首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Buchholz A  Schönherr J 《Planta》2000,212(1):103-111
 Solute mobility in cuticular membranes (CMs) of 14 plant species (Citrus aurantium L., Citrus grandis L., Hedera helix L., Ilex aquifolium L., Ilex paraguariensis St.-Hil., Malus domestica Borkh. cv. Golden Delicious, Populus alba L., Prunus laurocerasus L., Pyrus communis L. cv. Bartlett, Conference and Gellerts Butterbirne, Pyrus pyrifolia (Burm. f.) Nakai, Schefflera actinophylla (Endl.) Harms and Strophanthus gratus Baill.) was measured over the temperature range 25–55 °C. The five organic model compounds differed in size (130–349 cm3 mol−1) and cuticle/water partition coefficient (18–108). For all individual CMs (n = 297), the data were plotted according to the thermodynamic relationship between the preexponential factor (which is proportional to entropy) of the Arrhenius equation and the activation energy (enthalpy) of diffusion (E D ). A strict linear correlation was obtained, providing evidence that the five compounds diffused along the same lipophilic diffusion path in all plant species tested. Extracting cuticular waxes from CMs of four plant species (Hedera, Pyrus, Schefflera and Strophanthus) had no effect on the slope of the plot but a parallel displacement towards higher entropy was observed with these polymer matrix (MX) membranes. This displacement is interpreted as a temperature-independent tortuosity factor directly related to entropy. The influence of the plasticiser tributyl phosphate on solute mobility at various temperatures was measured for CM and MX membranes. The plasticiser increased solute mobility and E D was reduced drastically for both membrane types. This plasticiser effect was almost completely reversible, when tributyl phosphate was desorbed from the membranes. For both, plasticised CM and MX, the thermodynamic correlation exists whereby all data points lie on the same line. The data are used to characterise the lipophilic pathway across plant cuticles in terms of the free-volume theory. Received: 14 December 1999 / Accepted: 31 March 2000  相似文献   

2.
Cuticular penetration of five different 14C-labeled chemicals (benzoic acid, bitertanole, carbaryl, epoxiconazole and 4-nitrophenol) into Arabidopsis thaliana leaves was measured and permeances P (ms−1) were calculated. Thus, cuticular barrier properties of A. thaliana leaves have been characterized quantitatively. Epoxiconazole permeance of A. thaliana was 2.79 × 10−8 ms−1. When compared with cuticular permeances measured with intact stomatous and astomatous leaf sides of Prunus laurocerasus, frequently used in the past as a model species studying cuticular permeability, A. thaliana has a 48- to 66-fold higher permeance. When compared with epoxiconazole permeability of isolated cuticles of different species (Citrus aurantium, Hedera helix and P. laurocerasus) A. thaliana permeability is between 17- to 199-fold higher. Co-permeability experiments, simultaneously measuring 14C-epoxiconazole and 3H2O permeability of isolated cuticles of three species (C. aurantium, H. helix and P. laurocerasus) showed that 3H2O permeability was highly correlated with epoxiconazole permeability. The regression equation of this correlation can be used predicting cuticular transpiration of intact stomatous leaves of A. thaliana, where a direct measurement of cuticular permeation using 3H2O is impossible. Water permeance estimated for A. thaliana was 4.55 × 10−8 ms−1, which is between 12- and 91-fold higher than water permeances measured with isolated cuticles of C. aurantium, H. helix and P. laurocerasus. This indicates that cuticular water permeability of the intact stomatous leaves of the annual species A. thaliana is fairly high and in the upper range compared with most P values of perennial species published in the past.  相似文献   

