首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The regulatory protein AlgR2 in Pseudomonas aeruginosa positively regulates nucleoside diphosphate kinase (Ndk) and succinyl-CoA synthetase, enzymes critical in nucleoside triphosphate (NTP) formation. AlgR2 positively regulates the production of alginate, GTP, ppGpp and inorganic polyphosphate (poly P). An algR2 mutant with low levels of these metabolites has them restored by introducing and overexpressing either the algR2 or the ndk gene into the algR2 mutant. Thus, Ndk is involved in the formation of these compounds and largely prevents the death of the algR2 mutant, which occurs early in the stationary phase. We demonstrate that the 12 kDa Ndk–pyruvate kinase (Pk) complex, previously shown to generate predominantly GTP instead of all the NTPs, has a low affinity for the deoxynucleoside diphosphates and cannot generate the dNTPs needed for DNA replication and cell division; this complex may thus be involved in regulating the levels of both NTPs and dNTPs that modulate cell division and survival in the stationary phase.  相似文献   

2.
Nucleoside diphosphate kinase (Ndk) is a ubiquitous enzyme which functions in balancing the nucleotide pool of the cell. We have recently reported that in addition to being intracellular in both mucoid and nonmucoid Pseudomonas aeruginosa, Ndk is also secreted into the extracellular environment by mucoid P. aeruginosa cells. This secreted Ndk has biochemical activity similar to the intracellular Ndk and is 16 kDa in size. To demonstrate that Ndk is indeed secreted and to localize the secretion motif, we constructed an ndk knockout mutant, which lacks both intracellular and extracellular forms of Ndk. In this study, we report the construction of deletion derivatives made from the carboxy-terminal region of Ndk. These deletion derivatives were introduced into the ndk::Cm knockout mutant and were examined for the intracellular and extracellular presence of Ndk. It was observed that the carboxy-terminal 8-amino-acid region is required for the secretion of Ndk into the extracellular region. This region has the sequence DXXX, where X is a predominantly hydrophobic residue. Such sequences represent a conserved motif in proteins secreted by the type I secretory pathway in gram-negative microorganisms. To investigate the significance of this motif in the secretion of Ndk, we constructed a fusion protein of Ndk and the blue fluorescent protein (BFP) as well as a fusion protein of mutated Ndk (whose DTEV motif has been changed to AAAA) and the BFP. The presence of extracellular Ndk was detected only in the ndk::Cm knockout mutant harboring the wild-type BFP-Ndk protein fusion. We could not detect the presence of extracellular Ndk in the ndk::Cm knockout mutant containing the mutated BFP-Ndk protein fusion. In addition, we have also used immunofluorescence microscopy to localize the wild-type and mutated BFP-Ndk proteins in the cell. The significance of these observations is discussed.  相似文献   

3.
We report the cloning and determination of the nucleotide sequence of the gene encoding nucleoside diphosphate kinase (Ndk) from Pseudomonas aeruginosa. The amino acid sequence of Ndk was highly homologous with other known bacterial and eukaryotic Ndks (39.9 to 58.3% amino acid identity). We have previously reported that P. aeruginosa strains with mutations in the genes algR2 and algR2 algH produce extremely low levels of Ndk and, as a consequence, are defective in their ability to grow in the presence of Tween 20, a detergent that inhibits a kinase which can substitute for Ndk. Hyperexpression of ndk from the clone pGWS95 in trans in the P. aeruginosa algR2an6 algR2 algH double mutant restored Ndk production to levels which equalled or exceeded wild-type levels and enabled these strains to grow in the presence of Tween 20. Hyperexpression of ndk from pGWS95 in the P. aeruginosa algR2 mutant also restored alginate production to levels that were approximately 60% of wild type. Nucleoside diphosphate kinase activity was present in both the cytosolic and membrane-associated fractions of P. aeruginosa. The cytosolic Ndk was non-specific in its transfer activity of the terminal phosphate from ATP to other nucleoside diphosphates. However, the membrane form of Ndk was more active in the transfer of the terminal phosphate from ATP to GDP resulting in the predominant formation of GTP. We report in this work that pyruvate kinase and Ndk form a complex which alters the specificity of Ndk substantially to GTP. The significance of GTP in signal transduction  相似文献   

