首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polysaccharide β‐1,6‐glucan is a major component of the cell wall of Cryptococcus neoformans, but its function has not been investigated in this fungal pathogen. We have identified and characterized seven genes, belonging to the KRE family, which are putatively involved in β‐1,6‐glucan synthesis. The H99 deletion mutants kre5Δ and kre6Δskn1Δ contained less cell wall β‐1,6‐glucan, grew slowly with an aberrant morphology, were highly sensitive to environmental and chemical stress and were avirulent in a mouse inhalation model of infection. These two mutants displayed alterations in cell wall chitosan and the exopolysaccharide capsule, a primary cryptococcal virulence determinant. The cell wall content of the GPI‐anchored phospholipase B1 (Plb1) enzyme, which is required for cryptococcal cell wall integrity and virulence, was reduced in kre5Δ and kre6Δskn1Δ. Our results indicate that KRE5, KRE6 and SKN1 are involved in β‐1,6‐glucan synthesis, maintenance of cell wall integrity and retention of mannoproteins and known cryptococcal virulence factors in the cell wall of C. neoformans. This study sets the stage for future investigations into the function of this abundant cell wall polymer.  相似文献   

2.
3.
4.
Diatoms are unicellular photoautotrophic algae, which can be found in any aquatic habitat. The main storage carbohydrate of diatoms is chrysolaminarin, a nonlinear β‐glucan, consisting of a linear 1,3‐β‐chain with 1,6‐β‐branches, which is stored in cytoplasmic vacuoles. The metabolic pathways of chrysolaminarin synthesis in diatoms are poorly investigated, therefore we studied two potential 1,6‐β‐transglycosylases (TGS) of the diatom Phaeodactylum tricornutum which are similar to yeast Kre6 proteins and which potentially are involved in the branching of 1,3‐β‐glucan chains by adding d ‐glucose as 1,6‐side chains. We genetically fused the full‐length diatom TGS proteins to GFP and expressed these constructs in P. tricornutum, demonstrating that the enzymes are apparently located in the vacuoles, which indicates that branching of chrysolaminarin may occur in these organelles. Furthermore, we demonstrated the functionality of the diatom enzymes by expressing TGS1 and 2 proteins in yeast, which resulted in a partial complementation of growth deficiencies of a transglycosylase‐deficient ?kre6 yeast strain.  相似文献   

5.
KRE6 encodes a predicted type II membrane protein which, when disrupted, results in a slowly growing, killer toxin-resistant mutant possessing half the normal level of a structurally wild-type cell wall (1-->6)-beta-glucan (T. Roemer and H. Bussey, Proc. Natl. Acad. Sci. USA 88:11295-11299, 1991). The mutant phenotype and structure of the KRE6 gene product, Kre6p, suggest that it may be a beta-glucan synthase component, implying that (1-->6)-beta-glucan synthesis in Saccharomyces cerevisiae is functionally redundant. To examine this possibility, we screened a multicopy genomic library for suppression of both the slow-growth and killer resistance phenotypes of a kre6 mutant and identified SKN1, which encodes a protein sharing 66% overall identity to Kre6p. SKN1 suppresses kre6 null alleles in a dose-dependent manner, though disruption of the SKN1 locus has no effect on killer sensitivity, growth, or (1-->6)-beta-glucan levels. skn1 kre6 double disruptants, however, showed a dramatic reduction in both (1-->6)-beta-glucan levels and growth rate compared with either single disruptant. Moreover, the residual (1-->6)-beta-glucan polymer in skn1 kre6 double mutants is smaller in size and altered in structure. Since single disruptions of these genes lead to structurally wild-type (1-->6)-beta-glucan polymers, Kre6p and Skn1p appear to function independently, possibly in parallel, in (1-->6)-beta-glucan biosynthesis.  相似文献   

