首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 985 毫秒
1.
The tea green leafhopper, Empoasca vitis Göthe (Hemiptera: Cicadellidae), is a serious pest of tea crops in China. The effectiveness of five aromatic non‐host plants, Corymbia citriodora (Hook.) (Myrtaceae), Ocimum basilicum L. (Lamiaceae), Lavandula pinnata L. (Lamiaceae), Ruta graveolens L. (Rutaceae), and Rosmarinus officinalis L. (Lamiaceae), was investigated to determine their ability to suppress E. vitis on tea plants. Volatile organic compounds derived from L. pinnata, R. officinalis, and C. citriodora were found to repel leafhoppers and to mask the host's odors. Intercropping L. pinnata and C. citriodora with tea plants significantly reduced the E. vitis population levels in the tea plantation associated with higher population densities of generalist predators. The volatile compounds from the five non‐host plants were collected by headspace absorption under field conditions, and the 10 major components were identified. Qualitative and quantitative differences were found among the five odor profiles. Moreover, the emission dynamics of non‐host volatiles were monitored. Non‐host volatile emissions showed two peak periods, one in the spring and one in the autumn period. These peaks were almost consistent with the population dynamics of E. vitis. Our findings suggested that this newer approach to ecologically based, sustainable pest management implemented via intercropping with non‐host aromatic plants such as L. pinnata and C. citriodora offers a promising alternative to chemical control of the leafhopper population.  相似文献   

2.
The tea green leafhopper, Empoasca vitis Göthe (Hemiptera: Cicadellidae), is an economically important pest of tea crops, Camellia sinensis (L.) O. Kuntze (Theaceae), in China. The use of non‐host plant essential oils for manipulation of E. vitis was investigated for potential incorporation into a ‘push‐pull’ control strategy for this pest. The effectiveness of 14 plant essential oils in repelling E. vitis was investigated in laboratory assays. Rosemary oil, geranium oil, lavender oil, cinnamon oil, and basil oil repelled leafhoppers in a Y‐shaped olfactometer. We also compared the efficacy of these five plant essential oils to repel E. vitis in the presence of a host plant volatile‐based leafhopper attractant, (Z)‐3‐hexenyl acetate, in a tea plantation. In the treatment combination, four plates (north, south, east, and west) treated with an essential oil surrounded a central sticky plate treated with (Z)‐3‐hexenyl acetate. Fewer E. vitis were found on the plates treated with rosemary oil (12.5% reduction) than on the four water‐sprayed control treatment plates surrounding a central plate with (Z)‐3‐hexenyl acetate. We compared the distribution of E. vitis on the plates, and the relative numbers of E. vitis on each plate were compared with similar plates in the control treatment. When four plates treated with rosemary oil surrounded a central (Z)‐3‐hexenyl acetate‐treated plate, the distribution of E. vitis on the different plates changed significantly compared with that of the control. Relatively fewer E. vitis were found on the east (13.0% reduction) rosemary oil‐treated plates and more E. vitis (11.3% increase) were found on the central attractant‐treated plate. Our findings indicate that rosemary oil is a promising leafhopper repellent that should be tested further in a ‘push‐pull’ strategy for control of E. vitis.  相似文献   

3.
The grape leafhopper Empoasca vitis (Homoptera: Cicadellidae) is regarded as a major insect pest in many European grapevine growing areas, with an increasing importance realized in recent years maybe as a result of climatic change. Both larvae and adults feed on the phloem vessels of the leaves, causing characteristic symptoms also referred to as hopperburn. Phenology of adult leafhoppers was monitored in one vineyard in three successive years and indicated that immigration of a few hibernated E. vitis individuals into vineyards might take place already quite early in the year depending on winter temperatures and starts to progress in substantial numbers right at grapevine bud burst. In addition, these monitoring studies have shown that there are several other leafhopper species occurring on grapevine plants besides E. vitis, such as the rose leafhopper Edwardsiana rosae (Homoptera: Cicadellidae). Here, we report on the development of larval instars of both leafhopper species, E. vitis and E. rosae on grapevine leaves under different temperature regimes in the laboratory. Shortest larval developmental time was observed at night temperatures of 13–15°C and day temperatures of 23–25°C, which was in agreement with predicted optimal temperatures for both species. At the temperature regime of 20°C night and 30°C day temperature, either no egg hatch was observed or early development of first‐instar larvae was not successful for both species. These results suggest that warm (18°C) nights and moderately warm (28°C) days are representing the upper thermal threshold for development of both E. vitis and E. rosae embryonic stages on grapevine leaves, questioning current assumptions of an increasing importance of E. vitis as a grapevine pest under future climate change.  相似文献   

