首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Long-term exposure to ultraviolet (UV) light generates substantial damage, and in mammals, visual sensitivity to UV is restricted to short-lived diurnal rodents and certain marsupials. In humans, the cornea and lens absorb all UV-A and most of the terrestrial UV-B radiation, preventing the reactive and damaging shorter wavelengths from reaching the retina. This is not the case in certain species of long-lived diurnal birds, which possess UV-sensitive (UVS) visual pigments, maximally sensitive below 400 nm. The Order Psittaciformes contains some of the longest lived bird species, and the two species examined so far have been shown to possess UVS pigments. The objective of this study was to investigate the prevalence of UVS pigments across long-lived parrots, macaws and cockatoos, and therefore assess whether they need to cope with the accumulated effects of exposure to UV-A and UV-B over a long period of time. Sequences from the SWS1 opsin gene revealed that all 14 species investigated possess a key substitution that has been shown to determine a UVS pigment. Furthermore, in vitro regeneration data, and lens transparency, corroborate the molecular findings of UV sensitivity. Our findings thus support the claim that the Psittaciformes are the only avian Order in which UVS pigments are ubiquitous, and indicate that these long-lived birds have UV sensitivity, despite the risks of photodamage.  相似文献   

2.
Cone short-wave (SWS1) visual pigments can be divided into two categories that correlate with spectral sensitivity, violet sensitive above 390 nm and ultraviolet sensitive below that wavelength. The evolution and mechanism of spectral tuning of SWS1 opsins are proving more complex than those of other opsin classes. Violet-sensitive pigments probably evolved from an ancestral ultraviolet-sensitive opsin, although in birds ultraviolet sensitivity has re-evolved from violet-sensitive pigments. In certain mammals, a single substitution involving the gain of a polar residue can switch sensitivity from ultraviolet to violet sensitivity, but where such a change is not involved, several substitutions may be required to effect the switch. The guinea pig, Cavia porcellus, is a hystricognathous rodent, a distinct suborder from the Sciurognathi, such as rats and mice. It has been shown by microspectrophotometry to have two cone visual pigments at 530 and 400 nm. We have ascertained the sequence of the short-wave pigment and confirmed its violet sensitivity by expression and reconstitution of the pigment in vitro. Moreover, we have shown by site-directed mutagenesis that a single residue is responsible for wavelength tuning of spectral sensitivity, a Val86Phe causing a 60 nm short-wave shift into the ultraviolet and a Val86Tyr substitution shifting the pigment 8 nm long wave. The convergent evolution of this mammalian VS pigment provides insight into the mechanism of tuning between the violet and UV.  相似文献   

3.
Recently, in vitro mutation studies have made it possible to predict the wavelengths of maximum absorbance (λmax) of avian UV/violet sensitive visual pigments (SWS1) from the identity of a few key amino acid residues in the opsin gene. Given that the absorbance spectrum of a cone’s visual pigment and of its pigmented oil droplet can be predicted from just the λmax, it may become possible to predict the entire spectral sensitivity of a bird using genetic samples from live birds or museum specimens. However, whilst this concept is attractive, it must be validated to assess the reliability of the predictions of λmax from opsin amino acid sequences. In this paper, we have obtained partial sequences covering three of the known spectral tuning sites in the SWS1 opsin and predicted λmax of all bird species for which the spectral absorbance has been measured using microspectrophotometry. Our results validate the use of molecular data from genomic DNA to predict the gross differences in λmax between the violet- and ultraviolet-sensitive subtypes of SWS1 opsin. Additionally, we demonstrate that a bird, the bobolink Dolichonyx oryzivorus L., can have more than one SWS1 visual pigment in its retina.  相似文献   

4.
Immunohistochemical evidence for multiple photosystems in box jellyfish   总被引:1,自引:0,他引:1  
Cubomedusae (box jellyfish) possess a remarkable visual system with 24 eyes distributed in four sensory structures termed rhopalia. Each rhopalium is equipped with six eyes: two pairs of pigment cup eyes and two unpaired lens eyes. Each eye type probably captures specific features of the visual environment. To investigate whether multiple types of photoreceptor cells are present in the rhopalium, and whether the different eye types possess different types of photoreceptors, we have used immunohistochemistry with a range of vertebrate opsin antibodies to label the photoreceptors, and electroretinograms (ERG) to determine their spectral sensitivity. All photoreceptor cells of the two lens eyes of the box jellyfish Tripedalia cystophora and Carybdea marsupialis displayed immunoreactivity for an antibody directed against the zebrafish ultraviolet (UV) opsin, but not against any of eight other rhodopsin or cone opsin antibodies tested. In neither of the two species were the pigment cup eyes immunoreactive for any of the opsin antibodies. ERG analysis of the Carybdea lower lens eyes demonstrated a single spectral sensitivity maximum at 485 nm suggesting the presence of a single opsin type. Our data demonstrate that the lens eyes of box jellyfish utilize a single opsin and are thus color-blind, and that there is probably a different photopigment in the pigment cup eyes. The results support our hypothesis that the lens eyes and the pigment cup eyes of box jellyfish are involved in different and specific visual tasks.  相似文献   

