首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Australia and Canada are major exporters of malting barley (Hordeum vulgare L.), with Baudin from Australia and AC Metcalfe from Canada being the benchmark varieties for premium malting quality in the past 10 years. We used the barley doubled haploid population derived from a cross of Baudin and AC Metcalfe to map quantitative trait loci (QTLs) for malting quality. The results revealed different genetic architectures controlling malting quality for the two cultivars. Sixteen QTLs were identified and located on chromosomes 1H, 2H, 5H and 7H. The Australian barley Baudin mainly contributed to the malting quality QTL traits of high diastatic power and high β-glucanase on chromosome 1H, while Canadian barley AC Metcalfe mainly contributed to the QTL traits of high hot water extract, high free amino nitrogen, high α-amylase and low malt yield in chromosome 5HL telomere region. This study demonstrated the potential to breed new barley varieties with superior malting quality by integrating genes from Australian and Canadian malting barley varieties. This paper also provides methods to anchor traditional molecular markers without sequence information, such as amplified fragment length polymorphism markers, into the physical map of barley cv. ‘Morex’.  相似文献   

2.

Key message

This study demonstrates for the first time that resistance to different root lesion nematodes ( P. neglectus and P. penetrans ) is controlled by a common QTL. A major resistance QTL ( Rlnnp6H ) has been mapped to chromosome 6H using two independent barley populations.

Abstract

Root lesion nematodes (Pratylenchus spp.) are important pests in cereal production worldwide. We selected two doubled haploid populations of barley (Igri × Franka and Uschi × HHOR 3073) and infected them with Pratylenchus penetrans and Pratylenchus neglectus. Nematode multiplication rates were measured 7 or 10 weeks after infection. In both populations, continuous phenotypic variations for nematode multiplication rates were detected indicating a quantitative inheritance of resistance. In the Igri × Franka population, four P. penetrans resistance QTLs were mapped with 857 molecular markers on four linkage groups (2H, 5H, 6H and 7H). In the Uschi × HHOR 3073 population, eleven resistance QTLs (P. penetrans and P. neglectus) were mapped with 646 molecular markers on linkage groups 1H, 3H, 4H, 5H, 6H and 7H. A major resistance QTL named Rlnnp6H (LOD score 6.42–11.19) with a large phenotypic effect (27.5–36.6 %) for both pests was mapped in both populations to chromosome 6H. Another resistance QTL for both pests was mapped on linkage group 5H (Igri × Franka population). These data provide first evidence for common resistance mechanisms against different root lesion nematode species. The molecular markers are a powerful tool for the selection of resistant barley lines among segregating populations because resistance tests are time consuming and laborious.  相似文献   

3.
Quantitative trait loci (QTLs) associated with grain weight, grain width, kernel hardness and malting quality were mapped in a doubled haploid population derived from two elite Australian malting barley varieties, Navigator and Admiral. A total of 30 QTLs for grain weight, grain width and kernel hardness were identified in three environments, and 63 QTLs were identified for ten malting quality traits in two environments. Three malting quality traits, namely β-amylase, diastatic power and apparent attenuation limit, were mainly controlled by a QTL linked to the Bmy1 gene at the distal end of chromosome 4H encoding a β-amylase enzyme. Six other malting quality traits, namely α-amylase, soluble protein, Kolbach index, free amino-acid nitrogen, wort β-glucan and viscosity, had coincident QTL clustered on chromosomes 1HS, 4HS, 7HS and 7HL, which demonstrated the interdependence of these traits. There was a strong association between these malt quality QTL clusters on chromosomes 1HS and 7HL and the major QTL for kernel hardness, suggesting that the use of this trait to enable early selection for malting quality in breeding programs would be feasible. In contrast, the majority of QTLs for hot-water extract were not coincident with those identified for other malt quality traits, which suggested differences in the mechanism controlling this trait. Novel QTLs have been identified for kernel hardness on chromosomes 2HL and 7HL, hot-water extract on 7HL and wort β-glucan on 6HL, and the resulting markers may be useful for marker-assisted selection in breeding programs.  相似文献   

4.

