首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 265 毫秒
1.
There has been a great deal of disagreement surrounding the capacity of Bombus terrestris to invade Tasmanian native vegetation. This paper reviews the conflicting findings of previous surveys of the invasion of Tasmania by B. terrestris, and presents new data from the 2004–2005 austral summer. From this, it is clear that B. terrestris has extensively invaded Tasmanian native vegetation. The new data provide strong evidence that B. terrestris is breeding in native vegetation in every region of Tasmania. More than 10 bumblebees were seen in one day at 153 locations in native vegetation, including 42 locations within 10 National Parks and 38 locations within the Tasmanian Wilderness World Heritage Area. Nests of B. terrestris were also found within two National Parks. These findings suggest that B. terrestris would also invade native vegetation in non-arid temperate regions of the Australian mainland, if it is introduced there.  相似文献   

2.
Evaluating dominance as a component of non-native species invasions   总被引:2,自引:0,他引:2  
Many studies have quantified plant invasions by determining patterns of non‐native species establishment (i.e. richness and absolute cover). Until recently, dominance has been largely overlooked as a significant component of invasion. Therefore, we re‐examined a 6‐year data set of 323 0.1 ha plots within 18 vegetation types collected in the Grand Staircase‐Escalante National Monument from 1998 to 2003, including dominance (i.e. relative cover) in our analyses. We specifically focused on the non‐native species Bromus tectorum, a notable dominant annual grass in this system. We found that non‐native species establishment and dominance are both occurring in species‐rich, mesic vegetation types. Therefore, non‐native species dominance may result despite many equally abundant native species rather than a dominant few, and competitive exclusion does not seem to be a primary control on either non‐native species establishment or dominance in this study. Unlike patterns observed for non‐native species establishment, relative non‐native species cover could not be predicted by native species richness across vegetation types (R2 < 0.001; P = 0.45). However, non‐native species richness was found to be positively correlated with relative non‐native species cover and relative B. tectorum cover (R2 = 0.46, P < 0.01; R2 = 0.17, P < 0.01). Analyses within vegetation types revealed predominantly positive relationships among these variables for the correlations that were significant. Regression tree analyses across vegetation types that included additional biotic and abiotic variables were a little better at predicting non‐native species dominance (PRE = 0.49) and B. tectorum dominance (PRE = 0.39) than at predicting establishment. Land managers will need to set priorities for control efforts on the more productive, species‐rich vegetation types that appear to be susceptible to both components of invasion.  相似文献   

3.
Abstract Observations of the large earth bumblebee, Bombus terrestris (L.), in native vegetation were collated to determine the extent to which this exotic species has invaded Tasmanian native vegetation during the first 9 years after its introduction. The range of B. terrestris now encompasses all of Tasmania's major vegetation types, altitudes from sea level to 1260m a.s.L, and the entire breadth of annual precipitation in the state from more than 3200 mm to less than 600 mm. Observations of workers carrying pollen, together with the presence of large numbers of bumblebees at many localities across this range indicate that colonies are frequently established in native vegetation. Evidence that colonies are often successful was obtained from repeated observations of the species during more than 1 year at particular sites. Unequivocal evidence of colonies was obtained from six National Parks, including four of the five in the Tasmanian Wilderness World Heritage Area (WHA). Indeed, the species has been present in the WHA for at least as long as it has in the city of Hobart, where it was first recorded. In southwestern Tasmania, evidence of colonies was obtained up to 40km from gardens, 61 km from small towns and 93 km from large towns. Hence, contrary to previous suggestions, the species is established in the most remote parts of Tasmania and is not dependent on introduced garden plants. Given their strong record of invasion, it is likely that B. terrestris will form feral populations on the mainland of Australia and in many other parts of the world if introduced. Because of their likely negative impacts on native animals and plants, and potential to enhance seed production in weeds, the spread of bumblebees should be avoided.  相似文献   

4.
KIRKPATRICK, J. B. & BROWN, M. J., 1984. A numerical analysis of Tasmanian higher plant endemism. Tasmanian endemic plant taxa at the species level or below were placed in geographic elements according to the distribution of their genera. These elements are associated with different environments, the endemic and Antarctic elements being most prominent in rainforest and alpine communities; the cosmopolitan element in alpine communities, and the Australian element in the fire-prone lowland communities. A monothetic divisive classification and minimum spanning tree analysis of a matrix of the occurrence of 242 Tasmanian endemic species from 366 areas resulted in groups of species and lists whose distributions were closely related to precipitation, altitude and vegetation type. The proportions of endemic species in local Tasmanian floras were almost totally explained by altitude and precipitation in a stepwise multiple regression analysis. However, it is possible that many of the endemic species have not been able to occupy their potential range in Tasmania as a result of insufficient time having elapsed for them to fully expand from Glacial refugia.  相似文献   

