首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Bacterial resistances to inorganic mercury salts and organomercurials.   总被引:11,自引:0,他引:11  
T K Misra 《Plasmid》1992,27(1):4-16
  相似文献   

2.
3.
C C Huang  M Narita  T Yamagata  G Endo 《Gene》1999,239(2):361-366
The complete structure of a broad-spectrum mercury resistance module was shown by sequencing the Gram-positive bacterial transposon TnMERI1 of Bacillus megaterium MB1. The regions encoding organomercury resistance were identified. Upstream of a previously identified organomercurial lyase merB (merB1) region of TnMERI1, a second merR (merR2) and a second merB gene (merB2) were found. These genes constitute a second operon (mer operon 2) following a promoter/operator (P(merR2)) region. A third organomercurial lyase gene (merB3) was found immediately upstream of the mer operon (mer operon 1) followed by a promoter/operator (P(merB3)) region homologous to that of the mer operon 1 (P(merR1)-merR1-merE-like-merT-merP-merA). The complete genetic structure of the mercury resistance module is organized as P(merB3)-merB3-P(merR1)-merR1-merE-like-merT+ ++ -merP-merA-P(merR2)-merR2 -merB2-merB1. The subcloning analysis of these three merB genes showed distinct substrate specificity as different organomercury lyase genes.  相似文献   

4.
5.
6.
7.
8.
The mercury resistance (mer) operon of plasmid R100 was cloned onto various plasmid vectors to study the effect of mer gene amplification on the rate of Hg2+ reduction by Escherichia coli cells. The plasmids were maintained at copy numbers ranging from 3 to 140 copies per cell. The overall Hg2+ reduction rate of intact cells increased only 2.4-fold for the 47-fold gene amplification. In contrast, the rate of the cytoplasmic reduction reaction, measured in permeabilized cells, increased linearly with increasing gene copy number, resulting in a 6.8-fold overall amplification. RNA hybridizations indicated that mRNA of the cytoplasmic mercuric reductase (merA gene product) increased 11-fold with the 47-fold gene amplification, while mRNA of the transport protein (merT gene product) increased only 5.4-fold. Radiolabeled proteins produced in maxicells were used to correlate the expression levels of the mer polypeptides with the measured reduction rates. The results indicated that, with increasing gene copy number, there was an approximately 5-fold increase in the merA gene product compared with a 2.5-fold increase in the merT gene product. These data demonstrate a parallel increase of Hg2+ reduction activity and transport protein expression in intact cells with plasmids with different copy numbers. In contrast, the expression level of the mercuric reductase gene underwent higher amplification than that of the transport genes at both the RNA and protein levels as plasmid copy number increased.  相似文献   

9.
The mercury resistance (mer) operon of plasmid R100 was cloned onto various plasmid vectors to study the effect of mer gene amplification on the rate of Hg2+ reduction by Escherichia coli cells. The plasmids were maintained at copy numbers ranging from 3 to 140 copies per cell. The overall Hg2+ reduction rate of intact cells increased only 2.4-fold for the 47-fold gene amplification. In contrast, the rate of the cytoplasmic reduction reaction, measured in permeabilized cells, increased linearly with increasing gene copy number, resulting in a 6.8-fold overall amplification. RNA hybridizations indicated that mRNA of the cytoplasmic mercuric reductase (merA gene product) increased 11-fold with the 47-fold gene amplification, while mRNA of the transport protein (merT gene product) increased only 5.4-fold. Radiolabeled proteins produced in maxicells were used to correlate the expression levels of the mer polypeptides with the measured reduction rates. The results indicated that, with increasing gene copy number, there was an approximately 5-fold increase in the merA gene product compared with a 2.5-fold increase in the merT gene product. These data demonstrate a parallel increase of Hg2+ reduction activity and transport protein expression in intact cells with plasmids with different copy numbers. In contrast, the expression level of the mercuric reductase gene underwent higher amplification than that of the transport genes at both the RNA and protein levels as plasmid copy number increased.  相似文献   

10.
11.
Thirty mercury-resistant (Hg R) Bacillus strains were isolated from mercury-polluted sediment of Minamata Bay, Japan. Mercury resistance phenotypes were classified into broad-spectrum (resistant to inorganic Hg(2+) and organomercurials) and narrow-spectrum (resistant to inorganic Hg(2+) and sensitive to organomercurials) groups. Polymerase chain reaction (PCR) product sizes and the restriction nuclease site maps of mer operon regions from all broad-spectrum Hg R Bacillus were identical to that of Bacillus megaterium MB1. On the other hand, the PCR products of the targeted merP (extracellular mercury-binding protein gene) and merA (intracellular mercury reductase protein gene) regions from the narrow-spectrum Hg R Bacillus were generally smaller than those of the B. megaterium MB1 mer determinant. Diversity of gene structure configurations was also observed by restriction fragment length polymorphism (RFLP) profiles of the merA PCR products from the narrow-spectrum Hg R Bacillus. The genetic diversity of narrow-spectrum mer operons was greater than that of broad-spectrum ones.  相似文献   

