首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
Active mechanisms of re-orientation are necessary to maintain the verticality of tree stems. They are achieved through the production of reaction wood, associated with circumferential variations of three factors related to cambial activity: maturation strain, longitudinal modulus of elasticity (MOE) and eccentric growth. These factors were measured on 17 mature trees from different botanical families and geographical locations. Various patterns of circumferential variation of these factors were identified. A biomechanical analysis based on beam theory was performed to quantify the individual impact of each factor. The main factor of re-orientation is the circumferential variation of maturation strains. However, this factor alone explains only 57% of the re-orientations. Other factors also have an effect through their interaction with maturation strains. Eccentric growth is generally associated with heterogeneity of maturation strains, and has an important complementary role, by increasing the width of wood with high maturation strain. Without this factor, the efficiency of re-orientations would be reduced by 31% for angiosperms and 26% for gymnosperms. In the case of angiosperms, MOE is often larger in tension wood than in normal wood. Without these variations, the efficiency of re-orientations would be reduced by 13%. In the case of gymnosperm trees, MOE of compression wood is lower than that of normal wood, so that re-orientation efficiency would be increased by 24% without this factor of variations.  相似文献   

2.
In tree trunks, the motor of gravitropism involves radial growth and differentiation of reaction wood (Archer, 1986). The first aim of this study was to quantify the kinematics of gravitropic response in young poplar (Populus nigra x Populus deltoides, 'I4551') by measuring the kinematics of curvature fields along trunks. Three phases were identified, including latency, upward curving, and an anticipative autotropic decurving, which has been overlooked in research on trees. The biological and mechanical bases of these processes were investigated by assessing the biomechanical model of Fournier et al. (1994). Its application at two different time spans of integration made it possible to test hypotheses on maturation, separating the effects of radial growth and cross section size from those of wood prestressing. A significant correlation between trunk curvature and Fournier's model integrated over the growing season was found, but only explained 32% of the total variance. Moreover, over a week's time period, the model failed due to a clear out phasing of the kinetics of radial growth and curvature that the model does not take into account. This demonstrates a key role of the relative kinetics of radial growth and the maturation process during gravitropism. Moreover, the degree of maturation strains appears to differ in the tension woods produced during the upward curving and decurving phases. Cell wall maturation seems to be regulated to achieve control over the degree of prestressing of tension wood, providing effective control of trunk shape.  相似文献   

3.
芦芽山林线白杄生长季径向生长动态   总被引:6,自引:0,他引:6       下载免费PDF全文
高山林线作为树木分布的高度上限, 是全球范围最重要的植被过渡带之一, 其树木生长显著受到外界极端环境条件的影响。利用点状树木径向变化记录仪于2009年5-9月, 对山西省芦芽山林线组成树种白杄(Picea meyeri)生长季内树木径向生长进行了持续的动态监测。结果表明: 白杄茎干日变化主要受到树木蒸腾作用日变化的影响, 茎干呈现出白天脱水收缩与夜间吸水膨胀的循环变化; 生长季白杄径向生长可划分为3个不同的生长时段: 1)茎干水分恢复时段, 2)茎干快速生长时段, 3)茎干脱水收缩时段。在茎干水分恢复时段, 白杄茎干径向累积变化主要受到土壤含水量变化的影响。土壤温度是茎干快速生长时段影响茎干径向生长的主导环境因子, 同时它也影响着白杄茎干径向生长的开始。在茎干脱水收缩时段, 土壤温度、土壤含水量是影响茎干径向累积变化的主要环境因子。白杄径向生长最大速度出现在6月末, 其主要受到光周期(即白昼长短)影响, 是对林线处极端环境的一种适应。  相似文献   

4.

Key message

Stem reorientation is critical to tree survival. With anatomical observation and strain measurement, the tension wood formation and biomechanical behavior were studied to gain insights into tree uprighting process.