4.
5.
Some parasitoid flies exploit odors derived from plants as olfactory cues for locating the food plants of host insects, but the role of visual cues associated with plants remains largely unknown. The generalist tachinid Exorista japonica Townsend (Diptera: Tachinidae) is attracted to odors derived from maize plants [Zea mays L. (Poaceae)] infested by the larvae of Mythimna separata (Walker) (Lepidoptera: Noctuidae). In this study, we examined the effects of visual parameters on the olfactory attraction of female flies to host‐infested plants. A paper plant model of one of four colors (blue, green, yellow, or red) was placed in front of a host‐infested plant, which was hidden behind a mesh screen in a wind tunnel. The landing rate of females was significantly higher on the green plant model than on the other three models. When an achromatic plant model of one of four gray scales (white, light gray, dark gray, or black) was tested, the response rate of females was significantly higher towards the white model and decreased as the brightness of models decreased. Few female flies responded to the green plant model without odors of the host‐infested plants. When the four color plant models were placed together in a cage filled with odors of host‐infested plants, females remained significantly longer on the green model than on the other three models. These results showed that E. japonica females preferred the color green when odors of the host‐infested plants were present and suggest that E. japonica uses visual as well as olfactory cues to locate the host habitat.  相似文献   

6.
It is well known that parasitoids are attracted to volatiles emitted by host‐damaged plants; however, this tritrophic interaction may change if plants are attacked by more than one herbivore species. The larval parasitoid Cotesia flavipesCameron (Hymenoptera: Braconidae) has been used intensively in Brazil to control the sugarcane borer, Diatraea saccharalisFabricius (Lepidoptera: Pyralidae) in sugarcane crops, where Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), a non‐stemborer lepidopteran, is also a pest. Here, we investigated the ability of C. flavipes to discriminate between an unsuitable host (S. frugiperda) and a suitable host (D. saccharalis) based on herbivore‐induced plant volatiles (HIPVs) emitted by sugarcane, and whether multiple herbivory (D. saccharalis feeding on stalk + S. frugiperda feeding on leaves) in sugarcane affected the attractiveness of HIPVs to C. flavipes. Olfactometer assays indicated that volatiles of host and non‐host‐damaged plants were attractive to C. flavipes. Even though host‐ and non‐host‐damaged plants emitted considerably different volatile blends, neither naïve nor experienced wasps discriminated suitable and unsuitable hosts by means of HIPVs emitted by sugarcane. With regard to multiple herbivory, wasps innately preferred the odor blend emitted by sugarcane upon non‐host + host herbivory over host‐only damaged plants. Multiple herbivory caused a suppression of some volatiles relative to non‐host‐damaged sugarcane that may have resulted from the unaltered levels of jasmonic acid in host‐damaged plants, or from reduced palatability of host‐damaged plants to S. frugiperda. In conclusion, our study showed that C. flavipes responds to a wide range of plant volatile blends, and does not discriminate host from non‐host and non‐stemborer caterpillars based on HIPVs emitted from sugarcane. Moreover, we showed that multiple herbivory by the sugarcane borer and fall armyworm increases the attractiveness of sugarcane plants to the parasitoids.  相似文献   

