首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Consideration of urban microclimate and thermal comfort is an absolute neccessity in urban development, and a set of guidelines for every type of climate must be elaborated. However, to develop guidelines, thermal comfort ranges need to be defined. The aim of this study was to evaluate the behaviour of different thermal indices by investigating different thermal environments in Damascus during summer and winter. A second aim was to define the lower and upper limits of the thermal comfort range for some of these indices. The study was based on comprehensive micrometeorological measurements combined with questionnaires. It was found that the thermal conditions of different outdoor environments vary considerably. In general, Old Damascus, with its deep canyons, is more comfortable in summer than modern Damascus where there is a lack of shade. Conversely, residential areas and parks in modern Damascus are more comfortable in winter due to more solar access. The neutral temperatures of both the physiologically equivalent temperature (PET) and the outdoor standard effective temperature (OUT_SET*) were found to be lower in summer than in winter. At 80 % acceptability, the study defined the lower comfort limit in winter to 21.0 °C and the upper limit in summer to 31.3 °C for PET. For OUT_SET*, the corresponding lower and upper limits were 27.6 °C and 31.3 °C respectively. OUT_SET* showed a better correlation with the thermal sensation votes than PET. The study also highlighted the influence of culture and traditions on people’s clothing as well as the influence of air conditioning on physical adaptation.  相似文献   

2.
People in urban areas frequently use parks for recreation and outdoor activities. Owing to the complexity of the outdoor environment, there have only been a few attempts to understand the effect of the thermal environment on people's use of outdoor spaces. This paper therefore seeks to determine the relationship between the thermal environment, park use and behavioural patterns in an urban area of Sweden. The methods used include structured interviews, unobtrusive observations of the naturally occurring behaviour and simultaneous measurements of thermal comfort variables, i.e., air temperature, air humidity, wind speed and global radiation. The thermal environment is investigated through the mean radiant temperature (Tmrt) and the predicted mean vote (PMV) index. The outcome is compared to the subjective behaviour and thermal sensation of the interviewees. It is found that the thermal environment, access and design are important factors in the use of the park. In order to continue to use the park when the thermal conditions become too cold or too hot for comfort, people improve their comfort conditions by modifying their clothing and by choosing the most supportive thermal opportunities available within the place. The study also shows that psychological aspects such as time of exposure, expectations, experience and perceived control may influence the subjective assessment. Comparison between the thermal sensation of the interviewees and the thermal sensation assessed by the PMV index indicates that steady-state models such as the PMV index may not be appropriate for the assessment of short-term outdoor thermal comfort, mainly because they are unable to analyse transient exposure.  相似文献   

3.
Current thermal comfort indices do not take into account the effects of wind and body movement on the thermal resistance and vapor resistance of clothing. This may cause public health problem, e.g. cold-related mortality. Based on the energy balance equation and heat exchanges between a clothed body and the outdoor environment, a mathematical model was developed to determine the air temperature at which an average adult, wearing a specific outdoor clothing and engaging in a given activity, attains thermal comfort under outdoor environment condition. The results indicated low clothing insulation, less physical activity and high wind speed lead to high air temperature prediction for thermal comfort. More accurate air temperature prediction is able to prevent wearers from hypothermia under cold conditions.  相似文献   

4.
A mathematical model to estimate outdoor thermal comfort for humans from micrometeorological data has been formulated using the energy balance concept and the simultaneous satisfaction of four criteria for comfort from the literature: (a) a comfortable perspiration rate, (b) a comfortable core body temperature, (c) a comfortable skin temperature, and (d) a near-zero energy budget. A cylindrical modification of the globe thermometer is proposed as a simple monitor of outdoor radiation absorption for a person, and the effect of windspeed on the thermal resistance of clothing is considered. Results show a correlation coefficient of 0.91 between model output and subjective comfort ratings of 59 different situations with a variety of temperatures, insolations and windspeeds.  相似文献   