Abstract

Tension wood plays a role in maintaining the mechanical stability of angiosperm trees. Both biological and physical aspects of tension wood are essential in understanding the mechanism of trunk or branch reorientation. In this study, we worked on both tension wood formation and its biomechanical function in artificially inclined 2-year-old Koelreuteria henryi seedlings. The tension wood formation and reorientation process of the trunk last for about 3 months. With pinning method, we confirmed that at the beginning of inclination the cambial zone including the vascular cambium and the developing normal wood fibers on the upper side of the inclined trunk perceives the onset of mechanical change and starts to produce G-fibers that generate a strong contractile released growth strain (RGS) for gravitropic correction. Stronger contractile RGS and more tension wood were found at the trunk base than at the half-height, suggesting that the trunk base plays a key role in trunk uprighting of K. henryi seedlings. The eccentric cambial growth in the tension wood side increases the efficiency of gravitropic correction and the compressive strains measured in the opposite wood of some inclined seedlings also help the upright movement.
  相似文献   

5.
为探讨杉木径向变化的季节动态及其气候响应特征,利用径向生长仪连续2年(2016—2017年)监测了江西中部杉木的径向变化过程,分析了径向变化的日动态、季节动态规律及其与气候因子的相关性。结果表明: 杉木日径向昼夜变化呈白天收缩、夜间膨胀的格局;2017年径向生长开始时间比2016年提前一个月,但旱季持续的水分亏缺使生长季也早一个月结束;在主要生长季内(4—9月),无论湿季与旱季,径向增长量与降雨、相对湿度呈显著正相关,与光合有效辐射、饱和水汽压差呈显著负相关,而水分亏缺量的气候相关性与径向增长量相反;旱季严重缺水时土壤含水量对径向变化的影响显著增强。水分条件始终是影响杉木径向变化的关键因素,夏季干旱时可通过提高土壤含水量等有效途径促进杉木径向生长。  相似文献   

6.
A glasshouse experiment investigated the effect of bending stress on stem radial and height growth and stem taper ofEucalyptus regnans seedlings. Eighteen-week-old, potted seedlings were bent continuously for 8 weeks with a static bending stress. The bending treatment was then removed and the seedlings grown for another 12 weeks. Other seedlings were stayed vertically throughout the experiment whilst control seedlings were neither bent nor stayed. Seedlings were rotated every 2 days to prevent reaction wood developing asymmetrically in the stems of bent trees. Bent trees had higher radial growth rates, developed more tapered stems and had higher safety factors (the ratio of stem radius to the minimum radius required to prevent the tree toppling over) than unbent seedlings. They produced a band of tension wood in their stems and ceased height growth whilst bent. When bending ceased, they resumed normal radial and height growth. Unbent trees developed more cylindrical stems. There were no differences in growth behaviour between stayed and control trees. Bent and unbent trees all developed a butt swell, the taper of which was not affected by treatment. It was concluded that bending stress has substantial effects on both the size and taper of tree stems. However, the development of butt swell is independent of the bending stress applied. The results were considered in relation to biomechanical theories of tree stem development.  相似文献   

7.
The main objective of this paper is to present the results of a study of the interactions between the growth and design of a tree with regards to biomechanical factors at the plant level. A numerical incremental model dedicated to the calculation of tree mechanical behaviour has been integrated in the plant architecture simulation software AMAPpara. At any stage of tree growth, a new equilibrium was calculated considering the weight increment applied on the structure, i.e. the mass of new wood layers and vegetative elements, as well as the biomechanical reaction caused by cell maturation strains in both normal and reaction wood. The resulting incremental displacements allowed the tree shape to be modified. The field of growth stresses was calculated within the stem, using a cumulative process taking into consideration the past history of each growth ring. The simulation results of trunk and branch shape, as well as internal stresses, were examined after consideration of different growth strategies. A block of trees was also simulated in order to show the influence of spatial competition on stem curvature and the variability in growth stress.  相似文献   