12.
13.
Versatile mercury-resistant cloning and expression vectors   总被引:8,自引:0,他引:8  
B D Gambill  A O Summers 《Gene》1985,39(2-3):293-297
Cloning vectors have been constructed employing two diverse replicons, IncQ and P15A. Both vectors confer resistance to kanamycin (Km) and mercuric ions (Hg2+). One of these vectors, pDG105, is a broad-host-range, nonconjugative, oligocopy IncQ plasmid, which is capable of transforming Escherichia coli, Acinetobacter calcoaceticus, and Pseudomonas putida. The second vector, pDG106, is a narrow-host-range, multicopy cloning vector compatible with pBR322. Both vectors contain unique cloning sites in the Km-resistance gene for HindIII, SmaI, and XhoI, as well as unique EcoRI and ScaI sites in the mer operon. Cloning into the EcoRI site in the mer operon results in the mercury "supersensitive" phenotype, easily detectable by replica plating. Insertion of the galK gene into the EcoRI site in the mer operon results in Hg2+-inducible galactokinase activity, demonstrating the application of these plasmids as regulated expression vectors.  相似文献   

14.
An investigation of the Hg2+ resistance mechanism of four freshwater and four coastal marine bacteria that did not hybridize with a mer operonic probe was conducted (T. Barkay, C. Liebert, and M. Gillman, Appl. Environ. Microbiol. 55:1196-1202, 1989). Hybridization with a merA probe, the gene encoding the mercuric reductase polypeptide, at a stringency of hybridization permitting hybrid formation between evolutionarily distant merA genes (as exists between gram-positive and -negative bacteria), detected merA sequences in the genomes of all tested strains. Inducible Hg2+ volatilization was demonstrated for all eight organisms, and NADPH-dependent mercuric reductase activities were detected in crude cell extracts of six of the strains. Because these strains represented random selections of bacteria from three aquatic environments, it is concluded that merA encodes a common molecular mechanism for Hg2+ resistance and volatilization in aerobic heterotrophic aquatic communities.  相似文献   

15.
T Barkay  M Gillman    C Liebert 《Applied microbiology》1990,56(6):1695-1701
An investigation of the Hg2+ resistance mechanism of four freshwater and four coastal marine bacteria that did not hybridize with a mer operonic probe was conducted (T. Barkay, C. Liebert, and M. Gillman, Appl. Environ. Microbiol. 55:1196-1202, 1989). Hybridization with a merA probe, the gene encoding the mercuric reductase polypeptide, at a stringency of hybridization permitting hybrid formation between evolutionarily distant merA genes (as exists between gram-positive and -negative bacteria), detected merA sequences in the genomes of all tested strains. Inducible Hg2+ volatilization was demonstrated for all eight organisms, and NADPH-dependent mercuric reductase activities were detected in crude cell extracts of six of the strains. Because these strains represented random selections of bacteria from three aquatic environments, it is concluded that merA encodes a common molecular mechanism for Hg2+ resistance and volatilization in aerobic heterotrophic aquatic communities.  相似文献   

16.
Transposon Tn21, flagship of the floating genome.   总被引:2,自引:0,他引:2  
The transposon Tn21 and a group of closely related transposons (the Tn21 family) are involved in the global dissemination of antibiotic resistance determinants in gram-negative facultative bacteria. The molecular basis for their involvement is carriage by the Tn21 family of a mobile DNA element (the integron) encoding a site-specific system for the acquisition of multiple antibiotic resistance genes. The paradigm example, Tn21, also carries genes for its own transposition and a mercury resistance (mer) operon. We have compiled the entire 19,671-bp sequence of Tn21 and assessed the possible origins and functions of the genes it contains. Our assessment adds molecular detail to previous models of the evolution of Tn21 and is consistent with the insertion of the integron In2 into an ancestral Tn501-like mer transposon. Codon usage analysis indicates distinct host origins for the ancestral mer operon, the integron, and the gene cassette and two insertion sequences which lie within the integron. The sole gene of unknown function in the integron, orf5, resembles a puromycin-modifying enzyme from an antibiotic producing bacterium. A possible seventh gene in the mer operon (merE), perhaps with a role in Hg(II) transport, lies in the junction between the integron and the mer operon. Analysis of the region interrupted by insertion of the integron suggests that the putative transposition regulator, tnpM, is the C-terminal vestige of a tyrosine kinase sensor present in the ancestral mer transposon. The extensive dissemination of the Tn21 family may have resulted from the fortuitous association of a genetic element for accumulating multiple antibiotic resistances (the integron) with one conferring resistance to a toxic metal at a time when clinical, agricultural, and industrial practices were rapidly increasing the exposure to both types of selective agents. The compendium offered here will provide a reference point for ongoing observations of related elements in multiply resistant strains emerging worldwide.  相似文献   