Key message

Genome-wide QTL analysis of potato tuber carotenoid content was investigated in populations of Solanum tuberosum Group Phureja that segregate for flesh colour, revealing a novel major QTL on chromosome 9.

Abstract

The carotenoid content of edible plant storage organs is a key nutritional and quality trait. Although the structural genes that encode the biosynthetic enzymes are well characterised, much less is known about the factors that determine overall storage organ content. In this study, genome-wide QTL mapping, in concert with an efficient ‘genetical genomics’ analysis using bulked samples, has been employed to investigate the genetic architecture of potato tuber carotenoid content. Two diploid populations of Solanum tuberosum Group Phureja were genotyped (AFLP, SSR and DArT markers) and analysed for their tuber carotenoid content over two growing seasons. Common to both populations were QTL that explained relatively small proportions of the variation in constituent carotenoids and a major QTL on chromosome 3 explaining up to 71 % of the variation in carotenoid content. In one of the populations (01H15), a second major carotenoid QTL was identified on chromosome 9, explaining up to 20 % of the phenotypic variation. Whereas the major chromosome 3 QTL was likely to be due to an allele of a gene encoding β-carotene hydroxylase, no known carotenoid biosynthetic genes are located in the vicinity of the chromosome 9 QTL. A unique expression profiling strategy using phenotypically distinct bulks comprised individuals with similar carotenoid content provided further support for the QTL mapping to chromosome 9. This study shows the potential of using the potato genome sequence to link genetic maps to data arising from eQTL approaches to enhance the discovery of candidate genes underlying QTLs.  相似文献   

5.

Key message

Major QTLs for root rhizosheath size are not correlated with grain yield or yield response to phosphorus. Important QTLs were found to improve phosphorus efficiency.

Abstract

Root traits are important for phosphorus (P) acquisition, but they are often difficult to characterize and their breeding values are seldom assessed under field conditions. This has shed doubts on using seedling-based criteria of root traits to select and breed for P efficiency. Eight root traits were assessed under controlled conditions in a barley doubled-haploid population in soils differing in P levels. The population was also phenotyped for grain yield, normalized difference vegetation index (NDVI), grain P uptake and P utilization efficiency at maturity (PutEGY) under field conditions. Several quantitative traits loci (QTLs) from the root screening and the field trials were co-incident. QTLs for root rhizosheath size and root diameter explained the highest phenotypic variation in comparison to QTLs for other root traits. Shared QTLs were found between root diameter and grain yield, and total root length and PutEGY. A common major QTL for rhizosheath size and NDVI was mapped to the HvMATE gene marker on chromosome 4H. Collocations between major QTLs for NDVI and grain yield were detected on chromosomes 6H and 7H. When results from BIP and MET were combined, QTLs detected for grain yield were also those QTLs found for NDVI. QTLs qGY5H, qGY6H and qGY7Hb on 7H were robust QTLs in improving P efficiency. A selection of multiple loci may be needed to optimize the breeding outcomes due to the QTL x Environment interaction. We suggest that rhizosheath size alone is not a reliable trait to predict P efficiency or grain yield.
  相似文献   

6.

Key message

We report malt quality QTLs relevant to breeding with greater precision than previous mapping studies. The distribution of favorable alleles suggests strategies for marker-assisted breeding and germplasm exchange.