8.
? Premise of the study: Gravitropic movements are unexpected mechanical processes that could disturb tree design allometries derived from the physics of nonliving bodies. We investigated whether the scaling law of gravitropic performance (power of -2 of stem diameter) derived from integrative biomechanical modeling is disturbed by ontogeny or environment, then discuss the silvicultural and dendroecological consequences. ? Methods: In a beech (Fagus sylvatica) plantation, four plots with different initial planting densities evolved without any intervention for 26 yr. Regular tree inventories and a silvicultural model were used to monitor competition over time in each plot. The radial production of tension wood was quantified using a cross-section of the stems at 1.30-m height, and an integrative biomechanical model computed the tree gravitropic performance over time. ? Key results: All trees developed tension wood over the whole period, with higher amounts at the youngest age, resulting in theoretical lean corrections of ca. 20-30° on the first 4 m of the stem over the whole period. The scaling law of gravitropic performance is slightly larger than the power of -2 of stem diameter. ? Conclusions: Gravitropic performance in forest ecosystems is mainly limited by size (diameter). Ontogenic acclimation of tension wood formation allows the youngest trees to be more reactive. No additional effect of spacing was found. However, silviculture influences size and, therefore, tree reactivity at a given age. Such results will be helpful for dendroecological approaches that use wood as a marker of environmental disturbances or a trait linked to plant strategies.  相似文献   

9.
Measuring and modelling stem growth and wood formation: An overview   总被引:1,自引:0,他引:1  
The immediate environment of a cambial initial (weather and nutritional factors, growth regulators, physical stresses) varies continuously over time. Consequently local conditions in the cambium influencing wood formation at any given instant are unique. The distribution of these conditions can be influenced by longitudinal gradients (stem base to apex), circumferentially or by local factors, such as proximity to branches. Not surprisingly, therefore, the variation in wood properties within a stem is large and in seasonal climates, the greatest variation is typically found within an annual ring.A great advantage for the study of wood is that the net product of seasonal processes is recorded in the wood structure across the stem radius. Thus by studying the pattern of wood property variation, within the context of its growth history, we can gain insight into cause and effect relationships between the drivers of wood variability. Combining this with temporal, high-resolution measurements of stem growth, weather, and process modelling enables us to better understand and test hypotheses of wood formation and the causes of variability in wood properties.Over recent years and in partnership with industry and other research providers, we have been attempting to model tree growth (Cabala) and cambial activity (TreeRing and CAMBIUM) at a daily time step to explain radial variability in wood properties. CAMBIUM is the latest development of this effort, modelling a population of eucalypt cambial cells, accounting for fibre and vessel formation using physiologically meaningful relationships.  相似文献   

10.
树木是森林生态系统的基本组成, 其生长受气象因子的影响, 基于此, 该研究通过监测樟子松(Pinus sylvestris var. mongolica)的径向生长, 研究樟子松生长日动态规律、季节动态规律及其与气象因子的关系, 探讨河北塞罕坝地区樟子松森林生态系统对气候变化的响应机制。此外, 以往研究树木生长大多数基于树轮年代学, 缺少短期树木径向生长动态的研究。该研究利用径向生长记录仪监测河北塞罕坝机械林场内樟子松连续3年(2016-2018)的树干径向动态变化。结果表明: 由于树干的水分吸收与蒸腾作用, 樟子松树干径向昼夜变化呈现季节性规律, 可划分为4个阶段: 春季萌动期、夏季生长期、秋冬交替期和冬季休眠期。塞罕坝樟子松树干径向生长开始于每年4月初; 4月初至5月中旬为水分恢复阶段; 5月中旬至7月中旬为快速生长阶段; 7月中旬至10月中旬为缓慢生长阶段; 10月中、下旬生长趋于停止, 并有树干径向收缩现象。以一天为时间尺度, 在快速生长阶段(5月初至7月中旬)樟子松径向生长主要受空气温度的影响; 缓慢生长阶段(7月中旬至10月下旬)降水量、空气温度均影响樟子松径向生长。以15天为时间尺度, 温度对樟子松径向生长的影响显著。结果显示樟子松的生长动态规律及其影响因子, 为未来樟子松生理研究提供参考时间节点, 同时在极端低温与干旱的情况下, 为半干旱地区樟子松的生长状态提供参考依据。  相似文献   