3.
J. Schönherr 《Planta》1976,131(2):159-164
Summary The water permeability of astomatous cuticular membranes isolated from Citrus aurantium L. leaves, pear (Pyrus communis L.) leaves and onion (Allium cepa L.) bulb scales was determined before and after extraction of cuticular waxes with lipid solvents. In pear, the permeability coefficients for diffusion of tritiated water across cuticular membranes (CM) prior to extraction [P d(CM)] decreased by a factor of four during leaf expansion. In all three species investigated P d(CM) values of cuticular membranes from fully expanded leaves varied between 1 to 2×10-7 cm-3 s-1·P d(CM) values were not affected by pH. Extraction of cuticular waxes from the membranes increased their water permeability by a factor of 300 to 500. Permeability coefficients for diffusion of THO across the cutin matrix (MX) after extraction [P d(MX)] increased with increasing pH. P dvalues were not inversely proportional to the thickness of cuticular membranes. By treating the cutin matrix and cuticular waxes as two resistances acting in series it was shown that the water permeability of cuticles is completely determined by the waxes. The lack of the P d(CM) values to respond to pH appeared to be due to structural effects of waxes in the cutin matrix. Cuticular membranes from the submerse leaves of the aquatic plant Potamogeton lucens L. were three orders of magnitude more permeable to water than the cuticular membranes of the terrestrial species investigated.Abbreviations CM cuticular membrane - MX cutin matrix - WAX waxes This study was supported by a grant from the Deutsche Forschungsgemeinschaft.  相似文献   

4.
Co‐permeability of 3H‐labelled water and 14C‐labelled benzoic acid or 2,4‐dichlorophenoxyacetic acid across isolated cuticular membranes of Prunus laurocerasus L. was measured at temperatures ranging from 15 to 50 °C. The water and benzoic acid permeances were highly correlated over the whole temperature range investigated, whereas water and 2,4‐dichlorophenoxyacetic acid permeances were only correlated between 15 and 30 °C. The activation energies of cuticular permeability calculated from Arrhenius plots were 40 kJ mol?1 for water and benzoic acid and 115 kJ mol?1 for 2,4‐dichlorophenoxyacetic acid. The slopes of the Arrhenius plots of 2,4‐dichlorophenoxyacetic acid were linear between 15 and 50 °C, whereas pronounced phase transitions around 30 °C were observed for water and benzoic acid permeability. However, with isolated polymer matrix membranes, where cuticular waxes forming the transport‐limiting barrier of cuticles have been extracted, phase transitions were not observed for water and benzoic acid. It is concluded that temperatures above 30 °C caused structural changes in the transport‐limiting barrier of the cuticles leading to additional paths of diffusion for water and benzoic acid but not for 2,4‐dichlorophenoxyacetic acid.  相似文献   

5.
It is shown that water permeabilities and organic solute mobilities in plant cuticles have a lognormal distribution. Seven-hundred and fifty values for rate constants of desorption (~mobility) of 2,4-D from isolated Citrus aurantium L. cuticles from a population of leaves were pooled and analysed. A histogram of the rate constants of individual cuticles showed a skew distribution with a strong tail to higher values. Cuticular membranes with high values did not differ from others in visual appearance and were not leaky. After log-transformation of original data an almost perfect normal distribution was obtained. Statistical tests showed that a normal distribution of original values is not acceptable. Inspection of older data for water permeability in the same species and experiments using large samples of cuticles from leaves of Pyrus communis L. and Stephanotis floribunda Brongn. and from fruits of Capsicum annuum L. showed a similar distribution, as did inspection of data for experiments with organic solutes. A lognormal distribution was found for cuticles of plants from growth chambers, glasshouses and outdoors as well as for water permeability of intact leaves of Hedera helix L. For small samples the overestimation from using the arithmetic mean of original data can be high, but use of the geometric mean or the median leads to smaller deviations. Removing cuticular waxes from cuticles produced normally distributed samples. A normal distribution was also obtained when organic compounds which increase solute mobility were sorbed into cuticles.  相似文献   

6.
Multi-proton spin-echo images were collected from cold-acclimated winter wheat crowns (Triticum aestivum L.) cv. Cappelle Desprez at 400 MHz between 4 and ?4 °C. Water proton relaxation by the spin-spin (T2) mechanism from individual voxels in image slices was found to be mono-exponential. The temperature dependence of these relaxation rates was found to obey Arrhenius or absolute rate theory expressions relating temperature, activation energies and relaxation rates, Images whose contrast is proportional to the Arrhenius activation energy (Ea), Gibb's free energy of activation (ΔG?), and the entropy of activation (ΔS?) for water relaxation on a voxel basis were constructed by post-image processing. These new images exhibit contrast based on activation energies rather than rules of proton relaxation. The temperature dependence of water proton T2 relaxation rates permits prediction of changes in the physical state of water in this tissue over modest temperature ranges. A simple model is proposed to predict the freezing temperature kof various tissue in wheat crowns. The average Ea and ΔH? for water proton T2 relaxation over the above temperature range in winter wheat tissue were ?6.4 ± 14.8 and ?8.6 ± 14.8kj mol?1, respectively. This barrier is considerably lower than the Ea for proton translation in ice at 0°C, which is reported to be between 46.0 and 56.5 kj mol?1  相似文献   