4.
We report the purification and characterization of a protein from the membrane fraction of Pseudomonas aeruginosa showing intrinsic guanosine triphosphatase (GTPase) activity. The protein was purified as a 48-kDa polypeptide capable of binding and hydrolyzing GTP. The N-terminal sequence of the purified protein revealed its similarity to the Escherichia coli Ras-like protein (Era), and the protein cross-reacted with anti-Era antibodies. This protein was named Pseudomonas Ras-like protein (Pra). Anti-Pra antibodies also cross-reacted with E. coli Era protein. Pra is autophosphorylated in vitro, with phosphotransfer of the terminal phosphate from [gamma-32P]GTP but not [gamma-32P]ATP. Pra is capable of complex formation with the truncated 12-kDa form of nucleoside diphosphate kinase (Ndk) but not with the 16-kDa form. Purified Pra was also shown to physically interact with pyruvate kinase (Pk); Pk and Pra can form a complex, but when the 12-kDa Ndk, Pk, and Pra are all present, Pk has a higher affinity than Pra for forming a complex with the 12-kDa Ndk. The 12-kDa Ndk-Pra complex catalyzed increased synthesis of GTP and dGTP and diminished synthesis of CTP and UTP or dCTP and dTTP relative to their synthesis by uncomplexed Ndk. Moreover, the complex of Pra with Pk resulted in the specific synthesis of GTP as well when Pra was present in concentrations in excess of that of Pk. Membrane fractions from cells harvested in the mid-log phase demonstrated very little nucleoside triphosphate (NTP)-synthesizing activity and no detectable Ndk. Membranes from cells harvested at late exponential phase showed NTP-synthesizing activity and the physical presence of Ndk but not of Pk or Pra. In contrast, membrane fractions of cells harvested at early to late stationary phase showed predominant GTP synthesis and the presence of increasing amounts of Pk and Pra. It is likely that the association of Pra with Ndk and/or Pk restricts its intrinsic GTPase activity, which may modulate stationary-phase gene expression and the survival of P. aeruginosa by modulating the level of GTP.  相似文献   

5.
Elastase is a major virulence factor in Pseudomonas aeruginosa that is believed to cause extensive tissue damage during infection in the human host. Elastase is secreted in non-mucoid P. aeruginosa. It is known that secretion of most virulence factors such as elastase, lipase, exotoxin A, etc., in P. aeruginosa is greatly reduced in alginate-secreting mucoid cells isolated from the lungs of cystic fibrosis (CF) patients. We have previously reported that in mucoid P. aeruginosaan intracellular protease cleaves the 16 kDa form of nucleoside diphosphate kinase (Ndk) to a truncated 12 kDa form. This smaller form is membrane associated and has been observed to form complexes with specific proteins to predominantly generate GTP, an important molecule in alginate synthesis. The main aim of this study was to purify and characterize this protease. The protease was purified by hydrophobic interaction chromatography of the crude extract of mucoid P. aeruginosa 8821, a CF isolate. Further analysis using a gelatin containing SDS–polyacrylamide gel detected the presence of a 103 kDa protease, which when boiled, migrated as a 33 kDa protein on a SDS–polyacrylamide gel. The first 10 amino acids from the N-terminus of the 33 kDa protease showed 100% identity to the mature form of elastase. An elastase-negative lasB ::Cm knock-out mutant in the mucoid 8821 background was constructed, and it showed a non-mucoid phenotype. This mutant showed the presence of only the 16 kDa form of Ndk both in the cytoplasm and membrane fractions. We present evidence for the retention of active elastase in the periplasm of mucoid P. aeruginosa and its role in the generation of the 12 kDa form of Ndk. Finally, we demonstrate that elastase, when overproduced in both mucoid and non-mucoid cells, stimulates alginate synthesis. This suggests that the genetic rearrangements that trigger mucoidy in P. aeruginosa also allow retention of elastase in the periplasm in an active oligomeric form that facilitates cleavage of 16 kDa Ndk to its 12 kDa form for the generation of GTP, required for alginate synthesis.  相似文献   

