首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 837 毫秒
1.
Carnitine acyltransferase activities for acetyl- and octanoyl-CoA (coenzyme A) occur in isolated peroxisomal, mitochondrial, and microsomal fractions from rat and pig liver. Solubility studies indicated that both peroxisomal carnitine acyltransferases were in the soluble matrix. In contrast, the microsomal carnitine acyltransferases were tightly associated with their membrane. The microsomal short-chain transferase, carnitine acetyltransferase, was solubilized and stabilized by extensive treatment of the membrane with 0.4 m KCl or 0.3 m sucrose in 0.1 m pyrophosphate at pH 7.5. The same treatment only partially solubilized the microsomal medium-chain transferase, carnitine octanoyltransferase.Although half of the total carnitine acetyltransferase activity in rat liver resides in peroxisomes and microsomes, previous reports have only investigated the mitochondrial activity. Transferase activity for acetyl- and octanoyl-CoA were about equal in peroxisomal and in microsomal fractions. A 200-fold purification of peroxisomal and microsomal carnitine acetyltransferases was achieved using O-(diethylaminoethyl)-cellulose and cellulose phosphate chromatography. This short-chain transferase preparation contained less than 5% as much carnitine octanoyltransferase and acyl-CoA deacylase activities. This fact, plus differences in solubility and stability of the microsomal transferase system for acetyl- and octanoyl-CoA indicate the existence of two separate enzymes: a carnitine acetyltransferase and a carnitine octanoyltransferase in peroxisomes and in microsomes.Peroxisomal and microsomal carnitine acetyltransferases had similar properties and could be the same protein. They showed identical chromatographic behavior and had the same pH activity profiles and major isoelectric points. They also had the same apparent molecular weight by gel filtration (59,000) and the same relative velocities and Km values for several short-chain acyl-CoA substrates. Both were active with propionyl-, acetyl-, malonyl-, and acetyacetyl-CoA, but not with succinyl- and β-hydroxy-β-methylglutaryl-CoA as substrates.  相似文献   

2.
The purpose of this study was to characterize the physical, kinetic, and immunological properties of carnitine acyltransferases purified from mouse liver peroxisomes. Peroxisomal carnitine octanoyltransferase and carnitine acetyltransferase were purified to apparent homogeneity from livers of mice fed a diet containing the hypolipidemic drug Wy-14,643 [( 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio]-acetic acid). Both enzymes have a molecular weight of 60,000 and a similar pH optimum. Carnitine octanoyltransferase had a maximum activity for C6 moieties while the maximum for carnitine acetyltransferase was with C3 and C4 moieties. The apparent Km values were between 2 and 20 microM for the preferred acyl-CoA substrates, and the Km values for L-carnitine varied depending on the acyl-CoA cosubstrates used. The Hill coefficient, n, was approximately 1 for all acyl-CoAs tested, indicating Michaelis-Menten kinetics. Carnitine octanoyltransferase retained its maximum activity when preincubated with 5,5'-dithiobis-(2-nitrobenzoate) at pH 7.0 or 8.5. Neither carnitine octanoyltransferase nor carnitine acetyltransferase were inhibited by malonyl-CoA. The immunology of carnitine octanoyltransferase is discussed. These data indicate that peroxisomal carnitine octanoyltransferase and carnitine acetyltransferase function in vivo in the direction of acylcarnitine formation, and suggest that the concentration of L-carnitine could influence the specificity for different acyl-CoA substrates.  相似文献   

3.
Although spermatozoa possess a very active carnitine acetyltransferase, there is no satisfactory explanation for such a high activity. In order to help elucidate possible roles for carnitine acetyltransferase in spermatozoa, we examined the intracellular location and properties of carnitine acetyltransferase from ejaculated ram spermatozoa. The spermatozoa were disrupted by hypotonic treatment with 10 mm phosphate buffer (pH 7.4), followed by mild sonication. The resulting homogenate was separated by sucrose step-gradient centrifugation into soluble, plasma membrane, acrosomal membrane, and mitochondrial fractions. These fractions were characterized by electron microscopy and marker enzyme assays. The particulate fractions were made soluble by treatment with 0.1% deoxycholate and then were assayed for carnitine acetyltransferase activity. Carnitine acetyltransferase activity was found exclusively in the mitochondrial fraction with a specific activity of 0.151 μmol CoASH · min?1 · mg?1. The apparent Km values for acetyl-CoA and l-carnitine were 1.1 × 10?5 and 1.3 × 10?4m respectively.  相似文献   