7.
8.
Chromium(VI), a very strong oxidant, causes high cytotoxicity through oxidative stress in tissue systems. Our study investigated the potential ability of ethanolic Citrus aurantium L., family Rutaceae extract, used as a nutritional supplement, to alleviate lung oxidative damage induced by Cr(VI). A high-performance liquid chromatography coupled with a mass spectrometer method was developed to separate and identify flavonoids in C. aurantium L. Six flavonoids were identified, as (1) poncirin, (2) naringin, (3) naringenin, (4) quercetin, (5) isosinensetin, and (6) tetramethyl-o-isoscutellarein. Adult Wistar rats, used in this study, were divided into six groups of six animals each: group I served as controls which received standard diet, group II received via drinking water K2Cr2O7 alone (700 ppm), groups III and IV were pretreated for 10 days with ethanol extract of C. aurantium L. at doses of 100 and 300 mg/kg body weight/day, respectively, and then K2Cr2O7 was administrated during 3 weeks, and groups V and VI received during 10 days only C. aurantium L. ethanol extract at doses of 100 and 300 mg/kg/day, respectively. Ethanol extract of C. aurantium L. was administered orally. Rats exposed to Cr(VI) showed in lung an increase in malondialdehyde and protein carbonyl levels and a decrease in sulflydryl content, glutathione, nonprotein thiol, and vitamins C and E levels. Decreases in enzyme activities such as in Na+K+ ATPase, catalase, glutathione peroxidase, and superoxide dismutase were noted. Pretreatment with C. aurantium L. of chromium-treated rats ameliorated all biochemical parameters. Lung histological studies confirmed the biochemical parameters and the beneficial role of C. aurantium L.  相似文献   

9.
Nitrogenous excretion in two snails, Littorina saxatilis (high intertidal) and L. obtusata (low intertidal) was studied in relation to temperature acclimation (at 4° and 21°C), including total N excretion rates, the fraction of urea in N excretion, corresponding O:N ratios and the partitioning of deaminated protein between catabolic and anabolic processes at 4°, 11° and 21°C. Aggregate N excretion rates in both species showed no significant compensatory adjustments following acclimation. Total weight specific N excretion rates at 21°C were higher in standard 3 mg L. saxatilis (739 ng N mg−1 h−1) than standard 5 mg L. obtusata (257 ng N mg−1 h−1) for snails acclimated to 21°C. Comparisons of Q10 values of total weight specific N excretion to Q10 values for weight specific oxygen consumption ({xxV}O2) between 4° to 11 °C and 11° to 21°C indicated that, while total rates of catabolic metabolism ({xxV}O2) and protein deamination in L. obtusata were essentially parallel, the relationship between N excretion and {xxV}O2 in L. saxatilis revealed the partitioning of a larger share of deaminated protein carbon into anabolism at 4° and 21°C than at 11°C. Urea N accounted for a larger share of aggregate N excreted in L. saxatilis than in L. obtusata, but in both species urea N is a greater proportion of total N excreted when acclimated at 4°C (urea N: ammonia N ratio range: 1 to 2.15) than in snails acclimated to 21°C (urea N: ammonia N ratio range: 0.46 to 1.39). Molar O:N ratios indicate that the proportion of metabolism supported by protein catabolism is greater in L. saxatilis (O:N range: 2.5–8.4) than in L. obtusata (O:N range: 7.3–13.0). In both species, regardless of acclimation temperature, the O:N ratios are generally lowest (high protein catabolism) at 4°C and highest at 21°C.  相似文献   