6.
We have previously reported that two genes cloned from a cosmid library of Escherichia coli can restore mucoidy to an algR2 mutant of Pseudomonas aeruginosa . AlgR2 is a protein involved in the regulation of nucleoside diphosphate kinase (Ndk) as well as alginate synthesis in P. aeruginosa . One of the E. coli genes, rnk , encodes a 14.9 kDa protein with no homology to any other proteins. The other gene, sspA , encodes the stringent starvation protein, a regulatory protein involved in stationary-phase regulation and the stringent response of E. coli . While both rnk and sspA restored alginate production to the P. aeruginosa algR2 mutant, only rnk restored Ndk activity to the mutant. In this report, we have examined the effect of mutations in rnk and sspA on the levels of Ndk in E. coli . We find that a mutation in rnk drastically reduces the level of Ndk in E. coli . A mutation in sspA , however, affects the level of another nucleoside diphosphate kinase distinct from Ndk. The proteins can be easily distinguished from each other by their different affinities for nucleoside diphosphates (NDPs) and also by the differential effect of anti-Ndk antibodies on the reactions they catalyse. The ability of either of these two proteins to restore alginate synthesis in the algR2 mutant of P. aeruginosa demonstrates the importance of nucleoside triphosphate synthesis and energy metabolism for alginate synthesis. Additionally, a role for the stringent starvation protein (SspA) in the modulation of nucleoside triphosphate (NTP) levels in E. coli is also suggested from these experiments.  相似文献   

7.
Pathogenicity of Mycobacterium tuberculosis is closely related to its ability to survive and replicate in the hostile environment of macrophages. For some pathogenic bacteria, secretion of ATP-utilizing enzymes into the extracellular environment aids in pathogen survival via P2Z receptor-mediated, ATP-induced death of infected macrophages. A component of these enzymes is nucleoside diphosphate kinase (Ndk). The ndk gene was cloned from M. tuberculosis H37Rv and expressed in Escherichia coli. Ndk was secreted into the culture medium by M. tuberculosis, as determined by enzymatic activity and Western blotting. Purified Ndk enhanced ATP-induced macrophage cell death, as assayed by the release of [14C]adenine. A catalytic mutant of Ndk failed to enhance ATP-induced macrophage cell death, and periodate-oxidized ATP (oATP), an irreversible inhibitor of P2Z receptor, blocked ATP/Ndk-induced cell death. Purified Ndk was also found to be autophosphorylated with broad specificity for all nucleotides. Conversion of His117-->Gln, which is part of the nucleotide-binding site, abolished autophosphorylation. Purified Ndk also showed GTPase activity. Collectively, these results indicate that secreted Ndk of M. tuberculosis acts as a cytotoxic factor for macrophages, which may help in dissemination of the bacilli and evasion of the immune system.  相似文献   

8.
Pseudomonas aeruginosa secretes copious amounts of an exopolysaccharide called alginate during infection in the lungs of cystic fibrosis patients. A mutation in the algR2 gene of mucoid P. aeruginosa is known to exhibit a nonmucoid (nonalginate-producing) phenotype and showed reduced activities of succinyl-coenzyme A (CoA) synthetase (Scs) and nucleoside diphosphate kinase (Ndk), implying coregulation of Ndk and Scs in alginate synthesis. We have cloned and characterized the sucCD operon encoding the alpha and beta subunits of Scs from P. aeruginosa and have studied the role of Scs in generating GTP, an important precursor in alginate synthesis. We demonstrate that, in the presence of GDP, Scs synthesizes GTP using ATP as the phosphodonor and, in the presence of ADP, Scs synthesizes ATP using GTP as a phosphodonor. In the presence of inorganic orthophosphate, succinyl-CoA, and an equimolar amount of ADP and GDP, Scs synthesizes essentially an equimolar amount of ATP and GTP. Such a mechanism of GTP synthesis can be an alternate source for the synthesis of alginate as well as for the synthesis of other macromolecules requiring GTP such as RNA and protein. Scs from P. aeruginosa is also shown to exhibit a broad NDP kinase activity. In the presence of inorganic orthophosphate (P(i)), succinyl-CoA, and either GDP, ADP, UDP or CDP, it synthesizes GTP, ATP, UTP, or CTP. Scs was previously shown to copurify with Ndk, presumably as a complex. In mucoid cells of P. aeruginosa, Ndk is also known to exist in two forms, a 16-kDa cytoplasmic form predominant in the log phase and a 12-kDa membrane-associated form predominant in the stationary phase. We have observed that the 16-kDa Ndk-Scs complex present in nonmucoid cells, synthesizes all three of the nucleoside triphosphates from a mixture of GDP, UDP, and CDP, whereas the 12-kDa Ndk-Scs complex specifically present in mucoid cell predominantly synthesizes GTP and UTP but not CTP. Such regulation may promote GTP synthesis in the stationary phase when the bulk of alginate is synthesized by mucoid P. aeruginosa.  相似文献   