11.
曾林辉  周蕾  寇亮  迟永刚 《生态学报》2023,43(16):6637-6648
树干径向变化的多尺度研究提供了树木生长及其和环境因子关系的详细信息,有助于准确评估全球气候变化背景下森林生态系统碳汇变异。以往树干径向变化研究主要集中在温带和热带地区,且大多数研究方法基于时间分辨率较粗的树木年轮法,然而缺少亚热带地区高时间分辨率树干径向变化的研究。利用树干径向变化记录仪连续监测亚热带地区马尾松13个月的树干径向变化动态,探索不同时间尺度树干径向变化规律及与环境因子的关系。结果表明:(1)在日尺度,马尾松径向变化模式为白天收缩夜晚膨胀,秋冬季节夜晚膨胀没有春夏季明显。(2)在季节尺度,马尾松树干径向变化可分为4个时期,其中3-8月是主要生长月份,4月是累计生长量最大的月份。(3)在日尺度上,相对湿度和饱和水汽压亏缺是调节马尾松径向变化主要环境因素;在季节尺度上,土壤温度对树干径向变化的影响大于空气温度,降水量与相对湿度等水分因素对树干径向生长的促进作用在生长季中后期更为明显。研究结果有助于深入理解亚热带季风气候区树干径向变化及其对环境变化的响应,为气候变化背景下亚热带地区的植树造林设计和森林可持续管理提供依据。  相似文献   

12.
高佳妮  杨保  秦春 《应用生态学报》2021,32(10):3505-3511
在贺兰山苏峪口国家森林公园,利用径向生长测量仪监测2017和2018年2个生长季内、2个海拔(2010和2330 m)油松的径向生长,研究树木径向生长对干旱的响应。结果表明: 2018年6月的干旱事件使得油松径向生长速率减慢,生长量减小;而7—8月的降水使油松的径向生长重新激活。2018年油松的径向生长主要发生在6—8月,相比2017年延长一个月。油松径向生长与气候因子的响应关系在不同海拔间没有明显的差异。生长季早期干旱对树木径向生长有抑制作用,生长季中后期降水对树木径向生长具有促进作用。该区的气候重建工作中应当充分考虑8月的气候要素对树轮宽度的影响。  相似文献   

13.
Studies on tree biomechanical design usually focus on stem stiffness, resistance to breakage or uprooting, and elastic stability. Here we consider another biomechanical constraint related to the interaction between growth and gravity. Because stems are slender structures and are never perfectly symmetric, the increase in tree mass always causes bending movements. Given the current mechanical design of trees, integration of these movements over time would ultimately lead to a weeping habit unless some gravitropic correction occurs. This correction is achieved by asymmetric internal forces induced during the maturation of new wood.The long-term stability of a growing stem therefore depends on how the gravitropic correction that is generated by diameter growth balances the disturbance due to increasing self weight. General mechanical formulations based on beam theory are proposed to model these phenomena. The rates of disturbance and correction associated with a growth increment are deduced and expressed as a function of elementary traits of stem morphology, cross-section anatomy and wood properties. Evaluation of these traits using previously published data shows that the balance between the correction and the disturbance strongly depends on the efficiency of the gravitropic correction, which depends on the asymmetry of wood maturation strain, eccentric growth, and gradients in wood stiffness. By combining disturbance and correction rates, the gravitropic performance indicates the dynamics of stem bending during growth. It depends on stem biomechanical traits and dimensions. By analyzing dimensional effects, we show that the necessity for gravitropic correction might constrain stem allometric growth in the long-term. This constraint is compared to the requirement for elastic stability, showing that gravitropic performance limits the increase in height of tilted stem and branches. The performance of this function may thus limit the slenderness and lean of stems, and therefore the ability of the tree to capture light in a heterogeneous environment.  相似文献   