7.
In many herbivorous insects, the attraction to suitable host plants is in part mediated by similar olfactory cues from different host plants. This study investigated the electrophysiological and behavioral responses of female Maruca vitrata Fabricius (Lepidoptera: Crambidae) to floral volatiles from two host plants, Vigna unguiculata (L.) Walpers and Lablab purpureus (L.) Sweet (both Fabaceae). Qualitative and quantitative differences were found between the odor profiles of two host plants by gas chromatography‐mass spectrometry (GC‐MS). Nine electroantennography‐active compounds were detected in the headspace collections of the two host plants by means of coupled GC‐electroantennographic detection. In a wind tunnel, female behaviors (upwind flight and source approach) were not affected by stimuli or their interaction with host plants, but the behaviors were influenced by host plants. A mixture of the nine bioactive compounds, including limonene, 1,3‐diethylbenzene, benzaldehyde, acetophenone, 4‐ethylbenzaldehyde, 1‐(4‐ethylphenyl)‐ethanone, 2‐methyl‐3‐phenylpropanal, 1H‐indol‐4‐ol, and 1,1′‐(1,4‐phenylene)bis‐ethanone mimicking L. purpureus (in a ratio of 0.4:9.7:2.4:5.7:78.1:4.8:100:0.6:30.3) attracted significantly more females approaching the sources compared with the mixture of compounds mimicking V. unguiculata (in a ratio of 0.3:1.4:1.6:3.7:50.8:3.2:100:4.2:16.7). Further bioassays revealed that a subtractive 4‐component blend [limonene, 1,3‐diethylbenzene, 4‐ethylbenzaldehyde, and 1‐(4‐ethylphenyl)‐ethanone in a ratio of 0.4:9.7:78.1:4.8] was essential for maximal attraction. Our study suggested that female M. vitrata might use similar odors from V. unguiculata and L. purpureus to locate suitable hosts and that an artificial lure, containing the major floral volatiles released by the two host plants, might be useful in exploring efficiency monitoring and/or control strategies of this moth in the field.  相似文献   

8.
Blends of volatile compounds emitted by host plants are known to mediate the attraction of gravid female herbivores to oviposition sites, but the role of individual odor components is still little understood. We characterized the olfactory response of mated female Cydia (Grapholita) molesta (Busck) (Lepidoptera: Tortricidae) to synthetic mixtures of compounds emitted by peach shoot, a key host plant of this herbivore, and investigated the role of important constituents of bioactive mixtures in moth attraction. Relative ratios of constituents of the mixtures corresponded to the natural ratio of volatile compounds collected in the plant's headspace. A significant attractant effect was found for a comparatively complex 10‐compound mixture that included four green leaf volatiles [(Z)‐3‐hexen‐1‐ol, 1‐hexanol, (E)‐2‐hexenal, and (Z)‐3‐hexen‐1‐yl acetate], five aromatics (benzaldehyde, methyl salicylate, methyl benzoate, benzonitrile, and phenylacetonitrile), and a carboxylic acid (valeric acid). Using a subtraction approach, the number of compounds was progressively decreased, resulting in a bioactive 5‐compound mixture composed of two constituents, green leaf volatiles and aromatic compounds. Further evaluations revealed that benzaldehyde and benzonitrile must be present in association with three distinct green leaf volatiles to produce an attractant effect on the female moths. This 5‐compound mixture was as attractive as natural peach shoot volatiles, which are known to comprise over 20 compounds. Results are discussed in light of the documented synergistic effect between the three general green leaf volatiles and the two specific aromatic compounds.  相似文献   

