首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The survival rate, metabolic activity, and ability for growth of microbial communities of Lake Baikal after exposure to extremely low temperatures (freeze-thawing) for different lengths of time have been first studied. It has been shown that short-term freezing (1-3 days) inhibits the growth and activity of microbial communities. The quantity of microorganisms increased after 7- and 15-day freezing. In the periods of maximums, the total number of microorganisms in the test samples was twice as high as in the control. It was established that after more prolonged freezing the microorganisms required more time after thawing to adapt to new conditions. In the variants with 7- and 15-day freezing, the activities of defrosted microbial communities were three or more times higher than in the control. The survival rate and activity of Baikal microorganisms after freeze-thawing confirms the fact that the Baikal microbial communities are highly resistant to this type of stress impact.  相似文献   

2.
The paper presents the results of the long-term investigation of microbial communities in the technogenically vulnerable mouth riverine and lacustrine ecosystems of Lake Baikal. The structural and functional parameters of the microbial communities were analyzed from the standpoint of developing destructive processes. The analysis showed that the total number of microorganisms (TNM), the number of saprophytic bacteria (NSB), and bacterial production (BP) were greater in the river-mouth water than in the near-mouth lake water. In the offshore direction, TNM and NSB decreased by a factor of 1.5 to 2, and BP decreased by a factor of 4 to 7. Based on TNM, NSB, and BP data, we classified the Lake Baikal rivers with respect to the degree of the impact of human activities on them. The degrading capability of the riverine microbial communities was found to be such that they degrade daily from tenths of a percent to 3.5% of the total amount of organic compounds polluting the river waters.  相似文献   

3.
Early diagenesis of organic matter in bottom sediments of Lake Baikal is a focus of many geochemical studies, because it is one of the few sites of petroleum formation in a nonmarine environment. Although Baikal is a rift lake and considered one of the prospective fields for deep biosphere investigations, the transformation processes of organic matter by microbial communities from deep bottom sediments and likely entering of the microorganisms from deep sediments into the near-surface sediments were not previously studied in Lake Baikal. The natural microbial community from near-surface sediments of the cold methane seep Goloustnoe (Southern Baikal Basin) was incubated with methane and the diatom Synedra acus at 80°C and 49.5 atm to simulate catagenesis. The 11-month incubation yielded the enrichment culture of viable thermophilic microorganisms. Their presence in low-temperature sediment layers may be indicative of their migration through fault zones together with gas-bearing fluids. After culturing, molecular biological methods allowed for the detection of both widespread microorganisms and unique clones whose phylogenetic status is currently unknown. The sediment after the experiment showed the formation of polycyclic aromatic hydrocarbon, retene. Retene can be either a conifer or algal biomarker, thus, interpretation of paleoclimate data is tenuous.  相似文献   

4.
5.
Generation time was determined in pure cultures of heterotrophic microorganisms in the conditions similar to those of Baikal in June--July of 1972. Generation time was found to be 37+/-7, 16+/-2.5, 16+/-3.2, and 10+/-2.5 hours, respectively, when the cultures had been diluted with Baikal water in the following rations: 1 : 0,1 : 5,1 : 10, and 1 : 20. No differences in the growth rate were found among 11 cultures of heterotrophic microorganisms isolated from Baikal. Conditions limiting the microbial growth improve from the dilution of 1 : 0 to the dilution of 1 : 5. The mean time of generation is 27 hours for June--July. Generation time determined for pure cultures of heterotrophic microorganisms in the conditions similar to natural can be used to calculate production of the bacterial biomass for a definite period of the year.  相似文献   