5.
Recognising that modifications to the physical attributes of urban space are able to promote improved thermal outdoor conditions and thus positively influence the use of open spaces, a survey to define optimal thermal comfort ranges for passers-by in pedestrian streets was conducted in Curitiba, Brazil. We applied general additive models to study the impact of temperature, humidity, and wind, as well as long-wave and short-wave radiant heat fluxes as summarised by the recently developed Universal Thermal Climate Index (UTCI) on the choice of clothing insulation by fitting LOESS smoothers to observations from 944 males and 710 females aged from 13 to 91 years. We further analysed votes of thermal sensation compared to predictions of UTCI. The results showed that females chose less insulating clothing in warm conditions compared to males and that observed values of clothing insulation depended on temperature, but also on season and potentially on solar radiation. The overall pattern of clothing choice was well reflected by UTCI, which also provided for good predictions of thermal sensation votes depending on the meteorological conditions. Analysing subgroups indicated that the goodness-of-fit of the UTCI was independent of gender and age, and with only limited influence of season and body composition as assessed by body mass index. This suggests that UTCI can serve as a suitable planning tool for urban thermal comfort in sub-tropical regions.  相似文献   

6.
The influence of short wave solar radiation appears to be strong outdoors in summer, and the influence of airflow appears to be strong outdoors in winter. The purpose of this paper was to clarify the influence of the outdoor environment on young Japanese females. This research shows the relationship between the physiological and psychological responses of humans and the enhanced conduction-corrected modified effective temperature (ETFe). Subjective experiments were conducted in an outdoor environment. Subjects were exposed to the thermal environment in a standing posture. Air temperature, humidity, air velocity, short wave solar radiation, long wave radiation, ground surface temperature, sky factor, and the green solid angle were measured. The temperatures of skin exposed to the atmosphere and in contact with the ground were measured. Thermal sensation and thermal comfort were measured by means of rating the whole-body thermal sensation (cold–hot) and the whole body thermal comfort (comfortable–uncomfortable) on a linear scale. Linear rating scales are given for the hot (100) and cold (0), and comfortable (100) and uncomfortable (0) directions only. Arbitrary values of 0 and 100 were assigned to each endpoint, the reported values read in, and the entire length converted into a numerical value with an arbitrary scale of 100 to give a linear rating scale. The ETFe considered to report a neither hot nor cold, thermally neutral sensation of 50 was 35.9 °C, with 32.3 °C and 42.9 °C, respectively, corresponding to the low and high temperature ends of the ETFe considered to report a neither comfortable nor uncomfortable comfort value of 50. The mean skin temperature considered to report a neither hot nor cold, thermally neutral sensation of 50 was 33.3 °C, with 31.0 °C and 34.3 °C, respectively, corresponding to the low and high temperature ends of the mean skin temperature considered to report a neither comfortable nor uncomfortable comfort value of 50. The acceptability raised the mean skin temperature even for thermal environment conditions in which ETFe was high.  相似文献   

7.
This review comprehensively examines scientific literature pertaining to human physiology during exercise, including mechanisms of heat formation and dissipation, heat stress on the body, the importance of skin temperature monitoring, the effects of clothing, and microclimatic measurements. This provides a critical foundation for microclimatologists and biometeorologists in the understanding of experiments involving human physiology. The importance of the psychological aspects of how an individual perceives an outdoor environment are also reviewed, emphasizing many factors that can indirectly affect thermal comfort (TC). Past and current efforts to develop accurate human comfort models are described, as well as how these models can be used to develop resilient and comfortable outdoor spaces for physical activity. Lack of suitable spaces plays a large role in the deterioration of human health due to physical inactivity, leading to higher rates of illness, heart disease, obesity and heat-related casualties. This trend will continue if urban designers do not make use of current knowledge of bioclimatic urban design, which must be synthesized with physiology, psychology and microclimatology. Increased research is required for furthering our knowledge on the outdoor human energy balance concept and bioclimatic design for health and well-being in urban areas.  相似文献   

8.
The outdoor environment is deteriorating in many tropical cities due to rapid urbanization. This leads to a number of problems related to health and well-being of humans and also negatively affects social and commercial outdoor activities. The creation of thermally comfortable microclimates in urban environments is therefore very important. This paper discusses the influence of street-canyon geometry on outdoor thermal comfort in Colombo, Sri Lanka. Five sites with different urban geometry, ground cover, and distance from the sea were studied during the warmest season. The environmental parameters affecting thermal comfort, viz. air temperature, humidity, wind speed, and solar radiation, were measured, and the thermal comfort was estimated by calculating the physiologically equivalent temperature (PET). The thermal comfort is far above the assumed comfort zone due to the combination of intense solar radiation, high temperatures, and low wind speeds, especially on clear days. The worst conditions were found in wide streets with low-rise buildings and no shade trees. The most comfortable conditions were found in narrow streets with tall buildings, especially if shade trees were present, as well as in areas near the coast where the sea breeze had a positive effect. In order to improve the outdoor comfort in Colombo, it is suggested to allow a more compact urban form with deeper street canyons and to provide additional shade through the use of trees, covered walkways, pedestrian arcades, etc. The opening up of the city's coastal strip would allow the sea breeze to penetrate further into the city.  相似文献   