4.
Purification and properties of carnitine acetyltransferase from human liver   总被引:2,自引:0,他引:2  
Carnitine acetyltransferase was purified from the supernatant obtained after centrifugation of human liver homogenate to a final specific activity of 78.75 unit.mg-1 with acetyl-CoA as a substrate. Human carnitine acetyltransferase is a monomer of 60.5 kDa with maximum activity in the presence of propionyl-CoA and a pH optimum of 8.7. Apparent Km values for acetyl-CoA are three times lower than for decanoyl-CoA. Km values for L-carnitine in the presence of acetyl-CoA are six times lower than in the presence of decanoyl-CoA. Km values for acetylcarnitine are three times lower than for octanoylcarnitine. The polyclonal antibodies against human carnitine acetyltransferase recognize a 60.5-kDa peptide in the purified preparation of human liver and brain homogenates and in immunoblots of mitochondrial and peroxisomal fractions from human liver. Immunoprecipitation and SDS/PAGE analysis of 35S-labelled proteins produced by human fibroblasts indicate that mitochondrial carnitine acetyltransferase is synthesized as a precursor of 65 kDa. We also purified carnitine acetyltransferase from the pellet obtained after centrifugation of liver homogenate. The pellet was extracted by sonication in the presence of 0.5% Tween 20. The chromatographic procedures for the purification and the kinetic, physical and immunological properties of pellet-extracted carnitine acetyltransferase are similar to those of carnitine acetyltransferase purified from the supernatant of human liver homogenate.  相似文献   

5.
Carnitine acyltransferases catalyze the exchange of acyl groups between carnitine and CoA. The members of the family can be classified on the basis of their acyl-CoA selectivity. Carnitine acetyltransferases (CrATs) are very active toward short-chain acyl-CoAs but not toward medium- or long-chain acyl-CoAs. Previously, we identified an amino acid residue (Met(564) in rat CrAT) that was critical to fatty acyl-chain-length specificity. M564G-mutated CrAT behaved as if its natural substrates were medium-chain acyl-CoAs, similar to that of carnitine octanoyltransferase (COT). To extend the specificity of rat CrAT to other substrates, we have performed new mutations. Using in silico molecular modeling procedures, we have now identified a second putative amino acid involved in acyl-CoA specificity (Asp(356) in rat CrAT). The double CrAT mutant D356A/M564G showed 6-fold higher activity toward palmitoyl-CoA than that of the single CrAT mutant M564G and a new activity toward stearoyl-CoA. We show that by performing two amino acid replacements a CrAT can be converted into a pseudo carnitine palmitoyltransferase (CPT) in terms of substrate specificity. To change CrAT specificity from carnitine to choline, we also prepared a mutant CrAT that incorporates four amino acid substitutions (A106M/T465V/T467N/R518N). The quadruple mutant shifted the catalytic discrimination between l-carnitine and choline in favor of the latter substrate and showed a 9-fold increase in catalytic efficiency toward choline compared with that of the wild-type. Molecular in silico docking supports kinetic data for the positioning of substrates in the catalytic site of CrAT mutants.  相似文献   

6.
Heart and liver mitochondrial, as well as liver peroxisomal, carnitine acetyltransferase was purified to apparent homogeneity and some properties, primarily of heart mitochondrial carnitine acetyltransferase, were determined. Hill coefficients for propionyl-CoA are 1.0 for each of the enzymes. The molecular weight of heart mitochondrial carnitine acetyltransferase, determined by SDS-PAGE, is 62,000. It is monomeric in the presence of catalytic amounts of substrate. Polyclonal antibodies against purified rat liver peroxisomal carnitine acetyltransferase precipitate liver and heart mitochondrial and liver peroxisomal carnitine acetyltransferase, but not liver peroxisomal carnitine octanoyltransferase. Liver peroxisomes, mitochondria, and microsomes and heart mitochondria all give multiple bands on Western blotting with the antibody against carnitine acetyltransferase. Major protein bands occur at the molecular weight of carnitine acetyltransferase and at 33 to 35 kDa.  相似文献   