Abstract

This study leverages the breeding data of 1,862 barley breeding lines evaluated in 97 field trials for genome-wide association study of malting quality traits in barley. The mapping panel consisted of six-row and two-row advanced breeding lines from eight breeding populations established at six public breeding programs across the United States. A total of 4,976 grain samples were subjected to micro-malting analysis and mapping of nine quality traits was conducted with 3,072 SNP markers distributed throughout the genome. Association mapping was performed for individual breeding populations and for combined six-row and two-row populations. Only 16 % of the QTL we report here had been detected in prior bi-parental mapping studies. Comparison of the analyses of the combined two-row and six-row panels identified only two QTL regions that were common to both. In total, 108 and 107 significant marker-trait associations were identified in all six-row and all two-row breeding programs, respectively. A total of 102 and 65 marker-trait associations were specific to individual six-row and two-row breeding programs, respectively indicating that most marker-trait associations were breeding population specific. Combining datasets from different breeding program resulted in both the loss of some QTL that were apparent in the analyses of individual programs and the discovery of new QTL not identified in individual programs. This suggests that simply increasing sample size by pooling samples with different breeding history does not necessarily increase the power to detect associations. The genetic architecture of malting quality and the distribution of favorable alleles suggest strategies for marker-assisted selection and germplasm exchange.
  相似文献   

7.

Key message

We suggest multi-parental nested association mapping as a valuable innovation in barley genetics, which increases the power to map quantitative trait loci and assists in extending genetic diversity of the elite barley gene pool.

Abstract

Plant genetic resources are a key asset to further improve crop species. The nested association mapping (NAM) approach was introduced to identify favorable genes in multi-parental populations. Here, we report toward the development of the first explorative barley NAM population and demonstrate its usefulness in a study on mapping quantitative trait loci (QTLs) for leaf rust resistance. The NAM population HEB-5 was developed from crossing and backcrossing five exotic barley donors with the elite barley cultivar ‘Barke,’ resulting in 295 NAM lines in generation BC1S1. HEB-5 was genetically characterized with 1,536 barley SNPs. Across HEB-5 and within the NAM families, no deviation from the expected genotype and allele frequencies was detected. Genetic similarity between ‘Barke’ and the NAM families ranged from 78.6 to 83.1 %, confirming the backcrossing step during population development. To explore its usefulness, a screen for leaf rust (Puccinia hordei) seedling resistance was conducted. Resistance QTLs were mapped to six barley chromosomes, applying a mixed model genome-wide association study. In total, four leaf rust QTLs were detected across HEB-5 and four QTLs within family HEB-F23. Favorable exotic QTL alleles reduced leaf rust symptoms on two chromosomes by 33.3 and 36.2 %, respectively. The located QTLs may represent new resistance loci or correspond to new alleles of known resistance genes. We conclude that the exploratory population HEB-5 can be applied to mapping and utilizing exotic QTL alleles of agronomic importance. The NAM concept will foster the evaluation of the genetic diversity, which is present in our primary barley gene pool.  相似文献   

8.

Key message

Association mapping of drought-related traits in barley was used to increase the density of existing QTL maps without recreating mapping populations.

Abstract

We used 109 spring barley genotypes exhibiting high or low drought tolerance to elucidate the associations between diversity array technology sequencing (DArTseq) and single nucleotide polymorphism (SNP) markers and various physiological parameters related to plant responses to drought conditions. The study was performed in controlled conditions (growth chambers), drought tolerance was phenotyped in the four-leaf seedlings. We identified 58 associations including 34 new markers (i.e., 16 DArTseq and 18 SNP markers). The results for three markers were consistent with the data obtained in an earlier traditional biparental QTL mapping study. The regions neighboring markers on linkage group 2H contained the highest number of significant marker–trait associations. Five markers related to the photosynthetic activity of photosystem II were detected on chromosome 4H. The lowest number of associations were observed for the sequences neighboring DArT markers on linkage group 6H. A chromosome 3H region related to water use efficiency and net photosynthesis rate in both biparental QTL, and association study, may be particularly valuable, as these parameters correspond to the ability of plants to remain highly productive under water deficit stress. Our findings confirm that association mapping can increase the density of existing QTL maps without recreating mapping populations.
  相似文献   

9.

Background

Cotton fibers (produced by Gossypium species) are the premier natural fibers for textile production. The two tetraploid species, G. barbadense (Gb) and G. hirsutum (Gh), differ significantly in their fiber properties, the former having much longer, finer and stronger fibers that are highly prized. A better understanding of the genetics and underlying biological causes of these differences will aid further improvement of cotton quality through breeding and biotechnology. We evaluated an inter-specific Gh × Gb recombinant inbred line (RIL) population for fiber characteristics in 11 independent experiments under field and glasshouse conditions. Sites were located on 4 continents and 5 countries and some locations were analyzed over multiple years.

