首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The light-reversal properties of carbon monoxide (CO) inhibition of the dealkylation of benzphetamine, ethylmorphine, and 7-ethoxycoumarin by microsomes from phenobarbital (PB)-induced rat livers were compared with those of the 6 beta-, 7 alpha-, and 16 alpha-hydroxylations of testosterone by the same rat hepatic microsomes and C-21 hydroxylation of 17-OH progesterone by steer adrenal microsomes. CO inhibited all reactions studied to essentially the same degree. The significant finding was that the dealkylations were reversed most effectively by light of wavelengths between 440 and 445 nm, rather than around 450 nm, the optimal wavelength for steroid hydroxylations. Moreover, the dealkylations required several-fold higher light intensities for equivalent light reversal. These studies suggest that the heme protein-CO complex responsible for dealkylations has a spectrum corresponding to the shape of the pass band of the 445-nm filter, whereas that of the steroid hydroxylations has its light-reversal maximum at 450 nm and appears to be broader. The measurable differences in the light-reversal properties between the monooxygenations of two groups of substrates, (i) dealkylations and (ii) hydroxylations of lipid substrates, furnish biophysical properties that allow a better characterization of microsomal monooxygenases which should be of value in forwarding progress in the study of these systems.  相似文献   

2.
This study was conducted to explore the potency of morphine to induce reductions of specific cytochrome P450 isoenzyme functions. Male Sprague-Dawley rats were treated with escalating doses (20-125 mg/kg per day) of morphine for 2 weeks in order to study the effects on the following cytochrome P450 catalyzed reactions: 16 alpha-hydroxylation of dehydroepienderosterone (DHA) and progesterone; 17 alpha- and 21-hydroxylation of progesterone; N-demethylation of ethymorphine, codeine and morphine as well as O-dealkylation of ethylmorphine and codeine. 16 alpha-Hydroxylation of DHA and progesterone and 17 alpha-hydroxylation of progesterone decreased to 18, 12 and 10% of control activities, respectively. The N-demethylation of ethylmorphine and codeine decreased to 34 and 43% of control activities, respectively. Morphine treatment had no effect on the 21-hydroxylation reactions or the O-dealkylation of ethylmorphine or codeine. A monoclonal antibody (Mab) against rat liver cytochrome P450 2 c/RLM 5 exerted a 66-73% inhibition of the N-demethylation of ethylmorphine and codeine, respectively, whereas the O-dealkylation reactions were not affected. This Mab inhibited the 16 alpha- and 17 alpha-hydroxylation of DHA and progesterone, whereas the 21-hydroxylation reactions were unaffected. The steroid hydroxylation reactions in rat adrenals were not altered upon morphine treatment. Our data suggest that a major part of the 16 alpha- and 17 alpha-steroid hydroxylations are catalyzed by the same (or closely related) cytochrome(s) P450 as the opioid N-demethylation reactions.  相似文献   

3.
The incubation of prostaglandins (PG's) with liver microsomes from guinea pigs treated with inducers of monooxygenase (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), benzo[alpha]pyrene (benzpyrene), or a mixture of chlorinated biphenyls (Aroclor 1254)) exhibited marked elevation of 19-hydroxylation of PGE1, PGE2, PGA1, and PGA2 without affecting significantly 20-hydroxylation. However, with respect to effects on hydroxylation of a variety of xenobiotics, benzpyrene and Aroclor treatments differed markedly; whereas Aroclor treatment elevated the demethylation of ethylmorphine, benzphetamine, and p-chloro-N-methylaniline (PCMA), benzpyrene treatment had no effect on demethylation of ethylmorphine and only a marginal effect on that of PCMA. Both inducers elevated benzpyrene hydroxylation. By contrast, treatment with phenobarbital did not affect the hepatic microsomal PG's hydroxylation, although the hydroxylation of benzpyrene and the demethylation of ethylmorphine, benzphetamine, and PCMA were enhanced. Also, the hydroxylation of PG's by kidney cortex microsomes was not affected by either benzpyrene or Aroclor treatment. Inhibitors of monooxygenase were used to help delineate the type of monooxygenases induced. At low levels of alpha-naphthoflavone (ANF), benzpyrene hydroxylation in control- and Aroclor-treated guinea pigs was only little affected; by contrast, the same concentration of ANF markedly inhibited benzpyrene hydroxylation in benzpyrene-treated guinea pigs. On the other hand, metyrapone was most inhibitory in control guinea pigs. Support for the conclusion that benzpyrene induces in the guinea pig a hepatic monooxygenase with different characteristics than that found in control animals was provided by the observation that ANF (10 MICROM) inhibited PGE1 hydroxylation more pronouncedly in liver microsomes from benzpyrene-treated than from Aroclor-treated guinea pigs or controls. In addition, in benzpyrene and Aroclor-treated guinea pigs, ANF inhibited the (omega-1)-hydroxylation more pronouncedly than that of omega-hydroxylation. By contrast, metyrapone appeared to inhibit omega-hydroxylation more effectively than (omega-1)-hydroxylation. These results indicate that in the guinea pig, hydroxylation of PG's at the omega (20-) and omega-1 (19-) positions is catalyzed by different monooxygenases and that the inducers tested affect several hepatic monooxygenases with different specificities toward xenobiotics; however, with respect to PG's only the enzyme(s) involved in the 19-hydroxylation is affected.  相似文献   