10.
Acide abscissique lié et dormance embryonnaire chez Pyrus malus   总被引:1,自引:0,他引:1  
Bound abscisic acid and embryo dormancy in Pyrus malus. The first part of this work was devoted to the study of the behaviour of Pyrus malus L. cv. Golden Delicious embryos cultivated in vitro. At the beginning of the experiment, either the root (RM) or the distal part of the cotyledons (CM) was immersed in the medium. For embryos directly isolated from the fruits at harvest time, as well as for embryos submitted to a 3-month post-maturation treatment at 4°C, the dormancy was deeper in CM cultures than in RM. The use of gibberellins (GA4 or GA7) emphasized these differences. The second part of this work was devoted to the study of free and bound forms of ABA (cis and trans isomers) in embryos isolated from the fruits at harvest time and cultivated by the RM or CM procedure during 3 weeks. The biochemical data obtained indicated in both cases the existence of the following three processes: (A) Mobilization of the bound ABA with the consequent release of free ABA; this was particularly important in CM. (B) Metabolism of free ABA: the isomerization into trans-ABA only partly accounted for the decrease in the content of free ABA which was much greater in RM than in CM. (C) Transport of ABA towards the root, the result being an accumulation of free ABA in the root, much greater in CM than in RM; this would account for the deeper dormancy in CM than in RM.  相似文献   

11.
The nonspecific acid and alkaline phosphatases of Thermoactinomyces vulgaris were found to be optimally active at 65°C and 70°C, respectively, indicating the thermophilic nature of these enzymes in this obligate thermophile. Mg2+, when added in the assay mixture (in the form of MgCl2), increased the specific activities of these enzymes without affecting their respective temperature optima. This divalent cation decreased the Arrhenius energies of activation (E A ) of both acid and alkaline phosphatases, as substantiated by Mg2+-dependent decrease in the slopes of their Arrhenius plots, which were found to be linear. Thus, Mg2+-dependent stimulation of high temperature catalysis of T. vulgaris phosphatases appeared to be accomplished by the decrease in their E A values by this divalent cation, and such unique feature of these enzymes might be associated with their evolutionary adaptation in this thermophilic actinomycete to support its growth at elevated temperatures. The catalytic role of Mg2+ in enhancing the phosphatase activities was specified by the fact that this metal ion was able to recover the enzyme activities inhibited by dialysis and EDTA.  相似文献   

12.
Solute mobilities of 28 compounds in isolated cuticular membranes (CM) from Capsicum annuum L. fruit, Citrus aurantium L. and Pyrus communis L. leaves were studied using unilateral desorption from the outer surface. First-order rate constants of desorption (k*), which are directly proportional to the diffusion coefficient in the waxy outer limiting skins of cuticles were measured. When log k* was plotted vs. molar volumes of test compounds linear graphs were obtained. The y-intercepts of these graphs (k*) represent the mobility of a hypothetical molecule having zero molar volume and the slopes of the graphs () represent the size selectivity of the barrier and are related to the free volume available for diffusion. Thus, solute mobilities in cuticles are composed of two independent terms which are subtractive. If k* and are known, k* can be estimated for any solute from its molar volume (Vx) using the equation log k*=log k* –Vx. These parameters were used to analyse the effects of plant species, extraction of cuticular waxes and molecular structure of solutes on solute mobilities in plant cuticles. For aliphatic solutes, k* was a factor of 10 smaller than for cyclic compounds, while was 0.011 and 0.012, respectively. The k*-values for CM of the three species were very similar, but was higher for bitter-orange CM (0.012) than for those of pepper fruits and pear leaves (0.009). This has the consequence that differences in solute mobilities (k*) among cuticles from different plan species increase with increasing molar volumes of solutes. Our data and our analysis provide evidence that constituents of cuticular waxes are mobile, at least in the solid amorphous wax fraction, but mobility decreases rapidly with increasing molar volume. For instance, if amounts to 0.01, mobilities of wax monomers decrease by a factor of 10 for every increase in molar volume of 100 cm3 · mol–1. Thus, hexadecanoic acid is quite mobile in the amorphous wax fraction of Citrus (k*=1.5×10–6·s–1), but for dotriacontane having twice the molar volume, k* was only 2.5×10–9·s–1, which is almost three orders of magnitude smaller. Wax esters have even higher molar volumes and their mobilities will be even smaller (about 4×10–12·s–1 for a C48-ester). Since low chain mobilities are a prerequisite for low mobilities and permeabilities, the selective advantage of high-molecular-weight wax monomers in plant cuticular waxes becomes obvious. Extracting cuticular waxes from pear leaf CM increased solute mobilities by a factor of 182, but it had no effect on size selectivity. We interpret this result as evidence to the effect that cuticular waxes reduce mobility by increasing tortuosity of the diffusion path, rather than by decreasing the mean free path of diffusional jumps and jump frequencies of diffusants.Abbreviations CM cuticular membrane(s) - 2,4-D 2,4-dichloro-phenoxyacetic acid - LAB lactic acid buffer - MX polymer matrix membranes - UDOS unilateral desorption from the outer surface  相似文献   