9.
Occupants’ preferences for air movement in naturally ventilated buildings have been extracted from a database of three thermal comfort surveys conducted in the humid subtropical climate zone in China, during winter, spring, and summer seasons. The distribution of draft sensation shows that only 25.7, 38.5, and 28.7% of the subjects in winter, spring, and summer, respectively, felt that the available air movement was just right, suggesting that indoor air velocity may be a big problem in naturally ventilated buildings in humid subtropical China. Air movement preferences show that 15.8, 61.3, and 80.6% of subjects in winter, spring, and summer, respectively, wanted more air movement. Only a handful of subjects wanted less air movement than they were actually experiencing in any season, suggesting that draft was not much of an issue for thermal comfort. Occupants’ preference for air movement is strongly related to thermal sensation, showing that people want to control air movement as a means of improving their comfort. The demand for less air movement under cool sensation is much smaller than the overwhelming demand for more air movement when the sensation was warm. The above results indicate that air movement might have a significant influence over the respondents’ comfort sensation and that people required a high level of air movement in order to be comfortable during the summer season. Thus, one efficient way to improve the thermal environment in summer in humid subtropical China could be to provide occupants with effective natural ventilation and allow personal control of the air movement. Our findings are also applicable to other buildings, to encourage designers to provide air movement as a low energy cooling strategy and to ensure that sufficient levels of air movement are available.  相似文献   

10.
With considerably increased coverage of weather information in the news media in recent years in many countries, there is also more demand for data that are applicable and useful for everyday life. Both the perception of the thermal component of weather as well as the appropriate clothing for thermal comfort result from the integral effects of all meteorological parameters relevant for heat exchange between the body and its environment. Regulatory physiological processes can affect the relative importance of meteorological parameters, e.g. wind velocity becomes more important when the body is sweating. In order to take into account all these factors, it is necessary to use a heat-balance model of the human body. The physiological equivalent temperature (PET) is based on the Munich Energy-balance Model for Individuals (MEMI), which models the thermal conditions of the human body in a physiologically relevant way. PET is defined as the air temperature at which, in a typical indoor setting (without wind and solar radiation), the heat budget of the human body is balanced with the same core and skin temperature as under the complex outdoor conditions to be assessed. This way PET enables a layperson to compare the integral effects of complex thermal conditions outside with his or her own experience indoors. On hot summer days, for example, with direct solar irradiation the PET value may be more than 20 K higher than the air temperature, on a windy day in winter up to 15 K lower. Received: 14 December 1998 / Accepted: 26 May 1999  相似文献   

11.
刘畅  徐宁  宋靖达  胡尚春 《生态学报》2017,37(10):3561-3569
选择黑龙江省森林植物园内景观差异性较大的4个样地。实地测量各样地空气温度、相对湿度、风速等小气候要素数据,问卷调查游人热舒适感受,观察记录游人空间选择及行为特征。旨在寻找小气候要素与人体热舒适感受的关系,以及游人空间选择与热舒适感受评价的关联程度。结果表明:各小气候要素均对游人热舒适感受有一定的影响,其中空气温度对游人热舒适感受影响最大,其次是相对湿度和风速;不同样地内游人对热舒适感受变化的敏感程度不同,水体和植物群落除了通过増湿降温作用调节空间热舒适感受外,其观赏作用也可以降低人们对热舒适感受变化的敏感性;遮荫是夏季游人选择休憩空间的主要因素。  相似文献   