7.
Detection of choline acetyltransferase (ChAc) in a number of non-neuronal tissues has been extremely overestimated. There are two major types of errors encountered. Type 1 error occurs when endogenous substrates (e.g. L-carnitine) are acetylated by acetyltransferase enzymes (e.g. carnitine acetyltransferase ( CarAc ) ) yielding an acetylated product mistaken for acetylcholine (AcCh). In the past, human sperm and human seminal plasma putative ChAc activity has been extremely overestimated due to Type 1 error. This study demonstrates (1) an endogenous acetyltransferase and substrate activity in human sperm and human seminal plasma forming an acetylated product that is not AcCh but probably acetylcarnitine ( AcCar ); (2) that the addition of 5 mM choline substrate does not significantly increase acetyltransferase activity; (3) that boiled seminal plasma contains an endogenous acetyltransferase substrate which is not choline, but probably L-carnitine. Type 2 error occurs when endogenous carnitine acetyltransferase synthesizes true AcCh, resulting in mistaken evidence for ChAc. This is demonstrated by the fact that the choline substrate Km-value for the neuronal or true ChAc from mouse brain is 0.73 +/- 0.06 mM while the Km-value of choline substrate for purified CarAc from pigeon breast muscle is 108 +/- 4 mM. Type 2 error has occurred for the estimation of putative ChAc in rat heart. The rat heart ChAc was measured in previous studies utilizing a concentration of 30 mM choline substrate. While saturation of neuronal ChAc is observed at 2-5 mM choline, saturation of the rat heart CarAc enzyme is not reached until over 800 mM. Purified CarAc significantly synthesizes AcCh at 30 mM choline. Thus, putative ChAc has been greatly overestimated in the scientific literature for mammalian sperm, human seminal plasma and rat heart.  相似文献   

8.
The subcellular distribution of carnitine acetyl-, octanoyl-, and palmitoyltransferase in the livers of normal and clofibrate-treated male rats was studied with isopycnic sucrose density gradient fraction.In normal liver 48% of total carnitine acetyltransferase activity was peroxisomal, 36% of the activity located in mitochondria and 16% in a membranous fraction containing microsomes. Carnitine octanoyltransferase and carnitine palmitoyltransferase were confined almost totally (77–81%) to mitochondria in normal liver.Clofibrate treatment increased the total activity of carnitine acetyltransferase over 30 times, whereas the total activities of the other two transferases were increased only 5-fold.From the three different subcellular carnitine acetyltransferases the mitochondrial one was not responsive to clofibrate treatment, i.e. the rise in mitochondrial activity was over 70-fold as contrasted to the 6- and 14-fold rises in peroxisomal and microsomal activities, respectively. After treatment mitochondria contained 79% of total activity.It is concluded that the clofibrate-induced increase of carnitine acetyltransferase activity is not due to the peroxisomal proliferation that occurs during clofibrate treatment. The rise in peroxisomal activity contributed only 8% to the total increase.After clofibrate treatment the greatest part of carnitine octanoyl- and palmitoyltrnasferase activities were located in mitochondria but a considerable amount of both activities was found also in the soluble fraction of liver.  相似文献   