9.
beta Lys-155 in the glycine-rich sequence of the beta subunit of Escherichia coli F1-ATPase has been shown to be near the gamma-phosphate moiety of ATP by affinity labeling (Ida, K., Noumi, T., Maeda, M., Fukui, T., and Futai, M. (1991) J. Biol. Chem. 266, 5424-5429). For examination of the roles of beta Lys-155 and beta Thr-156, mutants (beta Lys-155-->Ala, Ser, or Thr; beta Thr-156-->Ala, Cys, Asp, or Ser; beta Lys-155/beta Thr-156-->beta Thr-155/beta Lys-156; and beta Thr-156/beta Val-157-->beta Ala-156/beta Thr-157) were constructed, and their properties were studied extensively. The beta Ser-156 mutant was active in ATP synthesis and had approximately 1.5-fold higher membrane ATPase activity than the wild type. Other mutants were defective in ATP synthesis, had < 0.1% of the membrane ATPase activity of the wild type, and showed no ATP-dependent formation of an electrochemical proton gradient. The mutants had essentially the same amounts of F1 in their membranes as the wild type. Purified mutant enzymes (beta Ala-155, beta Ser-155, beta Ala-156, and beta Cys-156) showed low rates of multisite (< 0.02% of the wild type) and unisite (< 1.5% of the wild type) catalyses. The k1 values of the mutant enzymes for unisite catalysis were lower than that of the wild type: not detectable with the beta Ala-156 and beta Cys-156 enzymes and 10(2)-fold lower with the beta Ala-155 and beta Ser-155 enzymes. The beta Thr-156-->Ala or Cys enzyme showed an altered response to Mg2+, suggesting that beta Thr-156 may be closely related to Mg2+ binding. These results suggest that beta Lys-155 and beta Thr-156 are essential for catalysis and are possibly located in the catalytic site, although beta Thr-156 could be replaced by a serine residue.  相似文献   

10.
Alginate is an important virulence factor for Pseudomonas aeruginosa during infection of the lungs of cystic fibrosis patients. The genes encoding enzymes for alginate production by P. aeruginosa are normally silent. They are activated in response to several environmental conditions, including high osmolarity, exposure to ethanol, or long-term growth under conditions of nutrient deprivation. Several genes which participate in the activation of alginate gene promoters have been identified; among these is the algR2 (algQ) gene. AlgR2 is an 18-kDa protein which has been shown to regulate the critical algD gene encoding GDP-mannose dehydrogenase as well as to regulate the levels of a tricarboxylic acid cycle enzyme, i.e., succinyl coenzyme A synthetase, and nucleoside diphosphate kinase (Ndk), an enzyme involved in nucleoside triphosphate synthesis. Succinyl coenzyme A synthetase and Ndk form a complex in P. aeruginosa. While algR2 is required for alginate synthesis at 37 degrees C, an algR2 insertion mutant was still able to make alginate slowly at 37 or at 30 degrees C. We used this observation to identify and clone a gene, termed algH. A strain with mutations in both algR2 and algH is unable to produce alginate at either 37 or 30 degrees C, and it is fully defective in Ndk production.  相似文献   