6.
The microbial communities of the estuarine zone and the mixing zone of river and lake waters in the Selenga River estuary were studied using the fluorescence in situ hybridization (FISH) method. The microorganisms belonging to the phylogenetic group Gammaproteobacteria were found to predominate in the river estuary, constituting up to 17% of the total bacterial community. Among cultivable microorganisms, organotrophic bacteria were predominant (2040 CFU/ml) in this zone, which results in high rates of microbial production (6.0 μg C/(l day). The microbial community structure changed with distance from the river estuary; representatives of the Alpha-, Beta-, and Gammaproteobacteria were present in equal proportions; psychrotolerant and oligotrophic bacteria were numerous. The rate of heterotrophic carbon dioxide assimilation decreased to 3.8 μg C/(l day). At 5–7 km from the river estuary, where the hydrologic, physical, and chemical conditions are similar to those of lake waters, members of the Betaproteobacteria, which are typical of the open waters of Lake Baikal, are the major representatives of planktonic microorganisms.  相似文献   

7.
嗜碱细菌的液氮超低温冻结保藏   总被引:1,自引:0,他引:1  
周宇光   《微生物学通报》1992,19(1):47-48,6
本文报道7株嗜碱细菌的液氮超低温快速冻结保藏的试验结果。从细胞存活率看,冻结保藏3个月,自然pH的10%甘油、5%二甲基亚砜保护剂保藏嗜碱细菌的效果相似于该方法用于一般细菌保藏的保存结果,说明液氮超低温冻结保藏法用于嗜碱细菌的保藏是安全有效的。如选择pH值接近嗜碱细菌的最适生长pH值的保护剂,则可以提高细胞存活率。  相似文献   

8.
周文杰  张鹏  秦嗣军  吕德国   《生态学杂志》2015,26(11):3300-3308
在1年生盆栽甜樱桃土壤中添加葡萄糖和淀粉(4 g·kg-1),以不添加外源碳为对照,处理后0~60 d内定期采根区土样测定土壤微生物生物量碳、蔗糖酶和淀粉酶活性以及微生物群落功能多样性,处理后第30天测定根系呼吸速率、呼吸途径和根系活力.结果表明: 添加葡萄糖后,土壤蔗糖酶活性及微生物生物量碳均表现为先升高再降低,峰值分别出现在处理后第15天及第7天,分别高于对照14.0%和13.1%,土壤有机质含量表现为先升高再降低再缓慢回升;添加淀粉后显著提高了土壤淀粉酶活性,第15天时为对照的8.5倍,土壤微生物生物量碳除在第7天低于对照外,其余时期均高于对照,土壤有机质含量表现为先升高再下降,处理后第60天高于对照19.8%.BIOLOG分析表明,处理后第15天平均吸光度(AWCD)值及微生物活性均达到最大值,表现为淀粉>葡萄糖>对照.处理后第30天,葡萄糖处理显著增加了土壤微生物对碳水化合物类、羧酸类、氨基酸类、酚酸类和胺类碳源的利用,淀粉处理显著增加了土壤微生物对碳水化合物类、羧酸类、聚合物类和酚酸类碳源的利用.处理后第30天,葡萄糖处理甜樱桃根系总呼吸速率分别较对照及淀粉处理提高21.4%和19.4%,根系活力分别提高65.5%和37.0%.添加葡萄糖和淀粉影响了甜樱桃根区土壤稳定碳源及不稳定碳源的代谢过程,整体上提高了土壤微生物活性,增强了甜樱桃根系呼吸速率及根系活力.  相似文献   

9.
Acidophilic chemolithotrophic microorganisms (CMs) are widely used for bioleaching of mineral resources. However, the growth of bacteria and their leaching activity are often inhibited (restricted) by organic components, e.g. lysates and exudates. The aims of this study were to examine the extent of cell lysis (CLs) inhibition on acidophilic microorganisms and to identify microorganisms that can utilize CLs products and eliminate their inhibition effect on acidophilic microorganisms. Specifically, it was revealed that Acidithiobacillus caldus was severely inhibited at 5% CLs products, whereas A. ferrooxidans and Leptospirillum ferriphilum are severely inhibited at 20%. It has been found that strains RBA and RBB of heterotrophic bacteria, isolated from anaerobic sludge, can biodegrade CLs products and when co-cultured with A. ferrooxidans, they can alleviate the toxic effect of CLs products under low pH (2–3). It has been shown that besides CLs, isolated strains can grow on glucose, glycerol, yeast extract, citric acid, and tryptone soya broth with an optimum temperature of 35°C and a pH of 3. The strains showed the ability to reduce ferric ions to ferrous ions when glycerol was used as a substrate after 2 days under both aerobic and anaerobic conditions. On the basis of morphophysiological and molecular biological studies, the isolated strains RBA and RBB were identified as Acidocella spp.  相似文献   

