首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Past studies have established that the cornea like the lens abundantly expresses a few water-soluble enzyme/proteins in a taxon specific fashion. Based on these similarities it has been proposed that the lens and the cornea form a structural unit, the 'refracton', that has co-evolved through gene sharing to maximize light transmission and refraction to the retina. Thus far, the analogy between corneal crystallins and lens crystallins has been limited to similarities in the abundant expression, with few reports concerning their structural function. This review covers recent studies that establish a clear relationship between expression of corneal crystallins and light scattering from corneal stromal cells, i.e. keratocytes, that support a structural role for corneal crystallins in the development of transparency similar to that of lens crystallins that would be consistent with the 'refracton' hypothesis.  相似文献   

2.
We have shown that gelsolin is one of the most prevalent water-soluble proteins in the transparent cornea of zebrafish. There are also significant amounts of actin. In contrast to actin, gelsolin is barely detectable in other eye tissues (iris, lens, and remaining eye) of the zebrafish. Gelsolin cDNA hybridized intensely in Northern blots to RNA from the cornea but not from the lens, brain, or headless body. The deduced zebrafish gelsolin is approximately 60% identical to mammalian cytosolic gelsolin and has the characteristic six segmental repeats as well as the binding sites for actin, calcium, and phosphatidylinositides. In situ hybridization tests showed that gelsolin mRNA is concentrated in the zebrafish corneal epithelium. The zebrafish corneal epithelium stains very weakly with rhodamine-phalloidin, indicating little F-actin in the cytoplasm. In contrast, the mouse corneal epithelium contains relatively little gelsolin and stains intensely with rhodamine-phalloidin, as does the zebrafish extraocular muscle. We propose, by analogy with the diverse crystallins of the eye lens and with the putative enzyme-crystallins (aldehyde dehydrogenase class 3 and other enzymes) of the mammalian cornea, that gelsolin and actin-gelsolin complexes act as water-soluble crystallins in the zebrafish cornea and contribute to its optical properties.  相似文献   

3.
In pathological corneas, accumulation of fibrotic extracellular matrix is characterized by proteoglycans with altered glycosaminoglycans that contribute to the reduced transparency of scarred tissue. During wound healing, keratocytes in the corneal stroma transdifferentiate into fibroblasts and myofibroblasts. In this study, molecular markers were developed to identify keratocyte, fibroblast, and myofibroblast phenotypes in primary cultures of corneal stromal cells and the structure of glycosaminoglycans secreted by these cells was characterized. Quiescent primary keratocytes expressed abundant protein and mRNA for keratocan and aldehyde dehydrogenase class 3 and secreted proteoglycans containing macromolecular keratan sulfate. Expression of these marker compounds was reduced in fibroblasts and also in transforming growth factor-beta-induced myofibroblasts, which expressed high levels of alpha-smooth muscle actin, biglycan, and the extra domain A (EDA or EIIIA) form of cellular fibronectin. Collagen types I and III mRNAs were elevated in both fibroblasts and in myofibroblasts. Expression of these molecular markers clearly distinguishes the phenotypic states of stromal cells in vitro. Glycosaminoglycans secreted by fibroblasts and myofibroblasts were qualitatively similar to and differed from those of keratocytes. Chondroitin/dermatan sulfate abundance, chain length, and sulfation were increased as keratocytes became fibroblasts and myofibroblasts. Fluorophore-assisted carbohydrate electrophoresis analysis demonstrated increased N-acetylgalactosamine sulfation at both 4- and 6-carbons. Hyaluronan, absent in keratocytes, was secreted by fibroblasts and myofibroblasts. Keratan sulfate biosynthesis, chain length, and sulfation were significantly reduced in both fibroblasts and myofibroblasts. The qualitatively similar expression of glycosaminoglycans shared by fibroblasts and myofibroblasts suggests a role for fibroblasts in deposition of non-transparent fibrotic tissue in pathological corneas.  相似文献   

4.
The cornea contains, as a major element, a transparent stroma produced and maintained by keratocytes (fibroblasts). Through molecular biology studies using cultured human corneal fibroblasts, a cDNA that was shown to be novel was isolated and sequenced. This novel gene product, named SH3-domain binding protein 4 (SH3BP4), contains a 5.6-kb message that is present in normal human corneal fibroblasts and all tissues examined, with higher levels in pancreas, placenta, heart, and kidney. SH3BP4 was localized by FISH analysis to human chromosome 2q37.1-q37.2 near the telomere. The deduced sequence for SH3BP4 was found to contain a 963-amino-acid open reading frame that has homology to a 479-amino-acid protein in GenBank called EH-binding protein. Although the entire sequence of EH-binding protein aligns with SH3BP4, the alignment is not complete or contiguous. Therefore, SH3BP4 has an additional 73 amino acids at the N-terminus and an additional 411 amino acids near the C-terminus that are not present in EH-binding protein. Consensus sequence domains identified in SH3BP4 include a SH3 domain, three N-P-F motifs, a P-X-X-P motif noted for binding to SH3 domains, a bipartite nuclear targeting signal, and a tyrosine phosphorylation site. SH3BP4 homologies and consensus sequence sites indicate that it may be involved in a newly identified cascade of proteins involved in endocytosis, intracellular sorting, and the cell cycle.  相似文献   