9.
Cotesia kariyai Watanabe (Hymenoptera: Braconidae) is a specialist larval parasitoid of Mythimna separata Walker (Lepidoptera: Noctuidae). Cotesia kariyai wasps use herbivore‐induced plant volatiles (HIPVs) to locate hosts. However, complex natural habitats are full of volatiles released by both herbivorous host‐ and non‐host‐infested plants at various levels of intensity. Therefore, the presence of non‐hosts may affect parasitoid decisions while foraging. Here, the host‐finding efficiency of naive C. kariyai from HIPVs influenced by host‐ and non‐host‐infested maize [Zea mays L. (Poaceae)] plants was investigated with a four‐arm olfactometer. Ostrinia furnacalis Guenée (Lepidoptera: Crambidae) was selected as a non‐host species. One unit (1 U) of host‐ or non‐host‐infested plant was prepared by infesting a potted plant with five host or seven non‐host larvae. In two‐choice bioassays, host‐infested plants fed upon by different numbers of larvae, and various units of host‐ and non‐host‐infested plants (infestation units; 1 U, 2 U, and 3 U) were arranged to examine the effects of differences in volatile quantity and quality on the olfactory responses of C. kariyai with the assumption that volatile quantity and quality changes with differences in numbers of insects and plants. Cotesia kariyai was found to perceive quantitative differences in volatiles from host‐infested plants, preferring larger quantities of volatiles from larger numbers of larvae or plants. Also, the parasitoids discriminated between healthy plants, host‐infested plants, and non‐host‐infested plants by recognising volatiles released from those plants. Cotesia kariyai showed a reduced preference for host‐induced volatiles, when larger numbers of non‐host‐infested plants were present. Therefore, quantitative and qualitative differences in volatiles from host‐ and non‐host‐infested plants appear to affect the decision of C. kariyai during host‐habitat searching in multiple tritrophic systems.  相似文献   

10.
Volatile organic compounds (VOCs) mediate communication between plants and insects. Plants under insect herbivore attack release VOCs either at the site of attack or systemically, indicating within‐plant communication. Some of these VOCs, which may be induced only upon herbivore attack, recruit parasitoids and predatory insects to feed on the attacking insects. Moreover, some plants are able to ‘eavesdrop’ on herbivore‐induced plant volatiles (HIPVs) to prime themselves against impending attack; such eavesdropping exemplifies plant–plant communication. In apple orchards, the beetle Melolontha melolontha L. (Coleoptera: Scarabaeidae) is an important insect pest whose larvae live and feed on roots for about 4 years. In this study, we investigated whether the feeding activity of M. melolontha larvae (1) alters the volatile profile of apple roots, (2) induces the release of HIPVs systemically in the leaves, and (3) whether infested plants communicate to neighbouring non‐infested conspecifics through HIPVs. To answer these questions, we collected constitutive VOCs from intact M9 roots as well as M. melolontha larvae‐damaged roots using a newly designed ‘rhizobox’, to collect root‐released volatiles in situ, without damaging the plant root system. We also collected VOCs from the leaf‐bearing shoots of M9 whose roots were under attack by M. melolontha larvae and from shoots of neighbouring non‐infested conspecifics. Gas chromatography‐mass spectrometry analysis showed that feeding activity of M. melolontha larvae induces the release of specific HIPVs; for instance, camphor was found in the roots only after larvae caused root damage. Melolontha melolontha also induced the systemic release of methyl salicylate and (E,E)‐α‐farnesene from the leaf‐bearing shoots. Methyl salicylate and (E,E)‐α‐farnesene were also released by the shoots of non‐infested neighbouring conspecifics. These phenomena indicate the induction of specific VOCs below‐ and above‐ground upon M. melolontha larvae feeding on apple roots as well as plant–plant communication in apple plants.  相似文献   

11.
Interactions among plants, plant‐feeding insects, and plant – pathogenic fungi are partially mediated by volatile compounds. Herbivorous insects use sensory cues to choose host plants for feeding and/or oviposition that are likely to support survival and development of progeny. It is known that some fungus‐induced alterations in plants can modify plant volatiles, which are recognized by the olfactory receptors of the insect, either as an attractant or as a deterrent. We tested for the presence of behaviour‐modifying volatiles emanating from the berries of Vitis vinifera L. (Vitaceae) infected with Botrytis cinerea Pers. (Helotiales). We tested the olfactory behaviour of adults of Epiphyas postvittana Walker (Lepidoptera: Tortricidae) to these volatiles using two‐choice and wind‐tunnel experiments. We hypothesized that olfactory cues influence E. postvittana's oviposition behaviour. We found that volatiles emanating from B. cinerea‐infected berries did not significantly attract the gravid females of E. postvittana; consequently, they laid significantly fewer eggs on infected berries. Furthermore, significantly fewer females of E. postvittana were found attracted to infected berries in the wind tunnel assay. Ethanol and 3‐methyl‐1‐butanol were abundant in B. cinerea‐infected berries. Oviposition assays made with laboratory standards of ethanol and 3‐methyl‐1‐butanol confirmed their role in regulating the olfactory behaviour of E. postvittana site selection.  相似文献   