Results

The RIL population displayed a large variability for all major fiber traits. QTL analyses were performed on a per-site basis by composite interval mapping. Among the 651 putative QTLs (LOD > 2), 167 had a LOD exceeding permutation based thresholds. Coincidence in QTL location across data sets was assessed for the fiber trait categories strength, elongation, length, length uniformity, fineness/maturity, and color. A meta-analysis of more than a thousand putative QTLs was conducted with MetaQTL software to integrate QTL data from the RIL and 3 backcross populations (from the same parents) and to compare them with the literature. Although the global level of congruence across experiments and populations was generally moderate, the QTL clustering was possible for 30 trait x chromosome combinations (5 traits in 19 different chromosomes) where an effective co-localization of unidirectional (similar sign of additivity) QTLs from at least 5 different data sets was observed. Most consistent meta-clusters were identified for fiber color on chromosomes c6, c8 and c25, fineness on c15, and fiber length on c3.

Conclusions

Meta-analysis provided a reliable means of integrating phenotypic and genetic mapping data across multiple populations and environments for complex fiber traits. The consistent chromosomal regions contributing to fiber quality traits constitute good candidates for the further dissection of the genetic and genomic factors underlying important fiber characteristics, and for marker-assisted selection.  相似文献   

10.

Key message

A minor QTL for heading date located on the long arm of rice chromosome 1 was delimitated to a 95.0-kb region using near isogenic lines with sequential segregating regions.

Abstract

Heading date and grain yield are two key factors determining the commercial potential of a rice variety. In this study, rice populations with sequential segregating regions were developed and used for mapping a minor QTL for heading date, qHd1. A total of 18 populations in six advanced generations through BC2F6 to BC2F11 were derived from a single BC2F3 plant of the indica rice cross Zhenshan 97 (ZS97)///ZS97//ZS97/Milyang 46. The QTL was delimitated to a 95.0-kb region flanked by RM12102 and RM12108 in the terminal region of the long arm of chromosome 1. Results also showed that qHd1 was not involved in the photoperiodic response, having an additive effect ranging from 2.4 d to 2.9 d observed in near isogenic lines grown in the paddy field and under the controlled conditions of either short day or long day. The QTL had pleiotropic effects on yield traits, with the ZS97 allele delaying heading and increasing the number of spikelets per panicle, the number of grains per panicle and grain yield per plant. The candidate region contains ten annotated genes including two genes with functional information related to the control of heading date. These results lay a foundation for the cloning of qHd1. In addition, this kind of minor QTLs could be of great significance in rice breeding for allowing minor adjustment of heading date and yield traits.  相似文献   

11.
Dissection of a malting quality QTL region on chromosome 1 (7H) of barley   总被引:2,自引:1,他引:1  
Malting and brewing are major uses of barley (Hordeum vulgare L.) worldwide, utilizing 30–40% of the crop each year. A set of complex traits determines the quality of malted barley and its subsequent use for beer. Molecular genetics technology has increased our understanding of genetic control of the many malting and brewing quality traits, most of which are quantitatively inherited. The objective of this study was to further dissect and evaluate a known major malting quality quantitative trait locus (QTL) region of about 28 cM on chromosome 1 (7H). Molecular marker-assisted backcrossing was used to develop 39 isolines originating from a Steptoe / Morex cross. Morex, a 6–row malting type, was the donor parent and Steptoe, a 6–row feed type, was the recurrent parent. The isolines and parents were grown in four environments, and the grain was micro-malted and analyzed for malting quality traits. The effect of each Morex chromosome segment in the QTL target region was determined by composite interval mapping (CIM) and confirmed and refined by multiple interval mapping (MIM). One QTL was resolved for malt extract content, and two QTLs each were resolved for -amylase activity, diastatic power, and malt -glucan content. One additional putative malt extract QTL was detected at the plus border of the target region by CIM, but not confirmed by MIM. All QTLs were resolved to intervals of 2.0 to 6.4 cM by CIM, and to intervals of 2.0 cM or less by MIM. These results should facilitate marker-assisted selection in breeding improved malting barley cultivars.  相似文献   

12.