5.
Pocket gophers (Thomomys bottae) are rodents that spend much of their lives in near-lightless subterranean burrows. The visual adaptations associated with this extreme environment were investigated by making anatomical observations of retinal organization and by recording retinal responses to photic stimulation. The size of the eye is within the normal range for rodents, the lens transmits light well down into the ultraviolet, and the retina conforms to the normal mammalian plan. Electroretinogram recording revealed the presence of three types of photopigments, a rod pigment with a spectral peak of about 495 nm and two types of cone pigment with respective peak values of about 367 nm (UV) and 505 nm (medium-wavelength sensitive). Both in terms of responsivity to lights varying in temporal frequency and in response recovery following intense light adaptation, the cone responses of the pocket gopher are similar to those of other rodents. Labeling experiments indicate an abundance of cones that reach densities in excess of 30,000 mm–2. Cones containing UV opsin are found throughout the retina, but those containing medium-wavelength sensitive opsin are mostly restricted to the dorsal retina where coexpression of the two photopigments is apparently the rule. Rod densities are lower than those typical for nocturnal mammals.  相似文献   

6.
Ultraviolet (UV) light-transmitted signals play a major role in avian foraging and communication, subserving functional roles in feeding, mate choice, egg recognition, and nestling discrimination. Sequencing functionally relevant regions of the short wavelength sensitive type 1 (SWS1) opsin gene that is responsible for modulating the extent of SWS1 UV sensitivity in birds allows predictions to be made about the visual system's UV sensitivity in species where direct physiological or behavioral measures would be impractical or unethical. Here, we present SWS1 segment sequence data from representative species of three avian lineages for which visually based cues for foraging and communication have been investigated to varying extents. We also present a preliminary phylogenetic analysis and ancestral character state reconstructions of key spectral tuning sites along the SWS1 opsin based on our sequence data. The results suggest ubiquitous ultraviolet SWS1 sensitivity (UVS) in both paleognaths, including extinct moa (Emeidae), and parrots, including the nocturnal and flightless kakapo (Strigops habroptilus), and in most, but not all, songbird (oscine) lineages, and confirmed violet sensitivity (VS) in two suboscine families. Passerine hosts of avian brood parasites were included both UVS and VS taxa, but sensitivity did not co-vary with egg rejection behaviors. The results should stimulate future research into the functional parallels between the roles of visual signals and the genetic basis of visual sensitivity in birds and other taxa.  相似文献   

7.
The role of sequence variation in the spectral tuning of color vision is well established in many systems. This includes the cichlids of Lake Victoria where sequence variation has been linked to environmental light gradients and speciation. The cichlids of Lake Malawi are a similar model for visual evolution, but the role of gene sequence variation in visual tuning between closely related species is unknown. This work describes such variation in multiple species of two rock-dwelling genera: Metriaclima and Labidochromis. Genomic DNA for seven cone opsin genes was sequenced and the structure of the opsin proteins was inferred. Retinal binding pocket polymorphisms were identified and compared to available data regarding spectral absorbance shifts. Sequence variation with known or potential effects on absorbance spectra were found in four genes: SWS1 (UV sensitive), SWS2B (violet sensitive), RH2Aβ (green sensitive), and LWS (red sensitive). Functional variation was distributed such that each genus had both a variable short-wavelength and long-wavelength sensitive opsin. This suggests spectral tuning is important at the margins of the cichlid visual spectrum. Further, there are two SWS1 opsin alleles that differ in sensitivity by 10 nm and are >2 MY divergent. One of these occurs in a haplotype block >1 kb. Potential haplotype blocks were found around the RH2 opsin loci. These data suggest that molecular diversification has resulted in functionally unique alleles and changes to the visual system. These data also suggest that opsin sequence variation tunes spectral sensitivities between closely related species and that the specific regions of spectral tuning are genus-specific.  相似文献   