11.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

12.
13.
By using a photoactivatable analog of 11-cis-retinal in rhodopsin, we have previously identified the amino acids Phe-115, Ala-117, Glu-122, Trp-126, Ser-127, and Trp-265 as major sites of cross-linking to the chromophore. To further investigate the amino acids that interact with retinal, we have now used site-directed mutagenesis to replace a variety of amino acids in the membrane-embedded helices in bovine rhodopsin, including those that were indicated by cross-linking studies. The mutant rhodopsin genes were expressed in monkey kidney cells (COS-1) and purified. The mutant proteins were studied for their spectroscopic properties and their ability to activate transducin. Substitution of the two amino acids, Trp-265 and Glu-122 by Tyr, Phe, and Ala and by Gln, Asp and Ala, respectively, resulted in blue-shifted (20-30 nm) chromophore, and substitution of Trp-265 by Ala resulted in marked reduction in the extent of chromophore regeneration. Light-dependent bleaching behavior was significantly altered in Ala-117----Phe, Trp-265----Phe, Ala, and Ala-292----Asp mutants. Transducin activation was reduced in these mutants, in particular Trp-265 mutants, as well as in Glu-122----Gln, Trp-126----Leu (Ala), Pro-267----Ala (Asn, Ser), and Tyr-268----Phe mutants. These findings indicate that Trp-265 is located close to retinal and Glu-122, Trp-126, and probably Tyr-268 are also likely to be near retinal.  相似文献   

14.
Xylose isomerases (XIs) from Thermoanaerobacterium thermosulfurigenes (TTXI) and Thermotoga neapolitana (TNXI) are 70.4% identical in their amino acid sequences and have a nearly superimposable crystal structure. Nonetheless, TNXI is much more thermostable than TTXI. Except for a few additional prolines and fewer Asn and Gln residues in TNXI, no other obvious differences in the enzyme structures can explain the differences in their stabilities. TNXI has two additional prolines in the Phe59 loop (Pro58 and Pro62). Mutations Gln58Pro, Ala62Pro and Gln58Pro/Ala62Pro in TTXI and their reverse counterpart mutations in TNXI were constructed by site-directed mutagenesis. Surprisingly, only the Gln58Pro mutation stabilized TTXI. The Ala62Pro and Gln58Pro/Ala62Pro mutations both dramatically destabilized TTXI. Analysis of the three-dimensional (3D) structures of TTXI and its Ala62Pro mutant derivative showed a close van der Waal's contact between Pro62-C(delta) and atom Lys61-C(beta) (2.92 A) thus destabilizing TTXI. All the reverse counterpart mutations destabilized TNXI thus confirming that these two prolines play important roles in TNXI's thermostability. TTXI's active site has been previously engineered to improve its catalytic efficiency toward glucose and increase its thermostability. The same mutations were introduced into TNXI, and similar trends were observed, but to different extents. Val185Thr mutation in TNXI is the most efficient mutant derivative with a 3.1-fold increase in its catalytic efficiency toward glucose. With a maximal activity at 97 degrees C of 45.4 U/mg on glucose, this TNXI mutant derivative is the most active type II XI ever reported. This 'true' glucose isomerase engineered from a native xylose isomerase has now comparable kinetic properties on glucose and xylose.  相似文献   

15.
Each regulatory (R) subunit of cAMP-dependent protein kinase contains an autoinhibitor site that lies approximately 90-100 residues from the amino terminus. In order to study the importance of this autoinhibitor site in the type I R-subunit for interacting with the catalytic (C) subunit, recombinant techniques were used to replace Ala-97 with Gln, His, Lys, and Arg and to replace Ser-99 with Gly and Lys. All of the mutant proteins having a replacement at Ala-97 showed reduced affinity for the C-subunit ranging from 14- to 55-fold. In general, the decrease in affinity of the Ala-97 mutants for the C-subunit correlated with the increase in size of the side chain. In contrast to wild type R-subunit, where MgATP facilitates holoenzyme formation, MgATP inhibits the reassociation in all of the Ala-97 mutants suggesting that the larger side chains sterically interfere with bound MgATP in the active site of the C-subunit. Whereas MgATP slowed holoenzyme formation, AMP actually accelerated the reassociation of the A97K, A97H (pH 6.0), and A97Q mutants with the C-subunit. Therefore, the side chains of Lys-97, His-97, and Gln-97 can interact either electrostatically or by hydrogen bonding with the phosphate of AMP. This interpretation is reinforced by the fact that the stimulatory effect of AMP on the A97H mutant was pH-dependent. The affinities of the S99G and S99K mutants for the C-subunit were reduced 7- and 24-fold, respectively, suggesting that Ser-99 also may contribute to interactions between the R- and C-subunits.  相似文献   