Key message

The present study identified some new important genomic regions and demonstrated the availability of conditional analysis in dissecting QTLs induced by environmental factors.

Abstract

The high input and low use efficiency of nutrient fertilizers require knowledge of the genetic control of crop reaction to nutrient supplements. In this study, 14 morphological and 8 physiological traits of a set of 182 wheat (Triticum aestivum L.) recombinant inbred lines (Xiaoyan 54 × Jing 411) were investigated in six environments to map quantitative trait loci (QTLs). The influence of nitrogen (N) and phosphorus (P) fertilization on QTL expression was studied by unconditional and conditional analysis. A total of 117 and 30 QTLs were detected by unconditional and conditional analysis, respectively, among which 21 were common for both methods. Thirty-four QTL clusters were identified. Eighteen conserved QTLs (15.4 % of the 117 QTLs) between years, but within nutritional treatment were found. The three major QTLs on chromosomes 2D, 4B and 6A were coincident with Rht8, Rht-B1b and TaGW2, respectively. The other two important intervals on chromosomes 4B and 7A for yield component traits were newly detected QTLs that warrant further study. By conditional analysis, spikelet number per spike was found to be induced by P fertilization mostly, whereas N fertilization had more effects on the expression of the QTLs for nitrogen concentration and utilization efficiency traits. QTLs that respond to N and P interactions were also detected. The results are helpful for understanding the genetic basis of N utilization efficiency in wheat under different N and P supplement environments and provide evidence for the availability of conditional analysis in dissecting QTLs induced by environmental factors.  相似文献   

13.
TJ March  D Richter  T Colby  A Harzen  J Schmidt  K Pillen 《Proteomics》2012,12(18):2843-2851
Malted barley is an important ingredient used in the brewing and distilling industry worldwide. In this study, we used a proteomics approach to investigate the biochemical function of previously identified quantitative trait loci (QTLs) on barley chromosomes 1H and 4H that influence malting quality. Using a subset of barley introgression lines containing wild barley (Hordeum vulgare ssp. spontaneum) alleles at these QTLs, we validated that wild barley alleles at the chromosome 1H QTL reduced overall malting quality, whereas wild barley alleles at the chromosome 4H QTL improved the malting quality parameters α-amylase activity, VZ45, and Kolbach index compared to the control genotype Scarlett. 2DE was used to detect changes in protein expression during the first 72 h of micromalting associated with these QTLs. In total, 16 protein spots showed a significant change in expression between the introgression lines and Scarlett, of which 14 were successfully identified with MS. Notably, the wild barley alleles in the line containing the chromosome 4H QTL showed a sixfold increased expression of a limit dextrinase inhibitor. The possible role of the identified proteins in malting quality is discussed. The knowledge gained will assist ongoing research toward cloning the genes underlying these important QTL.  相似文献   

14.

Key message

A mixed model framework was defined for QTL analysis of multiple traits across multiple environments for a RIL population in pepper. Detection power for QTLs increased considerably and detailed study of QTL by environment interactions and pleiotropy was facilitated.

Abstract

For many agronomic crops, yield is measured simultaneously with other traits across multiple environments. The study of yield can benefit from joint analysis with other traits and relations between yield and other traits can be exploited to develop indirect selection strategies. We compare the performance of three multi-response QTL approaches based on mixed models: a multi-trait approach (MT), a multi-environment approach (ME), and a multi-trait multi-environment approach (MTME). The data come from a multi-environment experiment in pepper, for which 15 traits were measured in four environments. The approaches were compared in terms of number of QTLs detected for each trait, the explained variance, and the accuracy of prediction for the final QTL model. For the four environments together, the superior MTME approach delivered a total of 47 regions containing putative QTLs. Many of these QTLs were pleiotropic and showed quantitative QTL by environment interaction. MTME was superior to ME and MT in the number of QTLs, the explained variance and accuracy of predictions. The large number of model parameters in the MTME approach was challenging and we propose several guidelines to help obtain a stable final QTL model. The results confirmed the feasibility and strengths of novel mixed model QTL methodology to study the architecture of complex traits.  相似文献   

15.