4.
Hydrogen selenide ion (HSe?) reacts with oxygen in the following manner: HSe? + 1/2O2 → Seo + OH?. Interest in the kinetics of this reaction comes from the fact that selenide is an important product in the metabolism of the essential trace element selenium. Using polarography to monitor both selenide and oxygen, we have found the reaction exhibits complex kinetics, including autoaccelerating behavior and the generation of reactive intermediates capable of inducing reactions in other substances present. Probable intermediate species include superoxide, peroxide and polyselenides. The reaction is slow with respect to diffusion controlled reactions, but fast with respect to the time required to prepare solutions for biological study. Selenide concentrations greater than 10?6 M decay to give solutions of predominantly colloidal elemental selenium less than 3 minutes after exposure to atmospheric levels of oxygen.  相似文献   

5.
The stoichiometry of hydroxylation reactions catalyzed by cytochrome P-450 was studied in a reconstituted enzyme system containing the highly purified cytochrome from phenobarbital-induced rabbit liver microsomes. Hydrogen peroxide was shown to be formed in the reconstituted system in the presence of NADPH and oxygen; the amount of peroxide produced varied with the substrated added. NADPH oxidation, oxygen consumption, and total product formation (sum of hydroxylated compound and hydrogen peroxide) were shown to be equimolar when cyclohexane, benzphetamine, or dimethylaniline served as the substrate. The stoichiometry observed represents the sum of two activities associated with cytochrome P-450. These are (1) hydroxylase activity: NADPH + H+ + O2 + RH → NADP+ + H2O + ROH; and (2) oxidase activity: NADPH + H+ + O2 → NADP+ + H2O2. Benzylamphetamine (desmethylbenzphetamine) acts as a pseudosubstrate in that it stimulates peroxide formation to the same extent as the parent compound (benzphetamine), but does not undergo hydroxylation. Accordingly, when benzylamphetamine alone is added in control experiments to correct for the NADPH and O2 consumption not associated with benzphetamine hydroxylation, the expected 1:1:1 stoichiometry for NADPH oxidation, O2 consumption, and formaldehyde formation in the hydroxylation reaction is observed.  相似文献   

6.
The possibility that prostaglandins could serve as substrates for the guinea pig adrenal microsomal monooxygenase was investigated. The binding of PGE1 to adrenal microsomes was found to exhibit a reverse type I spectral change. Also PGE1 diminished the magnitude of type I spectrum elicited by cortisol binding to adrenal microsomes. The incubation of [3H]PGE1 or of [3H]PGE2 with adrenal microsomes supplemented with NADPH yielded primarily the respective 19-hydroxy metabolite. The enzymatic activity catalyzing this hydroxylation appears to be a typical monooxygenase, requiring NADPH for activity and being strongly inhibited by metyrapone, SKF 525A, and cytochrome c. Carbon monoxide at a ratio of 9:1 to oxygen moderately inhibited the hydroxylation of PGE1. Whereas the liver catalyzed the hydroxylation of PGE1 and PGA1 equally well, the adrenal microsomes preferentially catalyzed the hydroxylation of PGE1. This finding and the observation that α-naphthoflavone is a weak inhibitor of the adrenal PGE1 hydroxylation points to significant differences between the adrenal and liver prostaglandin hydroxylation activities. Cortisol, which is a substrate for adrenal monooxygenase, strongly inhibited PGE1 and PGE2 hydroxylation. By contrast, certain xenobiotics (ethylmorphine, hexobarbital, benzpyrene), which are also metabolized by adrenal microsomes, only slightly inhibited the hydroxylation of PGE1. Similarly, PGE1 only weakly inhibited ethylmorphine and benzphetamine demethylation and hexobarbital hydroxylation. These observations suggest that adrenal microsomes contain several monooxygenases with different affinities for prostaglandins and for the different xenobiotic substrates.  相似文献   