12.
Herbivorous insects use highly specific volatiles or blends of volatiles characteristic to particular plant species to locate their host plants. Thus, data on olfactory preferences can be valuable in developing integrated pest management tools that deal with manipulation of pest insect behaviour. We examined host plant odour preferences of the tomato leafminer, Liriomyza bryoniae (Kaltenbach) (Diptera: Agromyzidae), which is an economically important agricultural pest widespread throughout Europe. The odour preferences of leafminers were tested in dependence of feeding experiences. We ranked host plant odours by their appeal to L. bryoniae based on two‐choice tests using a Y‐tube olfactometer with five host plants: tomato, Solanum lycopersicum Mill.; bittersweet, Solanum dulcamara L.; downy ground‐cherry, Physalis pubescens L. (all Solanaceae); white goosefoot, Chenopodium album L. (Chenopodiaceae); and dead nettle, Lamium album L. (Lamiaceae). The results imply that ranking of host plant odours by their attractiveness to L. bryoniae is complicated due to the influence of larval and adult feeding experiences. Without any feeding experience as an adult, L. bryoniae males showed a preference for the airflow with host plant odour vs. pure air, whereas females did not display a preference. Further tests revealed that adult feeding experience can alter the odour choice of L. bryoniae females. After feeding experience, females showed a preference for host plant odour vs. pure air. Feeding experience in the larval stage influenced the choice by adults of both sexes: for males as well as females reared on bittersweet the odour of that plant was the most attractive. Thus, host feeding experience both in larval and/or adult stage of polyphagous tomato leafminer L. bryoniae influences host plant odour preference by adults.  相似文献   

13.
Parasitoids use odor cues from infested plants and herbivore hosts to locate their hosts. Specialist parasitoids of generalist herbivores are predicted to rely more on herbivorederived cues than plant-derived cues. Microplitis croceipes (Cresson)(Hymenoptera: Braconidae) is a relatively specialized larval endoparasitoid of Heliothis virescens (F.)(Lepidoptera: Noctuidae), which is a generalist herbivore on several crops including cotton and soybean. Using M. croceipes/H. virescens as a model system, we tested the following predictions about specialist parasitoids of generalist herbivores:(i) naive parasitoids will show innate responses to herbivore-emitted kairomones, regardless of host plant identity and (ii) herbivore-related experience will have a greater influence on intraspecific oviposition preference than plant-related experience. Inexperienced (naive) female M. croceipes did not discriminate between cotton-fed and soybean-fed H. virescens in oviposition choice tests, supporting our first prediction. Oviposition experience alone with either host group influenced subsequent oviposition preference while experience with infested plants alone did not elicit preference in M. croceipes, supporting our second prediction. Furthermore, associative learning of oviposition with host-damaged plants facilitated host location. I terestingly, naive parasitoids attacked more soybeathan cotton-fed host larvae in two-choice tests when a background of host-infested cotton odor was supplied, and vice versa. This suggests that plant volatiles may have created an olfactory contrast effect. We discussed ecological significance of the results and concluded that both plant- and herbivore-related experiences play important role in parasitoid host foraging.  相似文献   

14.
Abstract The olfactory responses of Aphidius gifuensis to odors from two host plants (Nicotiana tabacum and Brassica napus ssp.) and their complexes with different infestation levels of two host aphids (Myzus persicae and Lipaphis erysimi) were respectively examined in an olfactometer. The results showed that female A. gifuensis did not respond to odors of undamaged or mechanically damaged host plants, but significantly responded to odors of aphid/plant complexes. Moreover, A. gifuensis responded significantly to odors of both M. persicae and L. erysimi/plant complexes when host plants were infested by high levels of aphids, suggesting that quantity of aphid‐induced volatiles could be important for attracting A. gifuensis. When tested between aphid/plant complexes, A. gifuensis did not show its preference for either complex. The efficiency of A. gifuensis against aphids in open fields potentially could be improved by using its olfactory response to aphid/plant complexes.  相似文献   