10.
Live yeasts (Saccharomyces cerevisiae) are more and more widely used as feed additives for ruminants. They are considered as allochtonous microorganisms in the rumen environment, however, distributed daily to dairy cows or beef cattle they can survive in the digestive tract and interact with autochtonous microbial populations. The positive effects of yeast cells have been mainly demonstrated on growth and activity of fibre-degrading bacteria and fungi, on stabilisation of rumen pH and prevention of lactate accumulation, on ruminal microbial colonization and on the set up of fermentative processes during the pre-weaning period. Modes of action of yeast probiotics depend on their viability and stability in the rumen ecosystem. Up to now, the main modes of action identified are the supply of growth factors to rumen microorganisms, oxygen scavenging inducing more favourable conditions for the anaerobic communities, and nutritional competition with autochtonous ruminal species. Presented at the Second Probiotic Conference, Košice, 15–19 September 2004, Slovakia.  相似文献   

11.
The taxonomic composition of microbial communities of Lake Baikal surface microlayer was studied by pyrosequencing of the 16S rDNA amplicons. Statistically reliable differences were found between bacterioneuston of the shallow and deep-water stations. The shallow station community was characterized by higher diversity than the deep-water one. While bacterioneuston communities were shown to be less diverse than the water column communities, their diversity was comparable to that of other biofilm associations. Microbial communities of Lake Baikal surface microlayer were shown to be similar to those of the water column in the composition of predominant phyla, while differing considerably at the genus level. Bacterioneuston of Lake Baikal was comparable to microbial communities of the surface microlayer of other freshwater basins, although it was characterized by high abundance of the Alphaproteobacteria and Verrucomicrobia. High abundance of photoheterotrophs compared to the water column communities of other freshwater basins was another distinctive feature of Lake Baikal bacterioneuston. Our results showed the Lake Baikal surface microlayer to be a specific microbial community with low species diversity and relatively high abundance of photoheterotrophic microorganisms.  相似文献   

12.
S Sandler  A Andersson 《Cryobiology》1984,21(5):503-510
It was the aim of the present study to investigate the significance of culture before and after freeze-thawing of isolated mouse pancreatic islets. To evaluate the impact of culture before freezing (5 degrees C/min; 2 M dimethyl sulfoxide), islets were frozen either directly after isolation or after 2, 4, or 7 days of culture in medium RPMI 1640. The culture period after thawing was 7 days. Islets immediately frozen exhibited virtually no (pro)insulin biosynthesis and also a severe inhibition of glucose-stimulated insulin release. The precultured (2-7 days), frozen islets synthesized and released insulin at rates comparable to those of nonfrozen, cultured islets. Studies of the effects of culture after freeze-thawing were performed after a 3-day culture period prior to freezing. The (pro)insulin biosynthetic rates did not differ between islets cultured for 0-7 days after thawing. There was an apparent increase of glucose-stimulated insulin release when the islets were cultured for more than 2 days after thawing. It may be that the decreased viability of islets frozen immediately after isolation was due to minor cell damage induced by the collagenase incubation. During culture the islets may recover and become more resistant to freeze-damage. The beneficial effect of culture after thawing may reflect the loss of damaged cells, which otherwise would influence the results of the viability tests.  相似文献   

13.
The paper presents the results of the long-term investigation of microbial communities in the technogenically vulnerable mouth riverine and lacustrine ecosystems of Lake Baikal. The structural and functional parameters of the microbial communities were analyzed from the standpoint of developing destructive processes. The analysis showed that the total number of microorganisms (TNM), the number of saprophytic bacteria (NSB), and bacterial production (BP) were greater in the river-mouth water than in the near-mouth lake water. In the offshore direction, TNM and NSB decreased by a factor of 1.5 to 2, and BP decreased by a factor of 4 to 7. Based on TNM, NSB, and BP data, we classified the Lake Baikal rivers with respect to the degree of the impact of human activities on them. The degrading capability of the riverine microbial communities was found to be such that they degrade daily from tenths of a percent to 3.5% of the total amount of organic compounds polluted the river waters.  相似文献   