6.
The yeast KRE9 gene encodes a 30-kDa secretory pathway protein involved in the synthesis of cell wall (1-->6)-beta-glucan. Disruption of KRE9 leads to serious growth impairment and an altered cell wall containing less than 20% of the wild-type amount of (1-->6)-beta-glucan. Analysis of the glucan material remaining in a kre9 delta null mutant indicated a polymer with a reduced average molecular mass. kre9 delta null mutants also displayed several additional cell-wall-related phenotypes, including an aberrant multiply budded morphology, a mating defect, and a failure to form projections in the presence of alpha-factor. Double mutants were generated by crossing kre9 delta strains with strains harboring a null mutation in the KRE1, KRE6, or KRE11 gene, and each of these double mutants was found to be inviable in the SEY6210 background. Similar crosses with null mutations in the KRE5 and SKN1 genes indicated that these double mutants were no more severely affected than kre5 delta or kre9 delta single mutants alone. Antibodies were generated against Kre9p and detected an O glycoprotein of approximately 55 to 60 kDa found in the extracellular medium of a strain overproducing Kre9p.  相似文献   

7.
Plants survey their environment for the presence of potentially harmful or beneficial microbes. During colonization, cell surface receptors perceive microbe‐derived or modified‐self ligands and initiate appropriate responses. The recognition of fungal chitin oligomers and the subsequent activation of plant immunity are well described. In contrast, the mechanisms underlying β‐glucan recognition and signaling activation remain largely unexplored. Here, we systematically tested immune responses towards different β‐glucan structures and show that responses vary between plant species. While leaves of the monocots Hordeum vulgare and Brachypodium distachyon can recognize longer (laminarin) and shorter (laminarihexaose) β‐1,3‐glucans with responses of varying intensity, duration and timing, leaves of the dicot Nicotiana benthamiana activate immunity in response to long β‐1,3‐glucans, whereas Arabidopsis thaliana and Capsella rubella perceive short β‐1,3‐glucans. Hydrolysis of the β‐1,6 side‐branches of laminarin demonstrated that not the glycosidic decoration but rather the degree of polymerization plays a pivotal role in the recognition of long‐chain β‐glucans. Moreover, in contrast to the recognition of short β‐1,3‐glucans in A. thaliana, perception of long β‐1,3‐glucans in N. benthamiana and rice is independent of CERK1, indicating that β‐glucan recognition may be mediated by multiple β‐glucan receptor systems.  相似文献   

8.
9.
We have previously characterized several fungal‐specific proteins from the human pathogen Candida albicans that either encode subunits of mitochondria Complex I (CI) of the electron transport chain (ETC) or regulate CI activity (Goa1p). Herein, the role of energy production and cell wall gene expression is investigated in the mitochondria mutant goa1Δ. We show that downregulation of cell wall‐encoding genes in the goa1Δ results in sensitivity to cell wall inhibitors such as Congo red and Calcofluor white, reduced phagocytosis by a macrophage cell line, reduced recognition by macrophage receptors, and decreased expression of cytokines such as IL‐6, IL‐10 and IFN‐γ. In spite of the reduced recognition by macrophages, the goa1Δ is still killed to the same extent as control strains. We also demonstrate that expression of the epithelial cell receptors E‐cadherin and EGFR is also reduced in the presence of goa1Δ. Together, our data demonstrate the importance of mitochondria in the expression of cell wall biomolecules and the interaction of C. albicans with innate immune and epithelial cells. Our underlying premise is thatmitochondrial proteins such as Goa1p and other fungal‐specific mitochondrial proteins regulate critical functions in cell growth and in virulence. As such, they remain as valid drug targets for antifungal drug discovery.  相似文献   

10.
CWH41, a gene involved in the assembly of cell wall β-1,6-glucan, has recently been shown to be the structural gene for Saccharomyces cerevisiae glucosidase I that is responsible for initiating the trimming of terminal α-1,2-glucose residue in the N-glycan processing pathway. To distinguish between a direct or indirect role of Cwh41p in the biosynthesis of β-1,6-glucan, we constructed a double mutant, alg5Δ (lacking dolichol-P-glucose synthase) cwh41Δ, and found that it has the same phenotype as the alg5Δ single mutant. It contains wild-type levels of cell wall β-1,6-glucan, shows moderate underglycosylation of N-linked glycoproteins, and grows at concentrations of Calcofluor White (which interferes with cell wall assembly) that are lethal to cwh41Δ single mutant. The strong genetic interactions of CWH41 with KRE6 and KRE1, two other genes involved in the β-1,6-glucan biosynthetic pathway, disappear in the absence of dolichol-P-glucose synthase (alg5Δ). The triple mutant alg5Δcwh41Δkre6Δ is viable, whereas the double mutant cwh41Δkre6Δ in the same genetic background is not. The severe slow growth phenotype and 75% reduction in cell wall β-1,6-glucan, characteristic of the cwh41Δkre1Δ double mutant, are not observed in the triple mutant alg5Δcwh41Δkre1Δ. Kre6p, a putative Golgi glucan synthase, is unstable in cwh41Δ strains, and its overexpression renders these cells Calcofluor White resistant. These results demonstrate that the role of glucosidase I (Cwh41p) in the biosynthesis of cell wall β-1,6-glucan is indirect and that dolichol-P-glucose is not an intermediate in this pathway.  相似文献   