9.
The effect of malonyl-CoA on the kinetic parameters of carnitine palmitoyltransferase (outer) the outer form of carnitine palmitoyltransferase (palmitoyl-CoA: L-carnitine O-palmitoyltransferase, EC 2.3.1.21) from rat heart mitochondria was investigated using a kinetic analyzer in the absence of bovine serum albumin with non-swelling conditions and decanoyl-CoA as the cosubstrate. The K0.5 for decanoyl-CoA is 3 microM for heart mitochondria from both fed and fasted rats. Membrane-bound carnitine palmitoyltransferase (outer) shows substrate cooperativity for both carnitine and acyl-CoA, similar to that exhibited by the enzyme purified from bovine heart mitochondria. The Hill coefficient for decanoyl-CoA varied from 1.5 to 2.0, depending on the method of assay and the preparation of mitochondria. Malonyl-CoA increased the K0.5 for decanoyl-CoA with no apparent increase in sigmoidicity or Vmax. With 20 microM malonyl-CoA and a Hill coefficient of n = 2.1, the K0.5 for decanoyl-CoA increased to 185 microM. Carnitine palmitoyltransferase (outer) from fed rats had an apparent Ki for malonyl-CoA of 0.3 microM, while that from 48-h-fasted rats was 2.5 microM. The kinetics with L-carnitine were variable: for different preparations of mitochondria, the K0.5 ranged from 0.2 to 0.7 mM and the Hill coefficient varied from 1.2 to 1.8. When an isotope forward assay was used to determine the effect of malonyl-CoA on carnitine palmitoyltransferase (outer) activity of heart mitochondria from fed and fasted animals, the difference was much less than that obtained using a continuous rate assay. Carnitine palmitoyltransferase (outer) was less sensitive to malonyl-CoA at low compared to high carnitine concentrations, particularly with mitochondria from fasted animals. The data show that carnitine palmitoyltransferase (outer) exhibits substrate cooperativity for both acyl-CoA and L-carnitine in its native state. The data show that membrane-bound carnitine palmitoyltransferase (outer) like carnitine palmitoyltransferase purified from heart mitochondria exhibits substrate cooperativity indicative of allosteric enzymes and indicate that malonyl-CoA acts like a negative allosteric modifier by shifting the acyl-CoA saturation to the right. A slow form of membrane-bound carnitine palmitoyltransferase (outer) was not detected, and thus, like purified carnitine palmitoyltransferase, substrate-induced hysteretic behavior is not the cause of the positive substrate cooperativity.  相似文献   

10.
Carnitine acetyltransferase was isolated from yeast Saccharomyces cerevisiae with an apparent molecular weight of 400,000. The enzyme contains identical subunits of 65,000 Da. The Km values of the isolated enzyme for acetyl-CoA and for carnitine were 17.7 microM and 180 microM, respectively. Carnitine acetyltransferase is an inducible enzyme, a 15-fold increase in the enzyme activity was found when the cells were grown on glycerol instead of glucose. Carnitine acetyltransferase, similarly to citrate synthase, has a double localization (approx. 80% of the enzyme is mitochondrial), while acetyl-CoA synthetase was found only in the cytosol. In the mitochondria carnitine acetyltransferase is located in the matrix space. The incorporation of 14C into CO2 and in lipids showed a similar ratio, 2.9 and 2.6, when the substrate was [1-14C]acetate and [1-14C]acetylcarnitine, respectively. Based on these results carnitine acetyltransferase can be considered as an enzyme necessary for acetate metabolism by transporting the activated acetyl group from the cytosol into the mitochondrial matrix.  相似文献   

11.
The subcellular distribution of carnitine acetyl-, octanoyl-, and palmitoyl- transferase in the livers of normal and clofibrate-treated male rats was studied with isopycnic sucrose density gradient fractionation. In normal liver 48% of total carnitine acetyltransferase activity was peroxisomal, 36% of the activity located in mitochondria and 16% in a membranous fraction containing microsomes. Carnitine octanoyltransferase and carnitine palmitoyltransferase were confined almost totally (77--81%) to mitochondria in normal liver. Clofibrate treatment increased the total activity of carnitine acetyltransferase over 30 times, whereas the total activities of the other two transferases were increased only 5-fold. From the three different subcellular carnitine acetyltransferases the mitochondrial one was most responsive to clofibrate treatment, i.e. the rise in mitochondrial activity was over 70-fold as contrasted to the 6- and 14-fold rises in peroxisomal and microsomal activities, respectively. After treatment mitochondria contained 79% of total activity. It is concluded that the clofibrate-induced increase of carnitine acetyltransferase activity is not due to the peroxisomal proliferation that occurs during clofibrate treatment. The rise in peroxisomal activity contributed only 8% to the total increase. After clofibrate treatment the greatest part of carnitine octanoyl- and palmitoyltransferase activities were located in mitochondria but a considerable amount of both activities was found also in the soluble fraction of liver.  相似文献   