Key message

To find stable resistance using association mapping tools, QTL with major and minor effects on leaf rust reactions were identified in barley breeding lines by assessing seedlings and adult plants.”

Abstract

Three hundred and sixty (360) elite barley (Hordeum vulgare L.) breeding lines from the Northern Region Barley Breeding Program in Australia were genotyped with 3,244 polymorphic diversity arrays technology markers and the results used to map quantitative trait loci (QTL) conferring a reaction to leaf rust (Puccinia hordei Otth). The F3:5 (Stage 2) lines were derived or sourced from different geographic origins or hubs of international barley breeding ventures representing two breeding cycles (2009 and 2011 trials) and were evaluated across eight environments for infection type at both seedling and adult plant stages. Association mapping was performed using mean scores for disease reaction, accounting for family effects using the eigenvalues from a matrix of genotype correlations. In this study, 15 QTL were detected; 5 QTL co-located with catalogued leaf rust resistance genes (Rph1, Rph3/19, Rph8/14/15, Rph20, Rph21), 6 QTL aligned with previously reported genomic regions and 4 QTL (3 on chromosome 1H and 1 on 7H) were novel. The adult plant resistance gene Rph20 was identified across the majority of environments and pathotypes. The QTL detected in this study offer opportunities for breeding for more durable resistance to leaf rust through pyramiding multiple genomic regions via marker-assisted selection.  相似文献   

16.

Aims

Potassium (K) is one of the most important mineral nutrients limiting plant growth in agricultural systems. This study investigated the effects of low-K treatments and detected quantitative trait loci (QTLs) for K efficiency traits at the seedling and adult stages of wheat.

Methods

Eleven seedling traits under a hydroponic culture trial with five K treatments and nine adult traits in a pot trial and a field trial with three K treatments were investigated using a set of wheat recombinant inbred lines (RILs).

Results

Values of most of the seedling and adult traits decreased with decreasing K supply, but the K-use efficiency and ratio of dry weight between seedling roots and shoots (RSDW) increased. A total of 87 QTLs for seedling traits in the hydroponic culture trial and 51 and 29 QTLs for adult traits in the pot and field trials, respectively, were detected. We also identified 15 relatively high-frequency QTLs (RHF-QTLs) which can be detected in over half of the treatments and 21 QTL clusters which is defined as the co-location of QTLs for more than two traits.

Conclusions

K efficiency traits and the related QTLs of wheat were greatly affected by K treatments. Several relatively stable QTLs and important QTL clusters may be potential targets for marker-assisted selection for wheat nutrient efficiency.  相似文献   

17.

Key message

Twenty-seven QTLs were identified for rice seed vigor, in which 16 were novel QTLs. Fifteen elite parental combinations were designed for improving seed vigor in rice.

Abstract

Seed vigor is closely related to direct seeding in rice (Oryza sativa L.). Previous quantitative trait locus (QTL) studies for seed vigor were mainly derived from bi-parental segregating populations and no report from natural populations. In this study, association mapping for seed vigor was performed on a selected sample of 540 rice cultivars (419 from China and 121 from Vietnam). Population structure was estimated on the basis of 262 simple sequence repeat (SSR) markers. Seed vigor was evaluated by root length (RL), shoot length (SL) and shoot dry weight in 2011 and 2012. Abundant phenotypic and genetic diversities were found in the studied population. The population was divided into seven subpopulations, and the levels of linkage disequilibrium (LD) ranged from 10 to 80 cM. We identified 27 marker–trait associations involving 18 SSR markers for three traits. According to phenotypic effects for alleles of the detected QTLs, elite alleles were mined. These elite alleles could be used to design parental combinations and the expected results would be obtained by pyramiding or substituting the elite alleles per QTL (apart from possible epistatic effects). Our results demonstrate that association mapping can complement and enhance previous QTL information for marker-assisted selection and breeding by design.  相似文献   

18.