17.
Transposon Tn21, Flagship of the Floating Genome   总被引:4,自引:0,他引:4       下载免费PDF全文
The transposon Tn21 and a group of closely related transposons (the Tn21 family) are involved in the global dissemination of antibiotic resistance determinants in gram-negative facultative bacteria. The molecular basis for their involvement is carriage by the Tn21 family of a mobile DNA element (the integron) encoding a site-specific system for the acquisition of multiple antibiotic resistance genes. The paradigm example, Tn21, also carries genes for its own transposition and a mercury resistance (mer) operon. We have compiled the entire 19,671-bp sequence of Tn21 and assessed the possible origins and functions of the genes it contains. Our assessment adds molecular detail to previous models of the evolution of Tn21 and is consistent with the insertion of the integron In2 into an ancestral Tn501-like mer transposon. Codon usage analysis indicates distinct host origins for the ancestral mer operon, the integron, and the gene cassette and two insertion sequences which lie within the integron. The sole gene of unknown function in the integron, orf5, resembles a puromycin-modifying enzyme from an antibiotic producing bacterium. A possible seventh gene in the mer operon (merE), perhaps with a role in Hg(II) transport, lies in the junction between the integron and the mer operon. Analysis of the region interrupted by insertion of the integron suggests that the putative transposition regulator, tnpM, is the C-terminal vestige of a tyrosine kinase sensor present in the ancestral mer transposon. The extensive dissemination of the Tn21 family may have resulted from the fortuitous association of a genetic element for accumulating multiple antibiotic resistances (the integron) with one conferring resistance to a toxic metal at a time when clinical, agricultural, and industrial practices were rapidly increasing the exposure to both types of selective agents. The compendium offered here will provide a reference point for ongoing observations of related elements in multiply resistant strains emerging worldwide.  相似文献   

18.
An Escherichia coli strain was generated by fusion of a merA-deleted broad-spectrum mer operon from Pseudomonas K-62 with a bacterial polyphosphate kinase gene (ppk) from Klebsiella aerogenes in vector pUC119. A large amount of the ppk-specified polyphosphate was identified in the mercury-induced bacterium with the fusion plasmid designated pMKB18 but not in the cells without mercury induction. These results suggest that the synthesis of polyphosphate as well as the expression of the mer genes is mercury-inducible and regulated by merR. The E. coli strain with pMKB18 was more resistant to both Hg2+ and C6H5Hg+ than its isogenic strain with cloning vector pUC119. The recombinant strain accumulated more mercury from Hg2+- and C6H5Hg+-contaminated medium. Hg2+ transported into the cytoplasm appeared to be bound by chelation with the polyphosphate produced by the recombinant cells. The transported phenylmercury was degraded to Hg2+ before the chelation since polyphosphate did not directly chelate with C6H5Hg+. These results indicate that polyphosphate is capable of reducing the cytotoxicity of the transported Hg2+ probably via chelation between polyphosphate and Hg2+.  相似文献   

19.
Deletion mutant analysis of the mercury-resistant determinant (mer operon) from the Staphylococcus aureus plasmid pI258 was used to verify the location of the merA and merB genes and to show the existence of mercuric ion transport gene(s). ORF5 was confirmed to be a transport gene and has an amino acid product sequence homologous to the merT gene products from several gram-negative bacteria and a Bacillus species. Deletion analysis established that inactivation of merA on a broad-spectrum mer resistance determinant resulted in a mercury-hypersensitive phenotype. Gene dosage had no apparent effect on the level of resistance conferred by the intact mer operon or on the expression of an inducible phenotype, except that when the intact pI258 mer operon was on a high copy number plasmid, uninduced cells possessed a volatilization rate that was at most only 3.5-fold less than that observed for induced cells. There was no need for mercury ion transport proteins for full resistance when the mer operon was expressed in a high copy number plasmid.  相似文献   

20.
Pilot plant for bioremediation of mercury-containing industrial wastewater   总被引:4,自引:0,他引:4  
Mercury is an extremely toxic pollutant that is currently being emitted mainly by low level industrial sources. It is distributed globally through the atmosphere, from where it precipitates onto the surface of the Earth, enters aquatic organisms, accumulates in fish and finally affects the health of human populations. Microbes have evolved a mechanism for mercury detoxification [mercury resistance operon ( mer)] based on intracellular reduction of Hg(2+) to non-toxic Hg(0) by the mercuric reductase enzyme and subsequent diffusional loss of Hg(0) from the cell. It was shown that Hg(0) produced by microbial detoxification can be retained quantitatively in packed bed bioreactors, in which biofilms of mercury-resistant bacteria are grown on porous carrier material. This review describes operation of this system on a technical, fully automated, scale, and its operation at a chloralkali electrolysis factory. It was shown to work with high efficiency under fluctuating mercury concentrations and to be robust against transiently toxic conditions. The gradient of mercury concentration in the technical scale system exerted a strong selective pressure on the microbial community, which resulted in a succession of mercury-resistant strains at high mercury concentrations and an increase in phylogenetic and functional diversity at low mercury concentrations. Clean-up of mercury-containing wastewater by mercury-resistant microbes is a simple, environmentally friendly and cost-effective alternative to current treatment technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号