16.
Aspartate transcarbamoylase from Escherichia coli shows homotropic cooperativity for aspartate as well as heterotropic regulation by nucleotides. Structurally, it consists of two trimeric catalytic subunits and three dimeric regulatory subunits, each chain being comprised of two domains. Glu-50 and Ser-171 are involved in stabilizing the closed conformation of the catalytic chain. Replacement of Glu-50 or Ser-171 by Ala in the holoenzyme has been shown previously to result in marked decreases in the maximal observed specific activity, homotropic cooperativity, and affinity for aspartate (Dembowski NJ, Newton CJ, Kantrowitz ER, 1990, Biochemistry 29:3716-3723; Newton CJ, Kantrowitz ER, 1990, Biochemistry 29:1444-1451). We have constructed a double mutant enzyme combining both mutations. The resulting Glu-50/ser-171-->Ala enzyme is 9-fold less active than the Ser-171-->Ala enzyme, 69-fold less active than the Glu-50-->Ala enzyme, and shows 1.3-fold and 1.6-fold increases in the [S]0.5Asp as compared to the Ser-171-->Ala and Glu-50-->Ala enzymes, respectively. However, the double mutant enzyme exhibits some enhancement of homotropic cooperativity with respect to aspartate, relative to the single mutant enzymes. At subsaturating concentrations of aspartate, the Glu-50/Ser-171 -->Ala enzyme is activated less by ATP than either the Glu-50-->Ala or Ser-171-->Ala enzyme, whereas CTP inhibition is intermediate between that of the two single mutants. As opposed to the wild-type enzyme, the Glu-50/Ser-171 -->Ala enzyme is activated by ATP and inhibited by CTP at saturating concentrations of aspartate. Structural analysis of the Ser-171-->Ala and Glu-50/Ser-171-->Ala enzymes by solution X-ray scattering indicates that both mutants exist in the same T quaternary structure as the wild-type enzyme in the absence of ligands, and in the same R quaternary structure in the presence of saturating N-(phosphonoacetyl)-L-aspartate. However, saturating concentrations of carbamoyl phosphate and succinate are unable to convert a significant fraction of either mutant enzyme population to the R quaternary structure, as has been observed previously for the Glu-50-->Ala enzyme. The curves for both the Ser-171-->Ala and Glu-50/Ser-171-->Ala enzymes obtained in the presence of substoichiometric amounts of PALA are linear combinations of the two extreme T and R states. The structural consequences of nucleotide binding to these two enzymes were also investigated. Most surprisingly, the direction and amplitude of the effect of ATP upon the double mutant enzyme were shown to vary depending upon the substrate analogue used.  相似文献   

17.
Adenylate kinase (Adk) that catalyses the synthesis of ADP from ATP and AMP has also been shown to perform an ATP dependent phosphorylation of ribo- and deoxynucleoside diphosphates to their corresponding nucleoside triphosphate; ATP+(d)NDP<-->ADP+(d)NTP. This reaction, suggested to occur by the transfer of the gamma-phosphoryl from ATP to the nucleoside diphosphate, is overall similar to that normally carried out by nucleoside diphosphate kinase (Ndk). Accordingly, Adk was proposed to be responsible for residual Ndk-like activity measured in a mutant strain of Escherichia coli, where the ndk gene was disrupted. We present data supporting a mechanism for the synthesis of nucleoside triphosphates by Adk that unlike the previously suggested mechanism mentioned above are in complete agreement with the current knowledge about the Adk enzyme and its various catalytic properties. We propose that nucleoside triphosphate synthesis occurs by beta-phosphoryl transfer from ADP to any bound nucleoside diphosphate. Our results point to the fact that the proposed Ndk-like mechanism of Adk originated from an erroneous interpretation of data, in that contamination of ATP preparations with AMP and ADP was not taken into account. Our results also address the proposed role of Adk in restoring a normal growth rate of mutant strains of E. coli lacking Ndk. These mutant strains apparently, in spite of a mutator phenotype, are able to synthesise nucleoside triphosphates by alternative pathways to maintain the same growth rate as the wildtype.  相似文献   