8.
Retinal opsin photopigments initiate mammalian vision when stimulated by light. Most mammals possess a short wavelength-sensitive opsin 1 (SWS1) pigment that is primarily sensitive to either ultraviolet or violet light, leading to variation in colour perception across species. Despite knowledge of both ultraviolet- and violet-sensitive SWS1 classes in mammals for 25 years, the adaptive significance of this variation has not been subjected to hypothesis testing, resulting in minimal understanding of the basis for mammalian SWS1 spectral tuning evolution. Here, we gathered data on SWS1 for 403 mammal species, including novel SWS1 sequences for 97 species. Ancestral sequence reconstructions suggest that the most recent common ancestor of Theria possessed an ultraviolet SWS1 pigment, and that violet-sensitive pigments evolved at least 12 times in mammalian history. We also observed that ultraviolet pigments, previously considered to be a rarity, are common in mammals. We then used phylogenetic comparative methods to test the hypotheses that the evolution of violet-sensitive SWS1 is associated with increased light exposure, extended longevity and longer eye length. We discovered that diurnal mammals and species with longer eyes are more likely to have violet-sensitive pigments and less likely to possess UV-sensitive pigments. We hypothesize that (i) as mammals evolved larger body sizes, they evolved longer eyes, which limited transmittance of ultraviolet light to the retina due to an increase in Rayleigh scattering, and (ii) as mammals began to invade diurnal temporal niches, they evolved lenses with low UV transmittance to reduce chromatic aberration and/or photo-oxidative damage.  相似文献   

9.
Colour vision is mediated by the expression of different visual pigments in photoreceptors of the vertebrate retina. Each visual pigment is a complex of a protein (opsin) and a vitamin A chromophore; alterations to either component affects visual pigment absorbance and, potentially, the visual capabilities of an animal. Many species of fish undergo changes in opsin expression during retinal development. In the case of salmonid fishes the single cone photoreceptors undergo a switch in opsin expression from SWS1 (ultraviolet sensitive) to SWS2 (blue-light sensitive) starting at the yolk-sac alevin stage, around the time when they first experience light. Whether light may initiate this event or produce a plastic response in the various photoreceptors is unknown. In this study, Chinook salmon Oncorhynchus tshawytscha were exposed to light from the embryonic (5 days prior to hatching) into the yolk sac alevin (25 days post hatching) stage and the spectral phenotype of photoreceptors assessed with respect to that of unexposed controls by in situ hybridization with opsin riboprobes. Light exposure did not change the spectral phenotype of photoreceptors, their overall morphology or spatial arrangement. These results concur with those from a variety of fish species and suggest that plasticity in photoreceptor spectral phenotype via changes in opsin expression may not be a widespread occurrence among teleosts.  相似文献   

10.
The shortwave-sensitive SWS1 class of vertebrate visual pigments range in lambda(max) from the violet (385-445 nm) to the ultraviolet (UV) (365-355 nm), with UV-sensitivity almost certainly ancestral. In birds, however, the UV-sensitive pigments present in a number of species have evolved secondarily from an avian violet-sensitive (VS) pigment. All avian VS pigments expressed in vitro to date encode Ser86 whereas Phe86 is present in all non-avian ultraviolet sensitive (UVS) pigments. In this paper, we show by site directed mutagenesis of avian VS pigments that Ser86 is required in an avian VS pigment to maintain violet-sensitivity and therefore underlies the evolution of avian VS pigments. The major mechanism for the evolution of avian UVS pigments from an ancestral avian VS pigment is undoubtedly a Ser90Cys substitution. However, Phe86, as found in the Blue-crowned trogon, will also short-wave shift the pigeon VS pigment into the UV whereas Ala86 and Cys86 which are also found in natural avian pigments do not generate short-wave shifts when substituted into the pigeon pigment. From available data on avian SWS1 pigments, it would appear that UVS pigments have evolved on at least 5 separate occasions and utilize 2 different mechanisms for the short-wave shift.  相似文献   

11.
Phenotypic plasticity allows organisms to adapt quickly to local environmental conditions and could facilitate adaptive radiations. Cichlids have recently undergone an adaptive radiation in Lake Malawi where they inhabit diverse light environments and tune their visual sensitivity through differences in cone opsin expression. While cichlid opsin expression is known to be plastic over development, whether adults remain plastic is unknown. Adult plasticity in visual tuning could play a role in cichlid radiations by enabling survival in changing environments and facilitating invasion into novel environments. Here we examine the existence of and temporal changes in adult visual plasticity of two closely related species. In complementary experiments, wild adult Metriaclima mbenji from Lake Malawi were moved to the lab under UV‐deficient fluorescent lighting; while lab raised M. benetos were placed under UV‐rich lighting designed to mimic light conditions in the wild. Surprisingly, adult cichlids in both experiments showed significant changes in the expression of the UV‐sensitive single cone opsin, SWS1, in only 3 days. Modeling quantum catches in the light environments revealed a possible link between the light available to the SWS1 visual pigment and SWS1 expression. We conclude that adult cichlids can undergo rapid and significant changes in opsin expression in response to environmental light shifts that are relevant to their habitat and evolutionary history in Lake Malawi. This could have contributed to the rapid divergence characteristic of these fantastic fishes.  相似文献   