12.
The steady state levels of mitochondrial acyl-CoAs produced during the oxidation of pyruvate, alpha-ketoisovalerate, alpha-ketoisocaproate, and octanoate during state 3 and state 4 respiration by rat heart and liver mitochondria were determined. Addition of carnitine lowered the amounts of individual short-chain acyl-CoAs and increased CoASH in a manner that was both tissue- and substrate-dependent. The largest effects were on acetyl-CoA derived from pyruvate in heart mitochondria using either state 3 or state 4 oxidative conditions. Carnitine greatly reduced the amounts of propionyl-CoA derived from alpha-ketoisovalerate, while smaller effects were obtained on the branched-chain acyl-CoA levels, consistent with the latter acyl moieties being poorer substrates for carnitine acetyltransferase and also poorer substrates for the carnitine/acylcarnitine translocase. The levels of acetyl-CoA in heart and liver mitochondria oxidizing octanoate during state 3 respiration were lower than those obtained with pyruvate. The rate of acetylcarnitine efflux from heart mitochondria during state 3 (with pyruvate or octanoate as substrate, in the presence or absence of malate with 0.2 mM carnitine) shows a linear response to the acetyl-CoA/CoASH ratio generated in the absence of carnitine. This relationship is different for liver mitochondria. These data demonstrate that carnitine can modulate the aliphatic short-chain acyl-CoA/CoA ratio in heart and liver mitochondria and indicate that the degree of modulation varies with the aliphatic acyl moiety.  相似文献   

13.
Carnitine acetyltransferase is used in a radioenzymatic assay to measure the concentration of carnitine. While determining the concentration of carnitine in rat bile, we found that the apparent concentration increased as bile was diluted (6.7 +/- 1.0 and 66.6 +/- 9.4 nmol/ml in undiluted and 20-fold diluted bile, respectively). The present study was designed to investigate whether a component of bile inhibited carnitine acetyltransferase. Inhibition was evaluated by measuring carnitine concentration in bile or by determining the recovery of a known amount of carnitine in the presence of bile. Inhibitory activity was extractable in organic solvents, stable to heat and base treatments, resistant to trypsin and lipase digestions, and removable by cholestyramine, a bile acid-binding resin. These results suggested that the inhibitory activity was associated with bile acids. Direct evidence was obtained by showing a reduced detectability of carnitine in the presence of individual bile acids. Chenodeoxycholic acid was the most potent inhibitor. Inhibition was unrelated to the detergent properties of bile acids. Kinetic studies revealed that carnitine acetyltransferase was inhibited competitively by chenodeoxycholic acid with a Ki of 520 microM. Bile acids also interfered in the quantitation of carnitine in cholestatic plasma. Carnitine concentration in such plasma was underestimated (17.5 +/- 2.1 mmol/ml). Reduction of bile acid concentration by a 20-fold dilution of cholestatic plasma resulted in a 3-fold higher carnitine concentration (54.6 +/- 9.0 nmol/ml). Results demonstrate that, because of the inhibition of carnitine acetyltransferase by bile acids, the radioenzymatic assay will underestimate carnitine concentration in bile or in cholestatic plasma. Accurate measurement requires either the removal of bile acids or a marked reduction in their concentration.  相似文献   

14.
Caffeine, which stimulates the motility of freshly extruded bovine epididymal spermatozoa, caused a large but transient increase in the respiratory activity of these cells incubated in a modified Ringer buffer without exogenously added substrate. In spermatozoa that were incubated without added substrate for 2 h at 30 °C or for 15 min at 37 °C, caffeine addition failed to increase respiratory activity even transiently. However, subsequent addition of pyruvate to these aged and caffeine-treated cells resulted in a rapid increase in the respiratory rate, nearly equal to that observed after caffeine addition to fresh cells or to cells stored at 4 °C. These observations indicate that the loss in metabolic response to caffeine is a result of the active metabolism of the spermatozoa.In freshly prepared sperm that were incubated without added substrate, the acetyl carnitine content declined and the free carnitine content of the sperm increased in amounts sufficient to account for the entire respiratory increment produced by caffeine addition. Respiratory stimulation by caffeine was sustained in the presence of those exogenously added substrates that are capable of entering the acetyl carnitine pool, such as acetate, pyruvate, l(+)-lactate, glucose, fructose or β-hydroxybutyrate. Tricarboxylic acid cycle intermediates were not effective.These observations clarify the relationship between the stimulatory effects of caffeine and the metabolic state of the spermatozoan and suggest the importance of the acetyl carnitine pool to the activation of sperm motility and oxidative metabolism.  相似文献   