18.
Phosphorylation of p34cdc2 can both positively and negatively regulate its kinase activity. We have mapped two phosphorylation sites in Xenopus p34cdc2 to Thr-14 and Tyr-15 within the putative ATP-binding region of p34cdc2. Mutation of these sites to Ala-14 and Phe-15 has no effect on the final histone H1 kinase activity of the cyclin/p34cdc2 complex. Phosphopeptide analysis shows that there is at least one more site of phosphorylation on p34cdc2. When Thr-161 is changed to Ala, two phosphopeptide spots disappear and it is no longer possible to activate the H1 kinase activity of p34cdc2. We suggest that Thr-161 is a third site of phosphorylation, which is required for kinase activity. All three phosphorylations are induced by cyclin. None of the phosphorylations appears to be required for binding to cyclin, as indicated by the ability of the triple mutant, Ala-14, Phe-15, Ala-161, to bind cyclin. The activating phosphorylation that requires Thr- or Ser-161 occurs even in a catalytically inactive K33R mutant of p34cdc2 and hence does not appear to be the result of intramolecular autophosphorylation. We have detected an activity in Xenopus extracts required for activation of p34cdc2 and present evidence that this is a p34cdc2 activating kinase which, in a cyclin-dependent manner, probably directly phosphorylates Thr-161.  相似文献   

19.
Mucoid strains of Pseudomonas aeruginosa isolated from the sputum of cystic fibrosis patients produce copious quantities of an exopolysaccharide known as alginic acid. Since clinical isolates of the mucoid variants are unstable with respect to alginate synthesis and revert spontaneously to the more typical nonmucoid phenotype, it has been difficult to isolate individual structural gene mutants defective in alginate synthesis. The cloning of the genes controlling alginate synthesis has been facilitated by the isolation of a stable alginate-producing strain, 8830. The stable mucoid strain was mutagenized with ethyl methanesulfonate to obtain various mutants defective in alginate biosynthesis. Several nonmucoid (Alg-) mutants were isolated. A mucoid P. aeruginosa gene library was then constructed, using a cosmid cloning vector. DNA isolated from the stable mucoid strain 8830 was partially digested with the restriction endonuclease HindIII and ligated to the HindIII site of the broad host range cosmid vector, pCP13. After packaging in lambda particles, the recombinant DNA was introduced via transfection into Escherichia coli AC80. The clone bank was mated (en masse) from E. coli into various P. aeruginosa 8830 nonmucoid mutants with the help of pRK2013, which provided donor functions in trans, and tetracycline-resistant exconjugants were screened for the ability to form mucoid colonies. Three recombinant plasmids, pAD1, pAD2, and pAD3, containing DNA inserts of 20, 9.5, and 6.2 kilobases, respectively, were isolated based on their ability to restore alginate synthesis in various strain 8830 nonmucoid (Alg-) mutants. Mutants have been assigned to at least four complementation groups, based on complementation by pAD1, pAD2, or pAD3 or by none of them. Introduction of pAD1 into the spontaneous nonmucoid strain 8822, as well as into other nonmucoid laboratory strains of P. aeruginosa such as PAO and SB1, was found to slowly induce alginate synthesis. This alginate-inducing ability was found to reside on a 7.5-kilobase EcoRI fragment that complemented the alg-22 mutation of strain 8852. The pAD1 chromosomal insert which complements the alg-22 mutation was subsequently mapped at ca. 19 min of the P. aeruginosa PAO chromosome.  相似文献   

20.
Infection with mucoid, alginate-producing strains of Pseudomonas aeruginosa is the leading cause of mortality among patients with cystic fibrosis. Alginate production by P. aeruginosa is not constitutive but is triggered by stresses such as starvation. The algR2 (also termed algQ) gene has been previously identified as being necessary for mucoidy; an algR2 mutant strain is unable to produce alginate when grown at 37 degrees C. We show here that the levels of phosphorylated succinyl coenzyme A synthetase (Scs) and nucleoside diphosphate kinase (Ndk), which form a complex in P. aeruginosa, are reduced in the algR2 mutant. We were able to correlate the lower level of phosphorylated Scs with a decrease in Scs activity. Western blots (immunoblots) also showed a decreased level of Ndk in the algR2 mutant, but the presence of another kinase activity sensitive to Tween 20 provides the missing Ndk function. The effect of AlgR2 on tricarboxylic acid (TCA) cycle enzymes appears to be specific for Scs, since none of the other TCA cycle enzymes measured showed a significant decrease in activity. Furthermore, the ability of the algR2 mutant to grow on TCA cycle intermediates, but not glucose, is impaired. These data indicate that AlgR2 is responsible for maintaining proper operation of the TCA cycle and energy metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号