13.
Takayama helix is a mixotrophic dinoflagellate that can feed on diverse algal prey. We explored the effects of light intensity and water temperature, two important physical factors, on its autotrophic and mixotrophic growth rates when fed on Alexandrium minutum CCMP1888. Both the autotrophic and mixotrophic growth rates and ingestion rates of T. helix on A. minutum were significantly affected by photon flux density. Positive growth rates of T. helix at 6–58 μmol photons · m?2 · s?1 were observed in both the autotrophic (maximum rate = 0.2 · d?1) and mixotrophic modes (0.4 · d?1). Of course, it did not grow both autotrophically and mixotrophically in complete darkness. At ≥247 μmol photons · m?2 · s?1, the autotrophic growth rates were negative (i.e., photoinhibition), but mixotrophy turned these negative rates to positive. Both autotrophic and mixotrophic growth and ingestion rates were significantly affected by water temperature. Under both autotrophic and mixotrophic conditions, it grew at 15–28°C, but not at ≤10 or 30°C. Therefore, both light intensity and temperature are critical factors affecting the survival and growth of T. helix.  相似文献   

14.
Solute mobilities in cuticular membranes of six species (Hedera helix, Malus domestica, Populus alba, Pyrus communis, Stephanotis floribunda, Strophantus gratus) were measured using plant hormones, growth regulators and other organic model compounds varying in molar volumes from 99 to 349 mL · mol−1 The dependence of mobilities (k*) on molar volume (V x ) was exponential and could be described with equations of the type log k*=log k*0 V x . The y-intercepts (log k*0) represent mobilities of a hypothetical solute of zero molar volume. The parameter β′ is a measure of size selectivity of cuticular membranes and no differences among the six species were observed. At 25 °C the average β′ was 0.0095 mol · mL−1. Solute mobility decreased by about a factor of 8.9 when molar volume increased by 100 mL · mol−1 and the mobility of a compound with V x  = 100 mL · mol−1 was about 700-fold higher than the mobility of a compound with V x  = 400 mL · mol−1. Size selectivity decreased with increasing temperatures and for Strophantusβ′-values of 1.6 × 10−2 to 8.0 × 10-4 mol · mL−1 were obtained for 10 and 30 °C, respectively. The-intercepts (log k*0) differed among plant species by 3 orders of magnitude and since size selectivity was the same for all species, solute mobilities for solutes having zero molar volumes were the sole cause for differences among species in solute mobilities and permeabilities. We argue that these differences in k*0 are related to tortuosity of the diffusion path. These results were used to derive an equation which predicts rates of cuticular penetration on the basis of k*0, the average size selectivity of 9.5 × 10−3 mol · mL−1 and the driving forces of penetration. Received: 25 November 1997 / Accepted: 9 March 1998  相似文献   

