for airway inflammation, is inhibited by IFN-gamma. Here, we investigated the precise mechanisms underlying IFN-gamma-dependent inhibition of eotaxin production using mouse embryonic fibroblasts (MEF). MEF produced high levels of eotaxin in STAT6-dependent manner when they were cultured with both IL-4 and TNF-alpha. However, the eotaxin production by MEF was strongly inhibited by addition of IFN-gamma. Western-blotting analysis demonstrated that IFN-gamma downmodulated STAT6 phosphorylation induced by IL-4 and TNF-alpha. Moreover, IFN-gamma did not exhibit its inhibitory effect on both STAT6-phosphorylation and eotaxin production in MEF obtained from deficient mice in STAT1, a key molecule of IFN-gamma signaling. We also demonstrated that SOCS-1, a potent inhibitory molecule of IL-4 signaling, was induced by IFN-gamma in STAT1-dependent manner. This indicated that SOCS-1 might be involved in IFN-gamma-mediated STAT1-dependent inhibition of eotaxin production. In SOCS-1(-/-) MEF, IFN-gamma inhibited neither STAT6 phosphorylation nor eotaxin production induced by IL-4 and TNF-alpha. Conversely, retroviral transduction of SOCS-1 into MEF inhibited STAT6 phosphorylation and eotaxin production induced by IL-4 and TNF-alpha, in the absence of IFN-gamma. Thus, we demonstrated that IFN-gamma-induced inhibition of STAT6 phosphorylation and eotaxin production were mediated by SOCS-1 induced in STAT1-dependent manner.  相似文献   

18.
Astrocytes can be induced by interferon-gamma (IFN-gamma) to express class II major histocompatibility complex (MHC) antigens. This study was undertaken to elucidate the intracellular signaling pathways involved in IFN-gamma induction of class II MHC. We examined the effects of Na+/H+ antiporter and protein kinase C (PKC) inhibitors on class II expression and Na+ influx in astrocytes. We found that amiloride and ethyl isopropylamiloride, inhibitors of Na+/H+ exchange, blocked IFN-gamma-induced class II gene expression. IFN-gamma stimulated Na+ influx, and this increased influx was inhibited by amiloride. Treatment of astrocytes with the PKC inhibitor H7 also blocked the increase in Na+ uptake induced by IFN-gamma, indicating that IFN-gamma-induced PKC activation is required for subsequent Na+ influx. IFN-gamma treatment produced an increase of total PKC activity, which was associated with a rapid translocation of PKC activity from cytosolic to particulate fraction. H7 and another PKC inhibitor, staurosporine, inhibited IFN-gamma-induced class II gene expression. However, 4 beta-phorbol 12 beta-myristate 13 alpha-acetate, a potent PKC activator, did not affect class II expression. Taken together, our data indicate that both IFN-gamma-induced PKC activation and Na+ influx are required for class II MHC expression in astrocytes but that activation of PKC alone is not sufficient for ultimate expression of this gene.  相似文献   

19.
Human beta-defensins (HBDs) are a major class of antimicrobial peptides that play an important role in the innate immune response, however, the induction and regulation of these antimicrobial peptides is not well understood. We demonstrate here that stimulation of keratinocytes with TNF-alpha/IFN-gamma induces HBD-2 and HBD-3 by activating STAT-1 and NF-kappaB signaling. We further demonstrate that IL-4 and IL-13 activate STAT-6 and induce the suppressors of cytokine signaling (SOCS)-1 and -3. This interferes with STAT-1 and NF-kappaB signaling, thereby inhibiting TNF-alpha/IFN-gamma-mediated induction of HBD-2 and HBD-3. These data suggest that targeting the STAT-1-signaling pathway or suppressor of cytokine signaling expression enhances beta-defensin expression and represents a new therapeutic strategy for reduction of infection in human diseases associated with beta-defensin deficiency.  相似文献   

20.
IL-12 directly acts on T cells and NK cells to induce IFN-gamma production. IFN-gamma plays an important role in anti-tumor effect of IL-12. In spite of various functions of IL-12 on immunocytes, the direct effect of IL-12 on tumor cells has not been fully clarified. The present study investigated the direct effect of IL-12 on eight murine tumor cell lines in vitro. IL-12 did not directly up-regulate expression of MHC class I on tumor cells, but enhanced IFN-gamma-induced up-regulation of MHC class I expression in MC-38, MCA102, MCA205 and MCA207 cells. IL-12 alone did not activate STAT1, but IL-12 enhanced IFN-gamma-mediated STAT1 phosphorylation in MC-38, MCA102, MCA205, MCA207 and Colon-26-NL-17 cells, which expressed IL-12 receptor beta1 mRNA. In the other side, Panc-02, B16-BL6 and 266-6 cells were not affected by IL-12, in which expression of IL-12 receptor beta1 mRNA was not detected. Anti-IL-12 mAb inhibited the direct effect of IL-12 on MC-38 cells. Moreover, nuclear localization of NF-kappaB was observed after stimulation of IL-12 or IL-12 p40 in MC-38 and Colon-26-NL-17 cells, but not in Panc-02 cells. These findings suggest that IL-12 directly acts on tumor cells through IL-12 receptor beta1 to activate NF-kappaB and enhance IFN-gamma-mediated STAT1 phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号