Key message

In two Spanish barley landraces with outstanding resistance to scald, the Rrs1 Rh4 locus was fine mapped including all known markers used in previous studies and closely linked markers were developed.

Abstract

Scald, caused by Rhynchosporium commune, is one of the most prevalent barley diseases worldwide. A search for new resistance sources revealed that Spanish landrace-derived lines SBCC145 and SBCC154 showed outstanding resistance to scald. They were crossed to susceptible cultivar Beatrix to create large DH-mapping populations of 522 and 416 DH lines that were scored for disease resistance in the greenhouse using two R. commune isolates. To ascertain the pattern of resistance, parents and reference barley lines with known scald resistance were phenotyped with a panel of differential R. commune isolates. Subpopulations were genotyped with the Illumina GoldenGate 1,536 SNP Assay and a large QTL in the centromeric region of chromosome 3H, known to harbour several scald resistance genes and/or alleles, was found in both populations. Five SNP markers closest to the QTL were converted into CAPS markers. These CAPS markers, together with informative SSR markers used in other scald studies, confirmed the presence of the Rrs1 locus. The panel of differential scald isolates indicated that the allele carried by both donors was Rrs1 Rh4 . The genetic distance between Rrs1 and its flanking markers was 1.2 cM (11_0010) proximally and 0.9 cM (11_0823) distally, which corresponds to a distance of just below 9 Mbp. The number and nature of scald resistance genes on chromosome 3H are discussed. The effective Rrs1 allele found and the closely linked markers developed are already useful tools for molecular breeding programs and provide a good step towards the identification of candidate genes.  相似文献   

19.

Key message

QTL mapping in multiple families identifies trait-specific and pleiotropic QTL for biomass yield and plant height in triticale.

Abstract

Triticale shows a broad genetic variation for biomass yield which is of interest for a range of purposes, including bioenergy. Plant height is a major contributor to biomass yield and in this study, we investigated the genetic architecture underlying biomass yield and plant height by multiple-line cross QTL mapping. We employed 647 doubled haploid lines from four mapping populations that have been evaluated in four environments and genotyped with 1710 DArT markers. Twelve QTL were identified for plant height and nine for biomass yield which cross-validated explained 59.6 and 38.2 % of the genotypic variance, respectively. A major QTL for both traits was identified on chromosome 5R which likely corresponds to the dominant dwarfing gene Ddw1. In addition, we detected epistatic QTL for plant height and biomass yield which, however, contributed only little to the genetic architecture of the traits. In conclusion, our results demonstrate the potential of genomic approaches for a knowledge-based improvement of biomass yield in triticale.  相似文献   

20.

Key message

Quantitative trait loci (QTL) controlling callus induction and plant regeneration were identified in the VCS3M-DH population of Brassica rapa.

Abstract

Quantitative trait loci (QTL) controlling callus induction and plant regeneration were identified in the VCS3M-DH population of Brassica rapa. The VCS3M-DH population showed wide and continuous variation in callus induction and shoot regeneration. Significant coefficient correlations were detected between these two parameters. Broad-sense heritability (h 2) for the two traits was around 0.7, indicating genetic regulation of regeneration ability in this population. In the composite interval mapping analysis, two QTLs for callus induction ability, qCi2 and qCi7, were mapped on chromosome A02 and A07, explaining 28.6 % of phenotypic variation. For plant regeneration, four QTLs, qPr6-1 qPr6-2, qPr7, and qPr9 were identified on chromosome A06, A07, and A09, which in total explained 50.1 % of phenotypic variation. Furthermore, 15 putative candidate genes were found on the interval of the six QTLs, which were related to various plant hormones, MADS-box genes, and serine/threonine related genes. These results provide important information to identify genes related to tissue culture ability in B. rapa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号