11.
J. L. Brown  Z. Kossaczka  B. Jiang    H. Bussey 《Genetics》1993,133(4):837-849
Recessive mutations leading to killer resistance identify the KRE9, KRE10 and KRE11 genes. Mutations in both the KRE9 and KRE11 genes lead to reduced levels of (1 -> 6)-β-glucan in the yeast cell wall. The KRE11 gene encodes a putative 63-kD cytoplasmic protein, and disruption of the KRE11 locus leads to a 50% reduced level of cell wall (1 -> 6)-glucan. Structural analysis of the (1 -> 6)-β-glucan remaining in a kre11 mutant indicates a polymer smaller in size than wild type, but containing a similar proportion of (1 -> 6)- and (1 -> 3)-linkages. Genetic interactions among cells harboring mutations at the KRE11, KRE6 and KRE1 loci indicate lethality of kre11 kre6 double mutants and that kre11 is epistatic to kre1, with both gene products required to produce the mature glucan polymer at wild-type levels. Analysis of these KRE genes should extend knowledge of the β-glucan biosynthetic pathway, and of cell wall synthesis in yeast.  相似文献   

12.
13.
Phospholipid biosynthetic pathways play crucial roles in the virulence of several pathogens; however, little is known about how phospholipid synthesis affects pathogenesis in fungi such as Candida albicans. A C. albicans phosphatidylserine (PS) synthase mutant, cho1Δ/Δ, lacks PS, has decreased phosphatidylethanolamine (PE), and is avirulent in a mouse model of systemic candidiasis. The cho1Δ/Δ mutant exhibits defects in cell wall integrity, mitochondrial function, filamentous growth, and is auxotrophic for ethanolamine. PS is a precursor for de novo PE biosynthesis. A psd1Δ/Δ psd2Δ/Δ double mutant, which lacks the PS decarboxylase enzymes that convert PS to PE in the de novo pathway, has diminished PE levels like those of the cho1Δ/Δ mutant. The psd1Δ/Δ psd2Δ/Δ mutant exhibits phenotypes similar to those of the cho1Δ/Δ mutant; however, it is slightly more virulent and has less of a cell wall defect. The virulence losses exhibited by the cho1Δ/Δ and psd1Δ/Δ psd2Δ/Δ mutants appear to be related to their cell wall defects which are due to loss of de novo PE biosynthesis, but are exacerbated by loss of PS itself. Cho1p is conserved in fungi, but not mammals, so fungal PS synthase is a potential novel antifungal drug target.  相似文献   

14.
15.
Echinocandins inhibit β‐1,3‐glucan synthesis and are one of the few antimycotic drug classes effective against Aspergillus spp. In this study, we characterized the β‐1,3‐glucan synthase Fks1 of Aspergillus fumigatus, the putative target of echinocandins. Data obtained with a conditional mutant suggest that fks1 is not essential. In agreement, we successfully constructed a viable Δfks1 deletion mutant. Lack of Fks1 results in characteristic growth phenotypes similar to wild type treated with echinocandins and an increased susceptibility to calcofluor white and sodium dodecyl sulfate. In agreement with Fks1 being the only β‐1,3‐glucan synthase in A. fumigatus, the cell wall is devoid of β‐1,3‐glucan. This is accompanied by a compensatory increase of chitin and galactosaminogalactan and a significant decrease in cell wall galactomannan due to a massively enhanced galactomannan shedding. Our data furthermore suggest that inhibition of hyphal septation can overcome the limitations of echinocandin therapy. Compounds inhibiting septum formation boosted the antifungal activity of caspofungin. Thus, development of clinically applicable inhibitors of septum formation is a promising strategy to improve existing antifungal therapy.  相似文献   