12.
This paper presents the findings of an outdoor thermal comfort study conducted in Hong Kong using longitudinal experiments—an alternative approach to conventional transverse surveys. In a longitudinal experiment, the thermal sensations of a relatively small number of subjects over different environmental conditions are followed and evaluated. This allows an exploration of the effects of changing climatic conditions on thermal sensation, and thus can provide information that is not possible to acquire through the conventional transverse survey. The paper addresses the effects of changing wind and solar radiation conditions on thermal sensation. It examines the use of predicted mean vote (PMV) in the outdoor context and illustrates the use of an alternative thermal index—physiological equivalent temperature (PET). The paper supports the conventional assumption that thermal neutrality corresponds to thermal comfort. Finally, predictive formulas for estimating outdoor thermal sensation are presented as functions of air temperature, wind speed, solar radiation intensity and absolute humidity. According to the formulas, for a person in light clothing sitting under shade on a typical summer day in Hong Kong where the air temperature is about 28°C and relative humidity about 80%, a wind speed of about 1.6 m/s is needed to achieve neutral thermal sensation.  相似文献   

13.
The aim of this study was to investigate the impact of daily atmospheric weather conditions on daily leisure activity engagement, with a focus on physically active leisure. The methods capitalize on time diary data that were collected in Halifax, Nova Scotia to calculate objective measures of leisure activity engagement. Daily meteorological data from Environment Canada and daily sunrise and sunset times from the National Research Council of Canada are used to develop objective measures of the natural atmospheric environment. The time diary data were merged with the meteorological data in order to quantify the statistical association between daily weather conditions and the type, participation rate, frequency, and duration of leisure activity engagement. The results indicate that inclement and uncomfortable weather conditions, especially relating to thermal comfort and mechanical comfort, pose barriers to physically active leisure engagement, while promoting sedentary and home-based leisure activities. Overall, daily weather conditions exhibit modest, but significant, effects on leisure activity engagement; the strongest associations being for outdoor active sports and outdoor active leisure time budgets. In conclusion, weather conditions influence the type, participation rate, frequency, and duration of leisure activity engagement, which is an important consideration for health-promotion programming.  相似文献   

14.

1. 1. As part of “research on environmental comfort,” that is, research which aims to make people's living environment more comfortable, we attempted to clarify the relation between the living environment of elderly people and physiological and psychological factors. We carried out a comprehensive study with a view to establishing comfort standards for the residential thermal environment, and for creating evaluation and control systems.

2. 2. The comfort of the living environment is closely related to the thermal environment and the temperature-regulation ability of the human body. This ability of the body to regulate temperature develops during childhood and recedes as the adult ages.

3. 3. We therefore carried out: (a) experiments on body-temperature regulation and on special characteristics of the body-temperature regulation of elderly people, (b) a nationwide survey of the actual residential thermal environments of elderly people and (c) a survey of the daily activities of elderly people, and how elderly people's physiological and psychological conditions change when they are engaged in these activities.

4. 4. As a result of these experiments and surveys, we were able to: (d) formulate standards for evaluation of the residential thermal environment and (e) numerically express the results of systematic evaluation of residential thermal environments of elderly people, by means of a RTE-index.

Author Keywords: Elderly; residential thermal environment; thermal index; RTE-index; thermal standard; evaluation method  相似文献   


15.
The subjective investigation, that is focused on the sensations of a person, is a good tool for the evaluation of an environment that group of people consider comfortable. In the experiment reported here, participants were dressed into 1-layer and 2-layer clothing systems. They performed physical activity and rated the subjective perception of comfort, as well as the thermal and moisture sensation. The aim of this investigation is to compare the subjective human perception during the physical activity wearing different clothing systems to the objective results of sweat absorption.  相似文献   

16.
The present paper is the second part of our study in which we compare the results obtained in Szeged (Hungary) with those achieved through earlier outdoor thermal comfort projects based on simultaneous questionnaire surveys and on-site meteorological measurements. The main characteristics of the selected studies—conducted in Hungary, Sweden, Portugal, Canada, Taiwan and across Europe in the frame of project RUROS—are reviewed, emphasizing the common features and also the discrepancies in the applied methodology. We discuss their potential effects on the evolution and interpretation of the results concerning the subjective assessment of the thermal environment. Another aspect of the comparison focuses on the regional climatic differences naturally ensuing from the various locations, which left their marks on the results related to both physiological acclimatization and mental adaptation. The compared results of different studies include correlation coefficients expressing interrelationships between the different aspects of subjective estimations (thermal sensation, perceptions, preferences) and also between subjective assessments and the corresponding meteorological parameters. We compare neutral temperatures (expressed in physiological equivalent temperature, PET) which arose for Taiwan and Hungary, as well as thermal sensation zones for local inhabitants. Subjectively assessed temperature values of Sweden and Hungarians are analyzed according to the measured air temperature. According to our experiences the methodology should be standardized for the level of field surveys and also for the level of data processing in order to make the data collected in different locations comparable.  相似文献   