14.
Daily dynamics of radial cell expansion during wood formation within the stems of 25-year-old Scots pine trees (Pinus sylvestris L.), growing in field conditions, were studied. The samples of forming wood layers were extracted 4 times per day for 3 days. Possible variations in the growth on different sides of the stem, duration of cell development in radial cell expansion phase and dynamics of cell growth in this phase were taken into account. The perimeters of tracheid cross-sections as a reflection of primary cell wall growth were the criterion of growth in a radial direction. For the evaluation of growing cell perimeters a special system for digital processing and image analysis of tracheid cross-sections of the forming wood was used. Growth rate for certain time intervals was estimated by the change in the relation of the perimeter of each observed cell in each of ten tracheid rows in each of 12 trees to the perimeter of the xylem cell of the same row before the expansion. Temporal differences in average values of the relations were estimated by Analyses of Variance. The existence of daily dynamics of Scots pine xylem cell radial growth has been proved. Intensive growth of pine tracheids has been shown to occur at any time of the day and to depend on the temperature regime of the day and the night as well as water supply of stem tissues. Moreover, reliable differences (P = 0.95) in the increment of cell walls during tracheid radial expansion have been found. Pulsing changes of the water potentials both of the cell and the apoplast, as the reason for the fluctuations of radial cell growth rate, were discussed.  相似文献   

15.
气候变化导致的温度升高和降水格局改变可能会影响到树木的生长速率和季节物候。西双版纳热带季节性湿润林分布在石灰岩山中部,属于热带喀斯特生境。由于土层浅薄,土壤保水能力极差,植物生长更容易遭到受到季节性干旱气候的影响。为探究热带季节性湿润林的树木径向生长季节动态及其对环境因子的响应,利用高精度树木生长仪连续两年监测了云南西双版纳热带季节性湿润林中落叶树种苦楝(Melia azedarach)的树干径向变化,并与同步监测的环境因子进行相关分析。结果表明,苦楝径向生长开始、结束以及持续生长的时间在年际间存在差异。与2018年相比,2019年苦楝生长开始和结束的时间较晚,且年生长量较小,这可能是与2019年雨季开始较晚且在生长季早期经历了严重的高温干旱有关。苦楝的径向日生长量与日降水量和相对湿度呈正相关关系,与光合有效辐射、水汽压亏缺和风速呈负相关关系,表明了在苦楝的径向生长主要受水分条件限制。在干旱年份(2019年),苦楝的日生长量与降水和相对湿度的相关性更强。研究结果有助于进一步了解热带喀斯特生境树木生长对气候变化的敏感性以及树木适应季节性干旱气候的策略。  相似文献   

16.
Stem orientation is an important factor for fruit tree growth and branching habit since it influences fruit production as well as training practices. A mechanical model of the bending of a stem under axillary load was written and evaluated using experimental data on apricot trees (Prunus armeniaca L.). A set of 15 1-year-old stems of various shapes was observed during the early stage of the growing season when radial growth is still negligible and the loading of the stem increases considerably. The structural modulus of elasticity (MOE) of the stems was estimated through in situ bending tests assuming homogeneous material behaviour. The effect of viscoelasticity was observed through creep tests performed on similar stems during winter. Inputs of the model are initial shape, initial diameter, and final load, defined at various positions along the stem. The final shape was simulated based on different mechanical assumptions, and compared to observations. Assuming small deflections resulted in an underestimate of the mean slope variation of 48%, accounting for large displacements reduced this underestimate to 29% and accounting for viscoelasticity reduced it further to 14%. An adjustment of the structural MOE to fit the final shape led to an excellent fit of the data in most cases, the residual errors for some axes being attributed to material heterogeneity. The use of biomechanical models to predict the shape of fruit trees based on growth parameters, provided adequate assumptions are made, is discussed.  相似文献   