16.
17.
A characterization of the S. cerevisiae KRE6 and SKN1 gene products extends previous genetic studies on their role in (1-->6)-beta-glucan biosynthesis (Roemer, T., and H. Bussey. 1991. Yeast beta-glucan synthesis: KRE6 encodes a predicted type II membrane protein required for glucan synthesis in vivo and for glucan synthase activity in vitro. Proc. Natl. Acad. Sci. USA. 88:11295-11299; Roemer, T., S. Delaney, and H. Bussey. 1993. SKN1 and KRE6 define a pair of functional homologs encoding putative membrane proteins involved in beta-glucan synthesis. Mol. Cell. Biol. 13:4039-4048). KRE6 and SKN1 are predicted to encode homologous proteins that participate in assembly of the cell wall polymer (1-->6)-beta-glucan. KRE6 and SKN1 encode phosphorylated integral-membrane glycoproteins, with Kre6p likely localized within a Golgi subcompartment. Deletion of both these genes is shown to result in a dramatic disorganization of cell wall ultrastructure. Consistent with their direct role in the assembly of this polymer, both Kre6p and Skn1p possess COOH-terminal domains with significant sequence similarity to two recently identified glucan-binding proteins. Deletion of the yeast protein kinase C homolog, PKC1, leads to a lysis defect (Levin, D. E., and E. Bartlett-Heubusch. 1992. Mutants in the S. cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect. J. Cell Biol. 116:1221-1229). Kre6p when even mildly overproduced, can suppress this pkc1 lysis defect. When mutated, several KRE pathway genes and members of the PKC1-mediated MAP kinase pathway have synthetic lethal interactions as double mutants. These suppression and synthetic lethal interactions, as well as reduced beta- glucan and mannan levels in the pkc1 null wall, support a role for the PKC1 pathway functioning in cell wall assembly. PKC1 potentially participates in cell wall assembly by regulating the synthesis of cell wall components, including (1-->6)-beta-glucan.  相似文献   

18.
The antifungal plant defensin DmAMP1 interacts with the fungal sphingolipid mannosyl diinositolphosphoryl ceramide (M(IP)(2)C) and induces fungal growth inhibition. We have identified SKN1, besides the M(IP)(2)C-biosynthesis gene IPT1, as a novel DmAMP1-sensitivity gene in Saccharomyces cerevisiae. SKN1 was previously shown to be a KRE6 homologue, which is involved in beta-1,6-glucan biosynthesis. We demonstrate that a Deltaskn1 mutant lacks M(IP)(2)C. Interestingly, overexpression of either IPT1 or SKN1 complemented the skn1 mutation, conferred sensitivity to DmAMP1, and resulted in M(IP)(2)C levels comparable to the wild type. These results show that SKN1, together with IPT1, is involved in sphingolipid biosynthesis in S. cerevisiae.  相似文献   

19.
20.
A hallmark of the mucosa of immunocompromized hosts in oral candidiasis is a hyperkeratinized region heavily colonized with fungi at the surface of the terminally differentiated epithelium. To gain insight into the processes important for promoting mucosal invasion by fungi, we characterized the response of keratinocytes to the presence of Candida albicans. Indirect immunofluorescence and kymographic analyses revealed a multifaceted keratinocyte response of OKF6/TERT‐2 cells to C. albicans that consisted of: cytoskeletal reorganization within 3 h, motility and cell expansion with formation of E‐cadherin‐mediated cell–cell adhesions within 6 h, increased expression of late differentiation markers and decreased expression of calprotectin. The initial expansive phase was followed by dissolution of cell–cell adhesions and a decrease in cell size accompanied by loss of E‐cadherin. The keratinocyte response depended on soluble factors associated with hyphal growth as demonstrated using the efg1Δ/efg1Δ, cap1Δ/cap1Δ, als3Δ/als3Δ, hwp1Δ/hwp1Δand sap4–6Δ/sap4–6Δ mutants and was not observed in the presence of the non‐pathogenic yeast, Saccharomyces cerevisiae. These studies show the potential for C. albicans to manipulate the stratified epithelial cells to a state of differentiation that is more permissive of fungal colonization of oral tissue, which is likely to play an important role in the pathogenesis of candidiasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号