15.
CHOLINE ACETYLTRANSFERASE ACTIVITY IN GUINEA-PIG HEART IN VITRO   总被引:3,自引:3,他引:0  
Abstract— Choline acetyltransferase (EC 2.3.1.6) catalyses the following reversible reaction: acetyl coenzyme A + choline acetylcholine + coenzyme A. Enzyme activity in the atria and ventricles of guinea-pig heart varied independently of the biochemically related carnitine acetyltransferase (EC 2.3.1.7). Choline acelyltransferase activity was greatest in right atrium, intermediate in right ventricle and left atrium and lowest in left ventricle (405. 2-33. 177 and I 33 nmol min-1 g-1, respectively). Carnitine acetyltransferasc activity was greatest in the right and left ventricle and least in the right and left atria (8-86. 8-27, 3-18 and 2-38 mmol min-1g-1. respectively). Carnitine acelyltransferase activity was 800- to 6000-fold greater than that of the choline acetyltransferase. depending on the chamber. Bromoacctylcholine inhibited acetylcholine. but not acetylcarnitine biosynthesis in vitro. Contrariwise, acetylcarnitine inhibited carnitine, but not choline acetyltransferase. These results demonstrate the feasibility and specificity of measuring the differences in choline acetyltransferase activity in dialysed homogenates prepared from the four chambers of the heart.  相似文献   

16.
Redesign of carnitine acetyltransferase specificity by protein engineering   总被引:1,自引:0,他引:1  
In eukaryotes, L-carnitine is involved in energy metabolism by facilitating beta-oxidation of fatty acids. Carnitine acetyltransferases (CrAT) catalyze the reversible conversion of acetyl-CoA and carnitine to acetylcarnitine and free CoA. To redesign the specificity of rat CrAT toward its substrates, we mutated Met564. The M564G mutated CrAT showed higher activity toward longer chain acyl-CoAs: activity toward myristoyl-CoA was 1250-fold higher than that of the wild-type CrAT, and lower activity toward its natural substrate, acetyl-CoA. Kinetic constants of the mutant CrAT showed modification in favor of longer acyl-CoAs as substrates. In the reverse case, mutation of the orthologous glycine (Gly553) to methionine in carnitine octanoyltransferase (COT) decreased activity toward its natural substrates, medium- and long-chain acyl-CoAs, and increased activity toward short-chain acyl-CoAs. Another CrAT mutant, M564A, was prepared and tested in the same way, with similar results. We conclude that Met564 blocks the entry of medium- and long-chain acyl-CoAs to the catalytic site of CrAT. Three-dimensional models of wild-type and mutated CrAT and COT support this hypothesis. We show for the first time that a single amino acid is able to determine the substrate specificity of CrAT and COT.  相似文献   

17.
Carnitine acyltransferases catalyze the reversible conversion of acyl-CoAs into acylcarnitine esters. This family includes the mitochondrial enzymes carnitine palmitoyltransferase 2 (CPT2) and carnitine acetyltransferase (CrAT). CPT2 is part of the carnitine shuttle that is necessary to import fatty acids into mitochondria and catalyzes the conversion of acylcarnitines into acyl-CoAs. In addition, when mitochondrial fatty acid β-oxidation is impaired, CPT2 is able to catalyze the reverse reaction and converts accumulating long- and medium-chain acyl-CoAs into acylcarnitines for export from the matrix to the cytosol. However, CPT2 is inactive with short-chain acyl-CoAs and intermediates of the branched-chain amino acid oxidation pathway (BCAAO). In order to explore the origin of short-chain and branched-chain acylcarnitines that may accumulate in various organic acidemias, we performed substrate specificity studies using purified recombinant human CrAT. Various saturated, unsaturated and branched-chain acyl-CoA esters were tested and the synthesized acylcarnitines were quantified by ESI-MS/MS. We show that CrAT converts short- and medium-chain acyl-CoAs (C2 to C10-CoA), whereas no activity was observed with long-chain species. Trans-2-enoyl-CoA intermediates were found to be poor substrates for this enzyme. Furthermore, CrAT turned out to be active towards some but not all the BCAAO intermediates tested and no activity was found with dicarboxylic acyl-CoA esters. This suggests the existence of another enzyme able to handle the acyl-CoAs that are not substrates for CrAT and CPT2, but for which the corresponding acylcarnitines are well recognized as diagnostic markers in inborn errors of metabolism.  相似文献   