5.
Early attempts to acclimatise Bombus spp. to Australia were not successful but a pre-1992 introduction of the bumble bee B. terrestris has succeeded and the species is slowly spreading in southern Tasmania. It is likely that the genetic base of the Tasmanian population is limited if, as is thought, only a few queens were brought from New Zealand. This may affect the rate of dispersal through the island, which presently averages 12.5 km/year. In 1995–96 18 feral colonies found in and around Hobart were transferred to nest boxes, where colony development could be monitored. All of the colonies produced queens, and the ratio of queens to workers (1:4.71) compares favourably with the upper end of colony performance scale in New Zealand (1:5.19). At least two generations are produced during warmer months and there is no indication of genetic impediments to further dispersal in Tasmania or possibly even mainland Australia. External influences such as predatory habits of birds, availability of food, competition from other insects and deliberate introduction by people into new areas make the rate of spread unpredictable.  相似文献   

6.

Aim

Range expansions facilitated by humans or in response to local biotic or abiotic stressors provide the opportunity for species to occupy novel environments. Classifying the status of newly expanded populations can be difficult, particularly when the timing and nature of the range expansion are unclear. Should native species in new habitats be considered invasive pests or actively conserved? Here, we present an analytical framework applied to an Australian marsupial, the sugar glider (Petaurus breviceps), a species that preys upon on an endangered parrot in Tasmania, and whose provenance was uncertain.

Location

Tasmania, Australia.

Methods

We conducted an extensive search of historical records for sugar glider occurrences in Tasmania. Source material included museum collection data, early European expedition logs, community observation records, and peer‐reviewed and grey literature. To determine the provenance of the Tasmanian population, we sequenced two mitochondrial genes and one nuclear gene in Tasmanian animals (n = 27) and in individuals across the species' native range. We then estimated divergence times between Tasmania and southern Australian populations using phylogenetic and Bayesian analyses.

Results

We found no historical evidence of sugar gliders occurring in Tasmania prior to 1835. All Tasmanian individuals (n = 27) were genetically identical at the three genes surveyed here with those individuals being 0.125% divergent from individuals from a population in Victoria. Bayesian analysis of divergence between Tasmanian individuals and southern Australian individuals suggested a recent introduction of sugar gliders into Tasmania from southern Australia.

Main conclusions

Molecular and historical data demonstrate that Tasmanian sugar gliders are a recent, post‐European, anthropogenic introduction from mainland Victoria. This result has implications for the management of the species in relation to their impact on an endangered parrot. The analytical framework outlined here can assist environmental managers with the complex task of assessing the status of recently expanded or introduced native species.
  相似文献   

7.
Abstract.  1. The study tested the hypotheses that bumblebees have shorter foraging trips in environments that provide abundant resources than in environments that provide sparse resources, and that shorter foraging trips translate into greater colony growth.
2. Six even-aged Bombus terrestris colonies were established in contrasting resource environments. Three colonies had access to abundant resources ( Phacelia tanacetifolia fields with high flower densities), and three colonies were placed in an environment with sparse resources (scattered semi-natural habitats with food plants at lower densities).
3. A total of 870 foraging trips of 220 marked B. terrestris foragers were observed using automated camcorder recordings.
4. The duration of foraging trips was shorter in environments with abundant resources (66 ± 4.6 min) than in environments with sparse resources (82 ± 3.7 min). Within 34 days colonies that had access to abundant resources gained significantly more weight (129 ± 40 g) than colonies foraging on sparse resources (19 ± 7 g).
5. Thus, the spatial distribution and quality of resources at landscape level affected the duration of foraging trips and the colony growth. It was concluded that future conservation schemes need to improve the spatial and temporal availability of resources in agricultural landscapes to counteract the ongoing decline of bumblebees.  相似文献   