15.
Differences in leaf traits among the dune species developing along the Latium coast were analysed. Cakile maritima Scop. subsp. maritima, Elymus farctus (Viv.) Runemark ex Melderis subsp. farctus, Ammophila arenaria (L.) Link subsp. australis (Mabille) Lainz, Ononis variegata L., Pancratium maritimum L., Eryngium maritimum L., and Anthemis maritima L. were considered. The considered species showed a similar net photosynthetic rate (P N) and chlorophyll content (Chl) during the year, with a peak from the end of April to the middle of May [13.0±3.6 μmol (CO2) m−2 s−1 and 0.63±0.21 mg g−1, respectively, mean values of the considered species], favoured by air temperature in the range 13.3–17.5°C, and 6% of soil water availability. In June–July, the increase of air temperature (Tmax = 28.4°C), associated with a lower water availability (42 mm, total rainfall of the period) and a 1% of soil water availability determined a significant decrease of P N (59%, mean of the considered species) and Chl (38%), and an increase of the carotenoid (Car)/Chl ratio (59%). The significant correlation between P N and stomatal conductance (g s) (p<0.05) explained 67% of P N variations. Moreover, the correlation between P N and leaf temperature (T l) underlined that the favourable T l enabling 90–100% of the highest P N for the considered species was within the range 23.4 to 26.6°C. P N decreased below half of its maximum value when T l was over 35.8 and 37.4°C for E. farctus subsp. farctus and A. arenaria subsp. australis, respectively and over 32.2°C for the other considered species (mean value). Leaf mass area (LMA) varied from 6.8 ± 0.7 mg cm−2 (O. variegata) to 30.6 ± 1.6 mg cm−2 (A. arenaria). PCA (principal component analysis) carried out using the considered morphological and physiological leaf traits underlined that the co-occurring species were characterised by different adaptive strategies: E. farctus and A. arenaria photosynthesized for a long period also when air temperature was over 35.8 and 37.4°C, respectively, because of their lower transpiration rates [E, 1.4 ± 0.1 mmol (H2O) m−2 s−1], which seemed to be controlled by the highest LMA. On the contrary, A. maritima and C. maritima subsp. maritima had a higher P N (on an average 52% higher than the others) in the favourable period, allowed by the highest succulence index (SI, 85.7 ± 9 mg cm−2) and the lower LMA. The results allowed us to hypothesize that A. arenaria and E. farctus might be at a competitive advantage relative to the other considered species with respect to the increase of air temperature, by their ability to photosynthesize at sufficient rates also during summer.  相似文献   

16.
The mean effective water self-diffusion coefficient in maize root segments under the effect of aquaporin blocker (mercuric chloride, 0.1 mM) was measured using the spin-echo NMR method with pulsed magnetic field gradient within the temperature range from 10 to 35 °C. HgCl2 caused the reduction in water diffusion by 30 % as compared to the control samples. Temperature dependences of water self-diffusion coefficients showed two linear regions with different values of Q10 and activation energy, Ea. As the temperature reduced from 20 to 10 °C, Ea values calculated from the Arrhenius plots were close to those of bulk water (20 ± 3 kJ mol−1) and slightly changed for the sample pretreated HgCl2. Within the temperature range from 25 to 35 °C the slope of temperature dependences became steeper and Ea values were 31 ± 3 kJ mol−1 for the control and 40 ± 4 kJ mol−1 for the treated sample. In the vicinity of 20 °C, the temperature dependence of water diffusion via the mercury-sensitive water channels showed extreme value. In the region, the specific area of the mercury-sensitive aquaporins was 0.004 % of the total cell surface area. The data indicate that water transfer via aquaporins is sensitive to temperature, and the contributions of the transmembrane pathways (aquaporins, lipid bilayer) differ in different temperature ranges.  相似文献   

17.
The inland silverside, Menidia beryllina (Cope), is an annual zooplanktivore that occurs in estuarine and freshwater habitats along the Atlantic and Gulf of Mexico coasts and drainages of the United States. Experiments were conducted at 25 ± 1°C to quantify the relationship between mean dry weight (WD) and rates of energy gain from food consumption (C), and energy losses as a result of respiration (R) and ammonia excretion (E) during routine activity and feeding by groups of fish. The absorption efficiency of ingested food energy (A) was also quantified. Rates of C, E, and R increased with WD by factors (b in the equation y = aWDb) equal to 0.462, 0.667, and 0.784, respectively. Mean (±SE) rates of energy loss during feeding were 1.6 ± 0.1 (R) and 3.4 ± 0.6 (E) times greater than those for unfed fish. Absorption efficiency was independent of WD and estimated to be 89% of C. From these measurements, the surplus energy available for growth and activity (G) and growth efficiency (K1) were estimated. Over the range in sizes of juveniles and adults (5–500 mg WD), predicted G and K1 values decreased from 7.42 to 0.20 J mg fish?1 day?1 and 63 to 21%, respectively. Measured and predicted bioenergetic parameters are discussed within an ecological context for a northern population of this species.  相似文献   