15.
Aims: Natural and synthetic antimicrobial peptides (AMPs) are of increasing interest as potential resistance conferring elements in plants against pathogen infection. The efficacy of AMPs against pathogens is prescreened by in vitro assays, and promising AMP candidates are introduced as transgenes into plants. As in vitro and in planta environments differ, a prescreening procedure of the AMP efficacy in the plant environment is desired. Here, we report the efficacy of the purified synthetic peptide D4E1 against the grapevine‐infecting bacterial pathogens Agrobacterium vitis and Xylophilus ampelinus in vitro and describe for the first time an in planta prescreening procedure based on transiently expressed D4E1. Methods and Results: The antimicrobial effect of D4E1 against Ag. vitis and X. ampelinus was shown by a reduction in colony‐forming units in vitro in a traditional plate‐based assay and by a reduction in bacterial titres in planta as measured by quantitative real‐time PCR (qPCR) in grapevine leaves transiently expressing D4E1. A statistically significant reduction in titre was shown for X. ampelinus, but for Agvitis, a significant reduction in titre was only observed in a subset of plants. Conclusions: The titres of both grapevine‐infecting bacterial pathogens were reduced in an in vitro assay and for Xampelinus in an in planta assay by D4E1 application. This widens the applicability of D4E1 as a potential resistance‐enhancing element to additional pathogens and in a novel plant species. Significance and Impact of the Study: D4E1 is a promising candidate to confer enhanced resistance against the two tested grapevine bacterial pathogens, and the applied transient expression system proved to be a valuable tool for prescreening of D4E1 efficacy in an in planta environment. The described prescreening procedure can be used for other AMPs and might be adapted to other plant species and pathogens before the expensive and tedious development of stably transgenic lines is started.  相似文献   

16.
Abstract The behavioral responses of Microplitis mediator were measured in a four‐armed olfactometer. Leaves extract of the suitable host plant of its insect host, cotton, elicited higher olfactory responses; while leaves extract of the less suitable host plant of its insect host, tomato or tobacco, elicited moderate responses. Volatiles from the least suitable host plant of its insect host, hot pepper, elicited the lowest responses. The different preferences to four plant leaves extracts suggested that M. mediator could discriminate between suitable and less suitable host plants of its insect host by semiochemicals. Green leaf volatiles (GLVs), cis‐3‐hexen‐1‐yl acetate, hexanal, and nonan‐1‐ol, are the most attractive compound among the 7 tested compounds. The parasitoids preferred host‐damaged plant to undamaged plant, suggesting that they were able to distinguish between host and non‐host of their insect host through varying chemical blends. Experience with cotton leaves extract prior to experiment enhanced their responses to the same odor.  相似文献   

17.
In the European grapevine moth, Lobesia botrana (Denis and Schiffermüller) (Lepidoptera: Tortricidae), it has recently been shown that volatiles emitted from the main host plant, grapevine, are attractive to adult females. Here, using wind tunnel experiments, we tested the attractiveness of various grapevine, Vitis vinifera L. (Vitaceae), plant parts at different phenological stages, including ripe berries infested with the pathogenic fungus Botrytis cinerea (Persoon: Fries) (Sclerotiniaceae) to laboratory‐reared virgin and mated male and female moths. We also tested the attractiveness of the non‐host plant, tansy [Tanacetum vulgare (L.) (Asteraceae)], as flowers and flower volatiles were previously shown to be attractive to L. botrana females in the field. Mated female moths were the only adults to exhibit upwind orientation to grape plant parts in the flight tunnel. The most attractive parts of the grapevine plants were leaves, flower buds, and ripe berries. No attraction was observed to flowers. This corresponds to the phenological stages available when females of the 2–3 generations during a year are present in the field. No attraction was observed to leaves and flowers of tansy.  相似文献   