12.
Diurnal birds belong to one of two classes of colour vision. These are distinguished by the maximum absorbance wavelengths of the SWS1 visual pigment sensitive to violet (VS) and ultraviolet (UVS). Shifts between the classes have been rare events during avian evolution. Gulls (Laridae) are the only shorebirds (Charadriiformes) previously reported to have the UVS type of opsin, but too few species have been sampled to infer that gulls are unique among shorebirds or that Laridae is monomorphic for this trait. We have sequenced the SWS1 opsin gene in a broader sample of species. We confirm that cysteine in the key amino acid position 90, characteristic of the UVS class, has been conserved throughout gull evolution but also that the terns Anous minutus, A. tenuirostris and Gygis alba, and the skimmer Rynchops niger carry this trait. Terns, excluding Anous and Gygis, share the VS conferring serine in position 90 with other shorebirds but it is translated from a codon more similar to that found in UVS shorebirds. The most parsimonious interpretation of these findings, based on a molecular gene tree, is a single VS to UVS shift and a subsequent reversal in one lineage.  相似文献   

13.
The capacity for cone‐mediated color vision varies among nocturnal primates. Some species are colorblind, having lost the functionality of their short‐wavelength‐sensitive‐1 (SWS1) opsin pigment gene. In other species, such as the aye‐aye (Daubentonia madagascariensis), the SWS1 gene remains intact. Recent studies focused on aye‐ayes indicate that this gene has been maintained by natural selection and that the pigment has a peak sensitivity (λmax) of 406 nm, which is ~20 nm closer to the ultraviolet region of the spectrum than in most primates. The functional significance behind the retention and unusual λmax of this opsin pigment is unknown, and it is perplexing given that all mammals are presumed to be colorblind in the dark. Here we comment on this puzzle and discuss recent findings on the color vision intensity thresholds of terrestrial vertebrates with comparable optics to aye‐ayes. We draw attention to the twilight activities of aye‐ayes and report that twilight is enriched in short‐wavelength (bluish) light. We also show that the intensity of twilight and full moonlight is probably sufficient to support cone‐mediated color vision. We speculate that the intact SWS1 opsin pigment gene of aye‐ayes is a crepuscular adaptation and we report on the blueness of potential visual targets, such as scent marks and the brilliant blue arils of Ravenala madagascariensis.  相似文献   

14.
We experimentally investigated the influence of developmental plasticity of ultraviolet (UV) visual sensitivity on predation efficiency of the larval smooth newt, Lissotriton vulgaris. We quantified expression of SWS1 opsin gene (UV-sensitive protein of photoreceptor cells) in the retinas of individuals who had developed in the presence (UV+) or absence (UV−) of UV light (developmental treatments), and tested their predation efficiency under UV+ and UV− light (testing treatments). We found that both SWS1 opsin expression and predation efficiency were significantly reduced in the UV− developmental group. Larvae in the UV− testing environment displayed consistently lower predation efficiency regardless of their developmental treatment. These results prove for the first time, we believe, functional UV vision and developmental plasticity of UV sensitivity in an amphibian at the larval stage. They also demonstrate that UV wavelengths enhance predation efficiency and suggest that the magnitude of the behavioural response depends on retinal properties induced by the developmental lighting environment.  相似文献   

15.
16.
We examined histologically the retinal cone photoreceptor mosaics of 0- to 6-year-old Champsocephalus gunnari. In the retina of 0- to 3-year-old fish, three types of cone cells, single-, double- and triple-cone, were identified. The triple-cone cells were localized near the optic papilla. In the outer region of the optic papilla, double-cone and single-cone cells were aligned alternately. Only double-cone cells were distributed in the peripheral retina. There were very few single-cone cells in the retinas of 4- to 6-year-old fish. The putative ultraviolet (UV)-sensitive visual pigment (SWS1) gene was isolated from the retina of 0- to 1-year-old fish. The recombinant opsin, encoded by this gene, showed a peak absorbance at 358 nm. It was considered that the UV sensitivity in juvenile C. gunnari might increase foraging efficiency by enhancing the contrast of the planktonic prey in the Antarctic summer.  相似文献   