18.
Isotopic exchange kinetics at equilibrium for E. coli native aspartate transcarbamylase at pH 7.8, 30 °C, are consistent with an ordered BiBi substrate binding mechanism. Carbamyl phosphate binds before l-Asp, and carbamyl-aspartate is released before inorganic phosphate. The rate of [14C]Asp C-Asp exchange is much faster than [32P]carbamyl phosphate Pi exchange. Phosphate, and perhaps carbamyl phosphate, appears to bind at a separate modifier site and prevent dissociation of active-site bound Pi or carbamyl phosphate. Initial velocity studies in the range of 0–40 °C reveal a biphasic Arrhenius plot for native enzyme: Ea (>15 °C) = 6.3 kcal/ mole and Ea (<15 °C) = 22.1 kcal/mole. Catalytic subunits show a monophasic plot with Ea ? 20.2 kcal/mole. This, with other data, suggests that with native enzyme a conformational change accompanying aspartate association contributes significantly to rate limitation at t > 15 °C, but that catalytic steps become definitively slower below 15 °C. Model kinetics are derived to show that this change in mechanism at low temperature can force an ordered substrate binding system to produce exchange-rate patterns consistent with a random binding system with all exchange rates equal. The nonlinear Arrhenius plot also has important consequences for current theories of catalytic and regulatory mechanisms for this enzyme.  相似文献   

19.
The isoelectric points of isolated cuticles from Citrus aurantium L. (3.15), Prunus armeniaca L. (3.45), and Pyrus communis L. (2.90) leaves were determined from membrane potentials. At pH values below the isoelectric point, cuticular membranes carry a net positive charge and are permselective to anions (determined using 82Br). Above the isoelectric point, they carry a net negative charge and are permselective to cations (determined using 24Na+). There are no gradients of fixed charges across the cuticular membranes as indicated by the absence of asymmetry potentials. Positive charges in the membranes originate from residues of basic amino acids of proteins or polypeptides contained in a nonextractable form within the cuticle. The exchange capacity of basic fixed groups in the cuticles of six species (Lycopersicon esculentum Mill., Capsicum annuum L. fruit cuticles, and Brassaia spec. leaf cuticles in addition to the above species) varied between 0.010 and 0.025 meq g−1 cuticle. Fixed acidic groups were donated by residues of acidic amino acids, polygalacturonic acid, and nonesterified -COOH groups of the cutin polymer. At pH 8, total cation exchange capacity as determined using 45Ca2+ varied between 0.26 (Citrus) and 0.30 (apricot) meq g−1.  相似文献   

20.
The influence of chilling (8 °C, 5 d) at two photon flux densities [PFD, L = 200 and H = 500 μmol(photon) m−2 s−1] on the gas exchange and chlorophyll fluorescence was investigated in chilling-tolerant and chilling-sensitive maize hybrids (Zea mays L., K383×K130, K185×K217) and one cultivar of field bean (Vicia faba L. minor, cv. Nadwiślański). The net photosynthetic rate (P N) for the both studied plant species was inhibited at 8 °C. P N of both maize hybrids additionally decreased during chilling. Changes in the quantum efficiency of PS2 electron transport (ΦPS2) as a response to chilling and PFD were similar to P N. Measurements of ΦPS2CO2 ratio showed that in field bean seedlings strong alternative photochemical sinks of energy did not appear during chilling. However, the high increment in ΦPS2CO2 for maize hybrids can indicate reactions associated with chill damage generation. At 8 °C the non-photochemical quenching (NPQ) increased in all plants with chilling duration and PFD. The appearance of protective (qI,p) and damage (qI,d) components of qI and a decrease in qE (energy dependent quenching) took place. NPQ components of field bean and maize hybrids differed from each other. The amount of protective NPQ (qE + qI,p) components as part of total NPQ was higher in field bean than in maize hybrids at both PFD. On 5th day of chilling, the sum of qE and qI,p was 26.7 % of NPQ in tolerant maize hybrids and 17.6 % of NPQ in the sensitive one (averages for both PFD). The increased PFD inhibited the ability of all plants to perform protective dissipation of absorbed energy. The understanding of the genotypic variation of NPQ components in maize may have implications for the future selection of plants with a high chilling tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号