7.
The hydroxylation of N- and O-methyl drugs and polycyclic hydrocarbons has been demonstrated in microsomes prepared from colon mucosal cells. The hydroxylation of the drugs benzphetamine, ethylmorphine, p-nitroanisole, and p-nitrophenetole by colon microsomes is inducible two- to fourfold by pretreatment with phenobarbital/hydrocortisone. Colon microsomal benzo[α]pyrene hydroxylation is inducible 35-fold by pretreatment with β-naphthoflavone. Phenobarbital/hydrocortisone pretreatment also induces a fourfold increase in the specific content of colon microsomal cytochrome P-450, while β-naphthoflavone pretreatment causes a shift in the reduced CO difference spectrum peak to 448 nm and an eightfold increase in the specific content of this cytochrome. SKF 525-A inhibits the hydroxylation of the drug benzphetamine by colon microsomes or liver microsomes by 77% at a concentration of 2.0 mm. 7,8-Benzoflavone, on the other hand, inhibits the hydroxylation of the polycyclic hydrocarbon benzo[α]pyrene by colon microsomes by 76% and by liver microsomes by 44% at a concentration of 10 μm. Carbon monoxide, an inhibitor of oxygen interaction with cytochromes P-450 and P-448, inhibits benzphetamine hydroxylation and benzpyrene hydroxylation by colon microsomes 30 and 51%, respectively, at an oxygen to carbon monoxide ratio of 1:10. The Km values of colon microsomal cytochrome P-450 reductase for the artificial electron acceptors cytochrome c, dichloroindophenol, and ferricyanide (10–77 μm) are in agreement with those for purified rat liver cytochrome P-450 reductase. These data support the conclusions that hydroxylation of drugs and polycyclic hydrocarbons is catalyzed by colon mucosal microsomes and that the hydroxylation activity is attributable to a cytochrome P-450-dependent drug metabolism system similar to that found in liver microsomes.  相似文献   

8.
The ratio of formaldehyde formed to TPNH oxidized during aminopyrine oxidative demethylation as catalyzed by rabbit liver microsomes was found to be about 0.5. This is less than the expected 1:1 ratio for a mixed function oxidase reaction and may reflect the oxidation of TPNH by other reactions. Similar results were obtained when measuring the oxidative demethylation of codeine and ethylmorphine. In all cases the addition of DPNH significantly increased the yield of formaldehyde formed in the presence of TPNH. The stimulatory effect of DPNH was a linear function of the DPNH concentration added until the initial concentrations of DPNH and TPNH were equal. Increasing the DPNH concentration above a DPNH:TPNH ratio of 1:1 had no further effect upon the final concentration of formaldehyde formed. This observation, as well as the inhibition of DPNH-supported aminopyrine metabolism by TPN+, argue against the role of a transhydrogenase mechanism for the DPNH effect. The rate of DPNH oxidation catalyzed by liver microsome was also observed to increase markedly in the presence of TPNH.  相似文献   

9.
The reaction kinetics of the binding of CO and O2 to hemoglobin (Hb) in human red blood cell (RBC) suspensions have been examined using a 300 ns dye laser to photodissociate HbCO or HbO2. Fast (halftime1?0 μs) and slow (5?ms) processes were seen after photolysis. The results indicate that neither the rate constants nor the activation energies for the binding of CO to the fast reacting form of Hb in the RBC are significantly different from that measured in solution in spite of the different environments. Rate constants determined for O2 binding in RBC were intermediate between rates observed for reaction with fast and slow reacting forms of Hb and probably consist of contributions from each. The slow recombination of CO and O2 probably has contributions both from reaction with slow reacting forms of Hb and from ligand that had diffused away from the RBC after photolysis.  相似文献   