18.
Coenzyme A-linked aldehyde dehydrogenase from Clostridium kluyveri was purified from the soluble fraction of crude extracts and its physical and kinetic properties were studied. The enzyme was purified approximately 90-fold over crude extracts to a specific activity of 50 units/mg protein and was estimated to be 40% pure by polyacrylamide gel electrophoresis. From active enzyme centrifugation studies, aldehyde dehydrogenase was found to have a sedimentation coefficient of s20, w = 7.4. The Stokes radius of the enzyme was determined by gel filtration and found to be 9.5 nm in the presence of substrates and 11.0 nm in the absence of substrates. Using the values found for the sedimentation coefficient and the Stokes radius, the molecular weight of the enzyme in the presence of substrates was calculated to be 290,000 and the frictional ratio, 2.2. Aldehyde dehydrogenase can utilize thiols other than CoA as acetyl acceptors. A number of methods were employed in order to exclude the possibility that these thiols act merely by recycling nonenzymatically trace amounts of CoA that might be in the enzyme preparation. From steady-state kinetic measurements, a ping pong mechanism was proposed in which NAD+ binds to free enzyme, acetaldehyde binds next, and NADH is released before CoA binds and acetyl-CoA released. At Km levels of other substrates, substrate inhibition by CoA was observed. The nature of the substrate inhibition is discussed.  相似文献   

19.
The wine yeast Saccharomyces cerevisiae is central in the production of aroma compounds during fermentation. Some of the most important yeast-derived aroma compounds produced are esters. The esters ethyl acetate and isoamyl acetate are formed from alcohols and acetyl-CoA in a reaction catalysed by alcohol acetyltransferases. The pool of acetyl-CoA available in yeast cells could play a key role in the development of ester aromas. Carnitine acetyltransferases catalyse the reversible reaction between carnitine and acetyl-CoA to form acetylcarnitine and free CoA. This reaction is important in transferring activated acetyl groups to the mitochondria and in regulating the acetyl-CoA/CoA pools within the cell. We investigated the effect of overexpressing CAT2, which encodes the major mitochondrial and peroxisomal carnitine acetyltransferase, on the formation of esters and other flavour compounds during fermentation. We also overexpressed a modified CAT2 that results in a protein that localizes to the cytosol. In general, the overexpression of both forms of CAT2 resulted in a reduction in ester concentrations, especially in ethyl acetate and isoamyl acetate. We hypothesize that overproduction of Cat2p favours the formation of acetylcarnitine and CoA and therefore limits the precursor for ester production. Carnitine acetyltransferase expression could potentially to be used successfully in order to modulate wine flavour.  相似文献   

20.
Jogl G  Tong L 《Cell》2003,112(1):113-122
Carnitine acyltransferases have crucial roles in the transport of fatty acids for beta-oxidation. Dysregulation of these enzymes can lead to serious diseases in humans, and they are targets for therapeutic development against diabetes. We report the crystal structures of murine carnitine acetyltransferase (CRAT), alone and in complex with its substrate carnitine or CoA. The structure contains two domains. Surprisingly, these two domains share the same backbone fold, which is also similar to that of chloramphenicol acetyltransferase and dihydrolipoyl transacetylase. The active site is located at the interface between the two domains. Carnitine and CoA are bound in deep channels in the enzyme, on opposite sides of the catalytic His343 residue. The structural information provides a molecular basis for understanding the catalysis by carnitine acyltransferases and for designing their inhibitors. Specifically, our structural information suggests that the substrate carnitine may assist the catalysis by stabilizing the oxyanion in the reaction intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号