17.
The visual pigments and oil droplets in the retina of the diurnal gecko Gonatodes albogularis were examined microspectrophotometrically, and the spectral sensitivity under various adapting conditions was recorded using electrophysiological responses. Three classes of visual pigments were identified, with max at about 542, 475, and 362 nm. Spectral sensitivity functions revealed a broad range of sensitivity, with a peak at approximately 530–540 nm. The cornea and oil droplets were found to be transparent across a range from 350–700 nm, but the lens absorbed short wavelength light below 450 nm. Despite the filtering effect of the lens, a secondary peak in spectral sensitivity to ultraviolet wavelengths was found. These results suggest that G. albogularis does possess the visual mechanisms for discrimination of the color pattern of conspecifics based on either hue or brightness. These findings are discussed in terms of the variation in coloration and social behavior of Gonatodes.Abbreviations ERG electroretinogram - MSP microspectrophotometry - UV ultraviolet - max wavelength of maximum absorbance  相似文献   

18.
Polarized light sensitivity was examined in single units of the rainbow trout (Oncorhynchus mykiss) torus semicircularis, a sub-tectal visual area with a high degree of ultraviolet sensitivity. First, chromatically isolated torus units with inputs from each of the four cone mechanisms found in the trout visual system were separately examined for e-vector sensitivity. UV ON-response units showed polarization sensitivity for vertical ly (0° and 180°) polarized stimuli, while ON-response units of the short, middle and long cone mechanisms were not polarization sensitive. No OFF-response units of the UV or short cone mechanism were observed, but OFF-response units of the middle and long cone mechanisms show polarization sensitivity for horizontally (90°) polarized stimuli. Second, e-vector sensitivity was observed in color-coded units which received inputs from more than one cone mechanism and showed different sign responses (ON or OFF) at different points of the spectral sensitivity curve. Biphasic units which had ON input from the UV cone mechanism and OFF inputs from the middle and long cone mechanisms showed polarization opponency. This opponency was observed with a 380 nm stimulus when the threshold sensitivities of the alpha-band absorption peak of the UV mechanism and the beta-band absorption peak of the middle and long cone mechanisms were equal. We believe that biphasic torus units provide a possible cellular basis for polarized light vision in rainbow trout.Abbreviations UV ultraviolet - S short - M middle - L long - PS polarization sensitivity - TS torus semicircularis - ONR optic nerve response  相似文献   

19.
Yokoyama S  Takenaka N  Blow N 《Gene》2007,396(1):196-202
The molecular bases of spectral tuning in the UV-, violet-, and blue-sensitive pigments are not well understood. Using the in vitro assay, here we show that the SWS1, SWS2-A, and SWS2-B pigments of bluefin killifish (Lucania goodei) have the wavelengths of maximal absorption (lambda(max)'s) of 354, 448, and 397 nm, respectively. The spectral difference between the SWS2-A and SWS2-B pigments is largest among those of all currently known pairs of SWS2 pigments within a species. The SWS1 pigment contains no amino acid replacement at the currently known 25 critical sites and seems to have inherited its UV-sensitivity directly from the vertebrate ancestor. Mutagenesis analyses show that the amino acid differences at sites 44, 46, 94, 97, 109, 116, 118, 265, and 292 of the SWS2-A and SWS2-B pigments explain 80% of their spectral difference. Moreover, the larger the individual effects of amino acid changes on the lambda(max)-shift are, the larger the synergistic effects tend to be generated, revealing a novel mechanism of spectral tuning of visual pigments.  相似文献   

20.
Vertebrate opsins are divided into four major groups: RH1 (rhodopsins), RH2 (rhodopsinlike with various absorption sensitivities), SWS (short-wavelength sensitive), and LWS/MWS (long and middle-wavelength sensitive) groups. The green opsin genes (g101 Af and g101 Af ) in a Mexican characin Astyanax fasciatus belong to the LWS/MWS group, whereas those in goldfish belong to the RH2 group (Yokoyama 1994, Mol Biol Evol 11:32–39). A newly isolated opsin gene (rh11 Af ) from A. fasciatus contains five exons and four introns, spanning 4.2 kilobases from start to stop codons. This gene is most closely related to the two green opsin genes of goldfish and belongs to the RH2 group. In the LWS/MWS group, gene duplication of the ancestral red and green opsin genes predates the speciation between A. fasciatus and goldfish, suggesting that goldfish also has an additional gene which is orthologous to g101 Af and g103 Af .Correspondence to: S. Yokoyama  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号