10.
The roles of type I binding and NADPH-cytochrome P-450 reductase in ethylmorphine demethylation were investigated in two strains of mice, using sex differences in these activities as a tool. In the CPB-SE strain, females metabolize ethylmorphine faster than males. Sex differences in cytochrome P-450 content and endogenous NADPH-cytochrome P-450 reductase activity were too small to account for this. On the other hand, the differences in the magnitudes of type I spectra and ethylmorphine-induced enhancement of cytochrome P-450 reduction were considerable larger than those in the rates of demethylation. All parameters, except endogenous cytochrome P-450 reduction, were modified in a similar way by testosterone pretreatment: in females they were depressed to the male level, whereas in males they remained unchanged. Castration had no effect in females and enhanced the activities in males. The CPB-V strain exhibited little or no sex differences in ethylmorphine demethylation, cytochrome P-450 content and endogenous cytochrome P-450 reduction. Testosterone pretreatment had little or no influence on these activities. Type I binding and reductase stimulation, however, showed sex differences, comparable to those observed in the CPB-SE strain, which were also abolished by testosterone. A relationship between reductase stimulation and type I binding was observed, which was, apparently, independent of sex or strain. It is concluded that androgen primarily influences the amount of cytochrome P-450-substrate complex formed, but that the reduction of this complex is not rate-limiting in the demethylation of ethylmorphine.  相似文献   

11.
A new cytochrome P-450 isozyme, P-450C-M/F, has been purified from untreated rat liver microsomes. The purified preparation was electrophoretically homogeneous and contained 12-15 nmol of P450/mg of protein and had a minimum molecular weight of 48,500. The NH2-terminal amino acid sequence of P-450C-M/F was different from that of other P-450's. Immunoblot analysis of microsomes demonstrated that P-450C-M/F was present in the liver of untreated male as well as female rats. Treatment of rats with phenobarbital, 3-methylcholanthrene, or beta-naphthoflavone did not induce P-450C-M/F. Cytochrome P-450C-M/F exhibited little activities of 7-ethoxycoumarin and 7-ethoxyresorufin O-deethylation or hydroxylation of arylhydrocarbon, testosterone, androstenedione, and progesterone. In contrast, it was highly active in N-demethylation of ethylmorphine and benzphetamine and in 2- and 16 alpha-hydroxylation of estrogens, particularly that of estradiol. These studies establish that cytochrome P-450C-M/F is constitutively present in both male and female rats and suggest that it may be involved in the oxidative metabolism of estradiol, particularly in the formation of estriol, the uterotropic metabolite of estradiol.  相似文献   

12.
The two principal bipyridyl herbicides, paraquat and diquat, were investigated for their influence on microsomal mixed-function oxidation (MFO) activities and on NADPH oxidation rates in lung, liver, and kidney preparations. In lung microsomal preparations, benzphetamine N-demethylation was found to be inhibited by paraquat and diquat in a concentration-dependent manner, but ethylmorphine N-demethylation was unaffected by these bipyridyls. In liver microsomal fractions, both benzphetamine and ethylmorphine N-demethylases were inhibited by paraquat and diquat. Neither bipyridyl affected MFO activity in kidney preparations. A kinetic investigation of the enzyme inhibition showed that only Vmax was affected by paraquat and diquat, providing the first evidence for noncompetitive inhibition by the bipyridyls. In all microsomal preparations, NADPH oxidation was stimulated significantly by paraquat and to an even greater extent by diquat in the absence or presence of benzphetamine or ethylmorphine. The influence of MFO substrates on the stimulation varied widely among the three organ systems. In lung, paraquat- or diquat-mediated stimulation of NADPH oxidation was equal in the absence of MFO substrates and in the presence of ethylmorphine, but the stimulation was increased in the presence of benzphetamine. Stimulation of NADPH oxidation by the bipyridyls, in liver as well as in kidney preparations, was equal in all situations in the absence of MFO substrates and in the presence of benzphetamine or ethylmorphine, although the quantity of this stimulation was greater in liver than in kidney fractions. It is apparent that the bipyridyls are potent stimulators of in vitro NADPH oxidation in microsomal preparations from several organs. The quantity of the NADPH oxidation stimulation seems to be a decisive factor in the inhibition of xenobiotic metabolism. Whether the stimulation of NADPH oxidation and the noncompetitive inhibition of xenobiotic metabolism play a significant role in bipyridyl toxicity are under further investigation.  相似文献   