5.
Choi HJ  Kim MK  Ko JH  Lee HJ  Jeong HJ  Wee WR  Seong SY  Akira S 《Cytokine》2011,56(2):265-271
Keratocytes are the first component to contact ocular pathogens when the epithelial barrier breaks down and the emerging evidences indicated keratocytes appeared to be one of the corneal cellular immune components. Little is known about the role of Toll-like receptors (TLRs) in keratocytes, although it has been well documented that keratocytes constitutively express various TLRs including TLR2 and TLR4. In this in vitro study, the authors focused on the role of keratocytes in corneal innate immune system and cross-talk of keratocytes with resident antigen presenting cells (APCs), especially through TLR2 and TLR4. Primary cultivated keratocytes (corneal fibroblasts) from C57BL/6 mice per se actively secreted pro-inflammatory cytokines, especially interleukin (IL)-6, with a dose-dependent manner in response to Pam3CSK4 or lipopolysaccharide (LPS) challenge. With co-culture of corneal fibroblasts with APCs per se, secretion of IL-6 and tumor necrosis factor (TNF)-α was markedly increased and it was counterbalanced by concurrent increase in IL-10 and tumor growth factor-β1. After Pam3CSK4 or LPS stimulation, this cytokine balance was completely broken down by overwhelming amplification of IL-6 and TNF-α secretion, especially in co-culture of corneal fibroblasts with macrophages, rather than with dendritic cells. Using corneal fibroblasts from TLR2 or TLR4 knockout mice, we could find the reversal of Pam3CSK4 or LPS-responsive dose-dependent increment in IL-6 and TNF-α. These results implied that corneal fibroblasts and their TLRs could be key components for the ocular homeostasis and pathogen-associated ocular innate immunity.  相似文献   

6.

Purpose

We sought to identify the anti-angiogenic molecule expressed in corneal keratocytes that is responsible for maintaining the avascularity of the cornea.

Methods

Human umbilical vein endothelial cells (HUVECs) were cultured with either human dermal fibroblasts or with human corneal keratocytes under serum-free conditions. The areas that exhibited blood vessel formation were estimated by immunostaining the cultures with an antitibody against CD31, a blood vessel marker. We also performed microarray gene-expression analysis and selected one molecule, angiopoietin-like 7 (ANGPTL7) for further functional studies conducted with the keratocytes and in vivo in mice.

Results

Areas showing blood vessel formation in normal serum-free medium were conditions were markedly smaller when HUVECs were co-cultured with corneal keratocytes than when they were co-cultured with the dermal fibroblasts under the same conditions. Microarray analysis revealed that ANGPTL7 expression was higher in keratocytes than in dermal fibroblasts. In vitro, inhibiting ANGPTL7 expression by using a specific siRNA led to greater tube formation than did the transfection of cells with a control siRNA, and this increase in tube formation was abolished when recombinant ANGPTL7 protein was added to the cultures. In vivo, intrastromal injections of an ANGPTL7 PshRNA into the avascular corneal stroma of mice resulted in the growth of blood vessels.

Conclusions

ANGPTL7, which is abundantly expressed in keratocytes, plays a major role in maintaining corneal avascularity and transparency.  相似文献   

7.
We have constructed an ALDH3a1 null mouse to investigate the role of this enzyme that comprises nearly one-half of the total water-soluble protein in the mouse corneal epithelium. ALDH3a1-deficient mice are viable and fertile, have a corneal epithelium with a water-soluble protein content approximately half that of wild-type mice, and contain no ALDH3a1 as determined by zymograms and immunoblots. Despite the loss of protein content and ALDH3a1 activity, the ALDH3a1(-/-) mouse corneas appear indistinguishable from wild-type corneas when examined by histological analysis and electron microscopy and are transparent as determined by light and slit lamp microscopy. There is no evidence for a compensating protein or enzyme. Even though the function of ALDH3a1 in the mouse cornea remains unknown, our data indicate that its enzymatic activity is unnecessary for corneal clarity and maintenance, at least under laboratory conditions.  相似文献   