14.
ABSTRACT The study of microbial food webs is dominated by field measurements of microbial standing stocks and rate processes and to a lesser extent by laboratory studies. These approaches reflect the concerns of microbial ecologists to assess accurately the capabilities of microorganisms and to compare microbial processes to other ecosystem parameters. These approaches have led to enormous advances in understanding microbial food webs. Reconciling our expanding knowledge with general questions about the significance and representation of microbial food webs in ecosystem studies requires additional approaches including comparative studies and field experiments. Comparative studies, analyses of microbial stocks or rates across a wide range of ecosystems, lead to quantitative models of microbial processes. These models facilitate testing of hypotheses at a very general level, allow the comparison of different stocks or rate processes across a gradient of systems, and detect unusual situations or outlier systems. Field experimental manipulations offer the advantages of working with intact natural communities, of direct evaluation of results with statistical methods, and of testing important qualitative hypotheses. Both comparative and field manipulation studies have led to important advances in the study of microbial food webs and should be expanded.  相似文献   

15.
The rates of the mineralization processes initiated by the input of plant residues and pyrogenically modified plant material into gray forest soil under forests and meadows were assayed. While meadow plant residues was mineralized more rapidly than the forest floor, decomposition of the pyrogenic material resulted in disproportional changes in CO2 emission from soils. Statistical treatment showed that the respiratory activity of CO2 emission by heterotrophic microorganisms, which is a physiological characteristic of microbial communities, is 89% determined by the substrate quality. The maximal specific growth rate, which reflects the functional changes in microbial communities, was affected by the cenosis (36%) and the substrate (30%). Most of the carbon of the original plant material (up to 90%) was removed during the burning of plant substrates. The remaining compounds in the pyrogenically transformed material changed the process of mineralization in soil compared both to the control variant and to soil enriched with plant residues. Input of plant residues and ash into the soil resulted in increased total and active biomass, while the maximal specific growth rate decreased and the generation time for the active biomass increased. In the case of soils with plant residues, these changes in the state of microbial communities were brief and occurred during the period of intense mineralization (0–5 days), while, in soils with plant ash, stable changes were revealed after more prolonged incubation. Experimental determination of the microbial biomass turnover time (MTT) by means of two methods (from the ratio between the microbial biomass and respiration and from microbial specific growth rates) made it possible to determine the economical coefficient Y for microbial communities metabolizing the substrates of different availability. Depending on the experimental variant, the Y values varied from 0.22 to 0.51. Decreased maximal specific growth rate and increased values of Y (the coefficient of efficiency of substrate utilization) showed the predominant contribution of K-strategists in the mineralization of low available substrates in soil. The balance calculations and physiological characteristics of the microbial community suggested that the priming effect was most probable in soils enriched with plant ash.  相似文献   

16.
微生物分子生态学技术在污水处理系统中的应用   总被引:10,自引:3,他引:7  
微生物分子生态学作为分子生物学与微生物生态学交叉而形成的学科,在污水处理方面广泛应用。本文从分子生态学实验技术角度,综述了目前污水处理系统中微生物群体结构、多样性及其与功能相关性的研究进展,探讨了分子生态学技术的发展与应用前景,并指出研究该体系微生物对于认识微生物系统发育地位具有重要意义。  相似文献   