13.
The reaction of Ru(XTPP)(DMF)2, where XTPP is the dianion of para substituted tetraphenylporphyrins and X is MeO, Me, H, Cl, Br, I, F, with O2 and CO were studied in DMF. The process was found to be first-order in metalloporphyrin, first-order in molecular oxygen and carbon monoxide, and second-order overall. Second-order rate constants for the CO reaction ranged from 0.170 to 0.665 M?1 s?1 at 25°C, those for the O2 reaction from 0.132 to 0.840 M?1 s?1 at 25°C. Similar activation parameters (ΔHCO± = 87 ± 1 kJ mol?1, ΔSCO± = 22 ± 4 JK?1 mol?1; ΔHO2± = 81 ± 1 kJ mol?1, and ΔSO2± = 11 ± 5 JK?1 mol?1) were found within each series. Reactivities of X substituted metalloporphyrins were found to follow different Hammett σ functions. The CO reactions correlated with σ? following normal behavior; the O2 reactions correlated with σ8° indicating O2 is π-bonded in the transition states. A dissociative mechanism is postulated for the process.  相似文献   

14.
A number of agents were tested for their ability to enhance the p-hydroxylation of aniline using isolated hepatocytes as a model system. Although the observed stimulation or inhibition was not concentration dependent, various substrates for the hepatic mixed-function oxygenase (MFO) system (p-nitroanisole, 7-ethoxycoumarin, biphenyl, N,N′-dimethylaminoazobenzene, and benzphetamine) stimulated the hydroxylation at a concentration of 0.5 mm. This effect was not seen with all substrates. In general, aniline hydroxylation was not affected by the other agents tested (steroids, metabolic inhibitors and MFO inhibitors). However, enhancement was noticed with testosterone and progesterone at the lowest concentration (0.05 mm), with 2,6-dichloro-4-nitrophenol and salicylamide at 0.05 mm and 0.5 mm and with 7,8-benzoflavone at 5.0 mm.  相似文献   

15.
Mechanistic studies with N-benzyl-1-aminobenzotriazole (BBT)-inactivated cytochrome P450 2B1 were conducted to determine which step(s) in the reaction cycle had been compromised. Stopped-flow studies, formation of the oxy-ferro intermediate, and analysis of products suggested that the reductive process was slower with the BBT-modified enzyme. The reduced rate of reduction alone could not account for the loss in 7-ethoxy-4-(trifluoromethyl)coumarin (EFC) O-deethylation or testosterone hydroxylation activity. Surprisingly, the ability of the BBT-modified enzyme to generate formaldehyde from benzphetamine was much less affected. Benzphetamine metabolite analysis by electrospray ionization-mass spectrometry showed that the BBT-modified enzyme had a slightly greater propensity towards aromatic hydroxylation together with reduced levels of N-demethylation and little change in the N-debenzylation of benzphetamine. Orientation of substrates within the active site of the BBT-inactivated enzyme may be affected such that the more flexible benzphetamine can be metabolized, whereas metabolism of rigid, planar molecules such as EFC and testosterone is hindered.  相似文献   

16.
The activation of molecular oxygen by alkaline hemin (ferriprotoporphyrin IX) has been studied. In the presence of reductant nicotineamide adenine dinucleotide (NADH) or nicotineamide adenine dinucleotide phosphate (NADPH) and organic substrate, aniline, hemin activates oxygen to the hydroperoxide anion (HO2?) and subsequently mediates insertion of active oxygen into the benzene ring of the substrate to form p-aminophenol, with a high degree of regiospecificity. Oxygen activation does not occur in the absence of aniline. Stoichiometry of the reaction indicates that two electrons are required per molecule of oxygen activated or atom of oxygen inserted into the substrate aromatic ring system. Direct measurements of H2O2 and of the pKa for maximum rate of p-aminophenol formation (11.7 ± 0.1) indicate participation of the hydroperoxide anion as the active oxygen species in the rate-determining step of the insertion reaction. Powerful scavengers of the hydroxyl radical (OH′) have little effect on the formation of H2O2 or p-aminophenol by the system. Superoxide dismutase (10?7 mol dm?3) inhibited both p-aminophenol and H2O2 formation, when added to the system immediately prior to initiation of the reaction. Studies involving N-phenylhydroxylamine indicate that aromatic ring hydroxylation is occurring directly and not by rearrangement of an N-hydroxylated intermediate. Implications of hemin-mediated hydroxylation reactions for those of enzymatic mixed function oxidase activity are discussed.  相似文献   