18.
The parasitoid Binodoxys communis (Gahan) (Hymenoptera: Braconidae) is a candidate for release against the Asian soybean aphid, Aphis glycines Matsumura (Homoptera: Aphididae), in North America. Using a series of Y-tube olfactometer assays, we recorded responses of naïve and experienced B. communis females to odors from both target and non-target host plant complexes. The non-target host plant complexes included three aphid species native to North America [Aphis monardae Oestlund, Aphis oestlundi Gillette, and Aphis asclepiadis (Fitch)] and one species presumed to be exotic to North America (Aphis nerii Boyer de Fonscolombe), all on their respective host plants. We also investigated whether the parasitoid distinguishes between volatiles from soybean infested with A. glycines vs. those of uninfested plants. Volatiles from A. glycines-infested soybean plants and several non-target host plant complexes elicited a response in B. communis, which seemed to be reinforced through oviposition experience. Wasps with experience on a specific host plant complex increased their response to odors of this complex. Neither naïve nor experienced wasps, however, preferred odors from target vs. non-target host plant complexes in choice tests. Our data also indicate that B. communis is unable to distinguish between volatiles from infested vs. uninfested soybean plants. This study shows that B. communis females respond to a broad array of olfactory stimuli, exhibit low fidelity for any particular odor, and employ some behavioral plasticity in their response to volatile cues. We discuss implications of these results for establishment of B. communis and potential undesirable non-target effects associated with the release of this species in North America.  相似文献   

19.
Abstract Outdoor trials were made to test the responses of male aphids to pheromone lures in fields with different host‐plants, in order to know whether host‐plants would affect catches of males to pheromone lures. In peach orchard, males of three aphid species, i.e. Myzus persicae, Hyalopterus amygdali and Rhopalosiphum nymphaeae, were found in traps baited with aphid sex pheromone nepetalactone and nepetalactol. The most numerous numbers was M, persicae and it was also attracted by plant‐derived nepetalactone alone in peach orchard and cabbage garden. Schizaphis graminum males were caught in water traps in wheat field. In apple orchard, males of two aphid species, Aphis cifricola and Sappaphis sinipiricola were caught in significantly larger numbers in the pheromone traps than in the control traps. Field study indicated that the sex pheromone of H. amygduli comprises either one or both of nepetalactone and nepetalactol, and nepetalactone may be one component of sex pheromones of A cifricola and S sinipiricola Another field trial had shown that catches were increased if volatiles from a steam‐distilled extract of peach leaves were released simultaneously with nepetalactone. Elec‐troantennograms (EAGs) were recorded from males of M. persicae to volatiles of peach leaves and buds.  相似文献   

20.
Odorant binding proteins (OBPs) act in recognizing odor molecules and their most well‐studied functions are transporting odors across the sensillum lymph to olfactory receptor neurons within the insect antennal sensillum. The adults of Grapholita molesta highly depend on olfactory cues in locating host plants and selecting oviposition sites, in which OBPs play an important role in perceiving and recognizing host plant volatiles. Exploring the physiological function of OBPs could facilitate our understanding of their importance in insects’ chemical communication. In this study, three OBP genes were cloned and named GmolOBP4, GmolOBP5, and GmolOBP10. Quantitative real‐time PCR results indicated that GmolOBP4 and GmolOBP10 were predominantly expressed in adult antennae and GmolOBP5 was expressed in multiple tissues, including head, legs, and wings in addition to antennae. The binding affinities of the three recombinant GmolOBPs (rGmolOBPs) with four sex pheromone components and twenty‐nine host plant volatiles were measured using 1‐N‐Phenyl‐naphthylamine as a fluorescence probe. The three rGmolOBPs exhibited specific binding properties to potential ligands, GmolOBP4 and GmolOBP10 bound to minor sex pheromone components, such as (Z)‐8‐dodecenyl alcohol and dodecanol, respectively. rGmolOBP4 showed intermediate binding ability with hexanal, benzyl alcohol, and pear ester, rGmolOBP5 had a weak affinity for benzaldehyde, pear ester and, methyl jasmonate, and rGmolOBP10 showed strong binding capacity toward hexanol, decanol, and α‐ocimene. We speculate that the GmolOBP4 and GmolOBP10 have dual functions in perception and recognition of host plant volatiles and sex pheromone components, while GmolOBP5 may serve other function(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号