17.
通过分析不同铁硫比的能源底物驯化下冶金微生物群落的演替过程,基于分子生态网络揭示冶金微生物对能源底物的响应特征。对富铁少硫、富硫少铁条件下不同驯化批次的微生物样本进行高通量测序,分析物种组成,比较冶金微生物群落的α多样性和β多样性,并构建分子生态网络,探究驯化过程微生物之间的相互作用关系。鉴定关键物种,分析冶金微生物群落对能源底物的响应。研究发现在基于不同能源底物驯化过程中,富铁少硫群落的优势物种为嗜酸氧化亚铁硫杆菌Acidithiobacillus ferrooxidans和铁氧化嗜酸硫杆菌A. ferriphilus;而富硫少铁群落经过3个批次的驯化,氧化硫硫杆菌A. thiooxidans占比高达90%。α、β多样性分析结果表明,富硫少铁能源底物驯化过程使冶金微生物群落多样性降低,且随着驯化批次的增加群落组成发生显著变化。分子生态网络分析显示关键物种均为低丰度稀有物种,富硫少铁条件下菌种间具有更紧密的互作共生关系,群落更加稳定。通过该驯化实验,明确了不同能源底物对冶金微生物群落的影响。采用富硫少铁能源底物驯化冶金微生物,使冶金微生物群落更加稳定,有助于优势物种高效发挥铁、硫氧化功能,促进硫化矿物的氧化溶解,为生物冶金工业育种微生物群落的定向驯化提供理论基础。  相似文献   

18.
Abstract

The development of techniques for detection and tracking of microorganisms in natural environments has been accelerated by the requirement for assessment of the risks associated with environmental release of genetically engineered microbial inocula. Molecular marker systems are particularly appropriate for such studies and luminescence-based markers have the broadest range of applications, involving the introduction of prokaryotic (lux) or eukaryotic (luc) genes for the enzyme luciferase.

Lux or luc genes can be detected on the basis of unique DNA sequences by gene probing and PCR amplification, but the major advantage of luminescence-based systems is the ability to detect light emitted by marked organisms or by luciferase activity in cell-free extracts. Luminescent colonies can be detected by eye, providing distinction from colonies of indigenous organisms, and the sensitivity of plate counting can be increased greatly by CCD imaging. Single cells or microcolonies of luminescent organisms can also be detected in environmental samples by CCD image-enhanced microscopy, facilitating study of their spatial distribution. The metabolic activity of luminescence-marked populations can be quantified by luminometry and does not require extraction of cells or laboratory growth. Metabolic activity, and potential activity, of marked organisms therefore can be measured during colonization of soil particles and plant material in real time without disturbing the colonization process.

In comparison with traditional activity techniques, luminometry provides significant increases in sensitivity, accuracy, and, most importantly, selectivity, as activity can be measured in the presence of indigenous microbial communities. The sensitivity, speed, and convenience of luminescence measurements make this a powerful technique that is being applied to the study of an increasingly wide range of ecological problems. These include microbial survival and recovery, microbial predation, plant pathogenicity, phylloplane and rhizosphere colonization and reporting of gene expression in environmental samples.  相似文献   

19.
Glaciers accumulate airborne microorganisms year by year and thus are good archives of microbial communities and their relationship to climatic and environmental changes. Hypotheses have focused on two possible drivers of microbial community composition in glacier systems. One is aeolian deposition, in which the microbial load by aerosol, dust, and precipitation events directly determines the amount and composition of microbial species in glacier ice. The other is postdepositional selection, in which the metabolic activity in surface snow causes microbial community shifts in glacier ice. An additional possibility is that both processes occur simultaneously. Aeolian deposition initially establishes a microbial community in the ice, whereas postdeposition selection strengthens the deposition patterns of microorganisms with the development of tolerant species in surface snow, resulting in varying structures of microbial communities with depth. In this minireview, we examine these postulations through an analysis of physical–chemical and biological parameters from the Malan and Vostok ice cores, and the Kuytun 51 Glacial surface and deep snow. We discuss these and other recent results in the context of the hypothesized mechanisms driving microbial community succession in glaciers. We explore our current gaps in knowledge and point out future directions for research on microorganisms in glacial ecosystems.  相似文献   

20.
It was demonstrated that actinomycetes of Lake Baikal are strong antagonists of other microorganisms. Representatives of the genera Streptomyces and Micromonospora inhibit the growth of bacteria isolated from the lake, as well as of antibiotic-resistant microorganisms causing various human diseases. Baikal actinomycetes display a wide range of antagonistic activity and are potential producers of new biologically active substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号