17.
为了解热带地区树木的季节性生长动态和规律,在西双版纳热带季节雨林利用高精度生长仪和微树芯法对落叶树种多花白头树的径向生长季节动态进行监测。结合木质部非结构性碳水化合物和环境因子的监测,分析其形成层活动和径向季节动态的生理生态驱动因子。结果表明: 在2020年,生长仪的监测显示,多花白头树于5月底(儒略日DOY:149.3±7.2)开始生长,8月底(DOY:241.0±14.7)生长结束,年生长量为3.12 mm,最大生长速率为0.04 mm·d-1。而微树芯法显示,扩大细胞3月9日(DOY:69.2±6.2)开始出现,9月19日(DOY:262.8±2.8)细胞加厚结束,木质部生长量为1.76 mm,最大生长速率为0.009 mm·d-1。多花白头树径向日生长量与生长季的降水、相对湿度、日最低气温、深度为20 cm的土壤含水量和温度呈显著正相关,而与日最高气温、水汽压亏缺、最大风速和水汽压呈显著负相关。多花白头树边材淀粉含量和可溶性糖含量均在生长季开始之前保持较高水平,淀粉含量在3月底达到最低,而可溶性糖含量5月中旬达到最低,随着生长季的结束淀粉和可溶性糖的含量分别在10月中旬和12月底达到最高。  相似文献   

18.
A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.  相似文献   

19.
This study aims to quantify the relative effects of density-dependent (feedback structure) and density-independent climatic factors (rainfall) in regulating the short-term population dynamics of wood mice Apodemus sylvaticus Linnaeus, 1758 in three Mediterranean forest plots. Rainfall and density explained additively 62% of variation in population growth rates (38 and 24%, respectively), with no differences among study plots. Population growth rate was positive during autumn–winter and negative during spring–summer during a 2.5-year period. Population rate of change was negatively affected by wood mouse density during the normal breeding season of Mediterranean mice (autumn–winter) but not outside it. Growth rate was positively affected by the cumulative amount of rainfall three months before the normal breeding season, but not during it. Female breeding activity and recruitment did not differ among plots, and was not affected by density or rainfall. However, recruitment was positively affected by density and, marginally, by rainfall. Our results suggest that intraspecific competition (density-dependence) and food availability (rainfall) are equally important factors driving wood mouse population dynamics in Mediterranean forests. Mechanisms underlying density-dependence during the breeding season seemed to be based on food-mediated survival rather than on behaviourally-mediated reproduction. Taken together, these results indicate a high sensitivity of marginal Mediterranean wood mouse populations to the expected climate changes in the Mediterranean region.  相似文献   

20.
The stem diameter of adult Norway spruce trees was measured to see whether changes in xylem water potential lead to detectable radial deformation of the wood. The dendrometers used in these experiments measured only the dimensional changes of the woody cylinder (sap- and heartwood). Wood diameter was measured close to the ground and just below the living crown. After correction for thermal expansion of dendrometers and wood, diurnal variation of wood diameter ranged between 50 and 180 µm. Psychrometric measurements showed that xylem water potential varied in parallel to wood diameter. Diameter changes were always more pronounced at the higher stem position and exhibited a clear diurnal pattern. During the day, wood diameter decreased with increasing vapor pressure deficit and transpiration rate and with decreasing twig water potential. At night, the wood re-expanded but did not always reach the dimension of the previous day. Pre-dawn wood diameter decreased during periods of soil drought, a process which rapidly stopped and reversed after rain events. On several days, oscillation in wood diameter was observed during the mid-day hours. The oscillation had a period of approximately 50 min and showed a phase shift between different stem heights. All observed patterns of wood shrinkage and expansion were consistent with the hypothesis that xylem water tension leads to an elastic contraction of xylem conduits. The results demonstrate that xylem diameter is more suitable than whole-stem diameter for monitoring changes in xylem water potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号