17.
Untreated monkey liver cytochrome P-450 (monkey P-450) has been purified to a specific content of 14.9 n mole/mg protein. The purified preparation was apparently homogeneous and the minimum molecular weight was estimated to be 50,000 by SDS-PAGE. Absolute spectrum of the oxidized form showed peaks at 565, 535 and 417 nm. The monkey P-450 was active in the mixed function oxidation of benzphetamine, aminopyrine, ethylmorphine, aniline and 7-ethoxycoumarin in the presence of rat liver NADPH-cytochrome P-450 reductase and DLPC. Anti monkey P-450 IgG could not inhibit rat P-450s (PB P-450, MC P-448(1) and MC P-448(2] catalyzed 7-ethoxycoumarin O-deethylation activities.  相似文献   

18.
There have been conflicting observations regarding the effects of ketoconazole on hepatic metabolism. The objectives of these studies were to determine whether ketoconazole was an enzyme inducer or inhibitor in the mouse and then to establish the time frame of these ketoconazole-induced enzyme changes. Ketoconazole was administered (150 mg/kg p.o. X 4 days) to male Swiss Webster mice. Biochemical observations over a period of 6 days following treatment indicated that ketoconazole had a temporal biphasic effect on the liver. Although liver weight and microsomal protein were elevated, all other parameters monitored were lower at 2 h following ketoconazole treatment. At 24 h after the last dose of ketoconazole, hepatic biochemical parameters (liver wt., % liver wt./body wt., microsomal protein, and cytochrome P-450) were statistically elevated, while enzyme activities (benzphetamine N-demethylation, 6 beta- and 7 alpha-hydroxylation of testosterone, formation of androstenedione and UDP-glucuronyltransferase) were inhibited. At 72 h the ketoconazole-induced changes in the hepatic biochemical parameters were comparable to those observed at 24 h, and enzymatic parameters generally appeared to be induced by ketoconazole, with the exception of benzphetamine N-demethylase and UDP-glucuronyltransferase, which exhibited lower enzyme activities. Ethoxyresorufin O-deethylase, 7 alpha-hydroxylation of testosterone and glutathione S-transferase, on the other hand, were unaltered by ketoconazole treatment. The opposing effects of ketoconazole on benzphetamine N-demethylase and ethylmorphine N-demethylase at 72 h were further examined. Enzyme kinetics studies indicated that ketoconazole did not effect the Michaelis constants (Km) of the two substrates, but the maximum velocity (Vmax) of the reactions was altered.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The mechanism of hydroxylation reactions catalyzed by m-hydroxybenzoate-4-hydroxylase and anthranilate hydroxylase from Aspergillus niger was investigated using superoxide dismutase from ovine erythrocytes. Inclusion of superoxide dismutase in the assay mixtures of the two enzymes resulted in complete inhibition of the hydroxylation reaction, indicating the possible involvement of superoxide anions (O2) in these reactions.  相似文献   

20.
The paper describes a sensitive, rapid, and precise photometric method for the continuous and discontinuous determination of O2, CO2, and CO. The method is based on highly specific color reactions: O2 is determined by its reaction with alkaline catechol + Fe2+ yielding intensively colored products, CO2 is determined by its color reaction with a solution of fuchsin + hydrazine; and CO is determined by its reaction with hemoglobin. The basic experimental equipment is that of the AutoAnalyzer (cf.Wolf, Zander, and Lang, 1976, Anal. Biochem.74, 585), with an additional chamber for the injection of small gas samples in the case of the discontinuous analysis. Continuously analyzing in a standardized gas flow of 1 ml · min?1 (STPD), the lower limits of the sensitivities are 50 ppm for O2, 100 ppm for CO2, and 50 ppm for CO. The discontinuous analysis of the three gases requires the basic experimental equipment plus an airtight chamber. The lower limits of the amounts are 0.1 μl (STPD) for O2, 0.2 μl for CO2, and 0.1 μl for CO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号