17.
Urban valleys as a primary element of the urban environment have played an undeniable role in the intensification of urban heat islands as climate change has increased in the past century. However, appropriate solutions can help improve outdoor thermal comfort (OTC) in these areas. In the present study, parameters related to thermal comfort outdoors such as air temperature (Ta), wind speed (Ws), sky view factor (SVF), mean radiant temperature (MRT) and physiological equivalent temperature (PET) in an urban street were analyzed using ENVI-met simulation. Furthermore, the influence of tree species and street orientation in the study area was also examined to improve thermal comfort conditions. Similarly, with field measurements on site, a questionnaire was used to determine the OTC range of visitors to the urban valley. The study also integrates with ENVI-met microclimatic modeling to improve thermal comfort in the urban street canyon, which was used to simulate the current situation and validated with field measurements, showing a good correlation. The results have revealed that, although SVF has been extensively used in previous studies, it is not an exact indicator to determine the amount of radiation and OTC conditions. The simulation study expressed that orientations' effect on thermal comfort is less prominent than tree cover. However, significant changes in orientation have a remarkable effect on improving OTC in the urban valley.  相似文献   

18.
1. The thermal parameters for describing clothing were summarized first (i.e., clo and tog unit, permeability index, evaporative transmissibility, permeation efficiency factor, index of water permeability). Their applications were then outlined for the calculation of heat exchange between human body and its environment, and for the prediction of the physiological variables under heat stress conditions.2. Nevertheless, the human body is not frequently exposed under steady-state condition, instead it is subjected to changes in environmental variables, clothing and activity. The transient thermal response of the human-clothing system plays a major role during transients. The heat exchange between the body and the environment may be affected significantly by the dynamic response of the clothing. The thermal comfort property of a clothing system during dynamic conditions should be assessed based on moisture vapor pressure alteration within the clothing, surface temperature of the clothing and heat loss from the body.3. There is a trend to develop overall thermal parameter to describe the transient thermal and moisture transfer properties of clothing system.  相似文献   

19.
The UTCI-Fiala mathematical model of human temperature regulation forms the basis of the new Universal Thermal Climate Index (UTC). Following extensive validation tests, adaptations and extensions, such as the inclusion of an adaptive clothing model, the model was used to predict human temperature and regulatory responses for combinations of the prevailing outdoor climate conditions. This paper provides an overview of the underlying algorithms and methods that constitute the multi-node dynamic UTCI-Fiala model of human thermal physiology and comfort. Treated topics include modelling heat and mass transfer within the body, numerical techniques, modelling environmental heat exchanges, thermoregulatory reactions of the central nervous system, and perceptual responses. Other contributions of this special issue describe the validation of the UTCI-Fiala model against measured data and the development of the adaptive clothing model for outdoor climates.  相似文献   

20.
Standard meteorological measurements of dry bulb temperature, wind speed, sunshine, cloud cover and rainfall are used to calculate the clothing insulation required by man for thermal comfort under given weather conditions. The calculation is based on earlier work on the effect of weather on sensible (non-evaporative) heat loss from sheep, which used the relation between heat flow, thermal insulation and the difference between body and environmental temperatures.Clothing insulation for man is estimated in two ways: as clothing (Ic) that is impervious to the effects of wind and rain; and as the equivalent depth of sheep fleece (fm), which is not impervious. This allows the assessment of wind chill for a range of clothing of varied penetration by wind instead of for only one type of garment.Results are given as daily means calculated from hourly measurements throughout 1973 for Plymouth (on the south coast of Britain) and Aberdeen (on the far northeast coast of Britain). Wind chill is estimated both by its effect on fm requirement and by the fall in air temperature that would be needed to produce under still-air conditions the same demand for fm that occurs in the actual environment. The monthly mean fm requirement is reduced by about 40% when the effect of wind is removed. When wind chill is estimated as an equivalent fall in air temperature it approximates to 1 K per knot wind speed measured at the standard meteorological height of 10 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号