8.
The term Mundulla Yellows (MY) was coined in 1997 to refer to a dieback disorder involving leaf chlorosis which affects Eucalyptus and other native southern Australian vascular plants. It was thought to be a new, spreading, contagious biotic disease with the potential to devastate native vegetation. Since then, research has found no evidence to confirm any role of biotic agents and generally the disorder has been more convincingly attributed to abiotic soil factors. It has now been suggested that most or all of the reported cases of MY are simply the very well‐known nutrient disorder of alkaline soils, lime‐induced chlorosis. All of the well‐documented records of MY are from sites where acidic soils have become more alkaline because of the use of crushed limestone in road‐making or to the use of alkaline irrigation water; none are from undisturbed native vegetation. Despite this research and much circumstantial evidence, the view that MY poses a grave risk to undisturbed vegetation still persists and needs to be corrected accordingly.  相似文献   

9.
The toxic dinoflagellate Gymnodinium catenatum Graham has formed recurrent toxic blooms in southeastern Tasmanian waters since its discovery in the area in 1986. Current evidence suggests that this species might have been introduced to Tasmania prior to 1973, possibly in cargo vessel ballast water carried from populations in Japan or Spain, followed by recent dispersal to mainland Australia. To examine this hypothesis, cultured strains from G. catenatum populations in Australia, Spain, Portugal, and Japan were examined using allozymes and randomly amplified polymorphic DNA (RAPD). Allozyme screening detected very limited polymorphism and was not useful for population comparisons; however, Australian, Spanish, Portuguese, and Japanese strains showed considerable RAPD diversity, and all strains examined represented unique genotypes. Multidimensional scaling analysis (MDS) of RAPD genetic distances between strains showed clear separation of strains into three nonoverlapping regional clusters: Australia, Japan, and Spain/Portugal. Analysis of genetic distances between strains from the three regional populations indicated that Australian strains were almost equally related to both the Spanish/Portuguese population and the Japanese population. Analysis of molecular variance (AMOVA) found that genetic variation was partitioned mainly within populations (87%) compared to the variation between the regions (8%) and between populations within regions (5%). The potential source population for Tasmania’s introduced G. catenatum remains equivocal; however, strains from the recently discovered mainland Australian population (Port Lincoln, South Australia, 1996) clustered with Tasmanian strains, supporting the notion of a secondary relocation of Tasmanian G. catenatum populations to the mainland via a shipping vector. Geographic and temporal clustering of strains was evident among the Tasmanian strains, indicating that genetic exchange between neighboring estuaries is limited and that Tasmanian G. catenatum blooms are composed of localized, estuary-bound subpopulations.  相似文献   

10.
Summary The landscape modification model proposed by McIntyre and Hobbs (1999) was used to assess the modification of Tasmania’s native vegetation and its potential implications for biodiversity conservation. The inclusion of new ‘substates’ in the model allowed the varying degrees of landscape variegation and fragmentation observed in Tasmania to be quantified. The mapped extent of Tasmania’s native vegetation is approximately 5.06 million ha or 74% of the land area. The extent of native vegetation varies across bioregions from a low of around 36% in the Tasmanian Northern Midlands bioregion to a high of 94% in the Tasmanian West bioregion. Overall, the Tasmanian landscape can be described as medium variegated as the State retains 76% cover of native vegetation, by area. Two of Tasmania’s nine bioregions are in an intact state, four are variegated, and three are fragmented. Seven of the State’s 48 catchments are in an intact state, 24 catchments are variegated, and 17 are fragmented. Tasmania was estimated to support 33 760 patches of native vegetation. Fewer than 3% of these patches exceed 50 ha in area. Small and medium patches occur predominantly on freehold land with grazing as a major land use, whereas large patches occur predominantly on crown land with conservation and production forestry as the major land uses. One feature of the State’s native vegetation is the large tract of native vegetation ecosystems in western Tasmania. Opportunities arise to sustain the resilience of these native ecosystems both by consolidating the formal protection of vegetation within catchments such as the Arthur and Pieman and by strengthening environmental management in adjacent areas. Bioregions and catchments where climate change may be of particular concern for biodiversity conservation and management include the Tasmanian Northern Midlands bioregion and Cam catchment in north‐western Tasmania. The maintenance and enhancement of patches of remnant vegetation in these areas will be challenging and appears likely to require strategic, multiscale and coordinated natural resource management over decades. Limiting the loss of native vegetation across the entire range of landscape states in Tasmania appears essential to mitigate the further decline of biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号