8.
Summary Corneal fibroblasts, major cellular components of the corneal stroma, are loosely arrayed between collagen lamellae. They play an important role in the metabolic and physiological homeostasis mechanisms by which the cornea is kept transparent. This paper deals with the demonstration of the gap junctions between the corneal fibroblasts of rabbits by transmission electron microscopy of thin sections and of freeze-fracture specimens. Under the transmission electron microscope, the corneal fibroblasts are seen between the lamellae of collagen fibers of the corneal stroma. Their long cytoplasmic processes are in contact with those of neighboring fibroblasts. Typical gap junctions are found between these cytoplasmic processes. In the freeze-fracture images, intramembrane particles with a diameter of 10.3 nm form polygonal aggregates on P faces. These findings suggest that corneal fibroblasts, coupled with each other, might function synchronously through gap junctions responsible for metabolic activities essential for the maintenance of corneal transparency.A part of this study was published in Kinki Daigaku Igaku Zasshi in Japanese as the thesis for Atsuko Ueda, M.D. This study was supported in part by a grant from the Ministry of Education, Science and Culture of Japan, from Osaka Eye Bank, Osaka, Japan, and from an intramural research fund of Kinki University  相似文献   

9.
This study elucidates the biochemical response of rabbit corneal keratocytes (fibroblasts) to retinol and retinoic acid in their production of collagen, fibronectin, sulfated glycosaminoglycans, collagenase, and [3H]thymidine incorporation. The morphologic appearance of cultured keratocytes was not altered by retinoid treatment. Collagen production and [3H]thymidine incorporation demonstrated a parallel decline in response to retinoids. Collagen type was unaffected as was collagenase activity. Retinoids had minimal effect on cell layer-associated 35S-labeled glycosaminoglycans, however medium-soluble 35S-glycosaminoglycans were increased. The most dramatic effect was in fibronectin synthesis which was increased 2-3-fold. These data demonstrate that rabbit keratocytes alter their biosynthesis of extracellular matrices in response to retinoids. This may be significant in corneal pathology, since the delicate balance of these extracellular macromolecules is responsible for corneal integrity and stability.  相似文献   

10.
11.
We have used freeze fracture electron microscopy to study the distribution of membrane proteins in the cytoplasmic membrane of Escherichia coli W 3110. While these proteins were distributed randomly at the growth temperature (37 °C), there was extensive protein lipid segregation when the temperature was lowered, resulting in bare patches containing no visible particles (protein), and areas of tightly packed or aggregated particles. To understand the segregation process, we have separated the bare patches from the particle rich membrane areas. Lysis of spheroplasts at 0 °C leads to cytoplasmic membrane fragments with different amounts of membrane particles per unit area; such fragments have been separated on isopycnic sucrose gradients. The bare patches occurred as low density membranes which were completely devoid of particles. They were compared to normal density cytoplasmic membranes with respect to fatty acid composition, protein distribution as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and their content of several cytoplasmic membrane marker enzymes.The phospholipid to protein ratio of low density membranes was five times greater than that of normal membranes; unsaturated fatty acids were more abundant in the low density membranes. Most proteins had disappeared from the low density membranes. One protein, which had an apparent molecular weight of 26000 on sodium dodecyl sulfate gels appeared to be concentrated in the low density membranes; it accounted for about 50% of the total protein found in this membrane fraction.Of the cytoplasmic membrane markers tested, NADH oxidase and succinate dehydrogenase were excluded, while d-lactate dehydrogenase remained, and even appeared to be concentrated in the low density membranes.These results indicate that while most membrane proteins are associated with the fluid portion of the bilayer, some proteins evidently associate preferentially with phospholipids in the gel or frozen state.  相似文献   

12.
Keratocytes of the corneal stroma produce transparent extracellular matrix devoid of hyaluronan (HA); however, in corneal pathologies and wounds, HA is abundant. We previously showed primary keratocytes cultured under serum-free conditions to secrete matrix similar to that of normal stroma, but serum and transforming growth factor beta (TGFbeta) induced secretion of fibrotic matrix components, including HA. This study found HA secretion by primary bovine keratocytes to increase rapidly in response to TGFbeta, reaching a maximum in 12 h and then decreasing to <5% of the maximum by 48 h. Cell-free biosynthesis of HA by cell extracts also exhibited a transient peak at 12 h after TGFbeta treatment. mRNA for hyaluronan synthase enzymes HAS1 and HAS2 increased >10- and >50-fold, respectively, in 4-6 h, decreasing to near original levels after 24-48 h. Small interfering RNA against HAS2 inhibited the transient increase of HAS2 mRNA and completely blocked HA induction, but small interfering RNA to HAS1 had no effect on HA secretion. HAS2 mRNA was induced by a variety of mitogens, and TGFbeta acted synergistically to induce HAS2 by as much as 150-fold. In addition to HA synthesis, treatment with TGFbeta induced degradation of fluorescein-HA added to culture medium. These results show HA secretion by keratocytes to be initiated by a rapid transient increase in the HAS2 mRNA pool. The very rapid induction of HA expression in keratocytes suggests a functional role of this molecule in the fibrotic response of keratocytes to wound healing.  相似文献   

13.
Acetylcholine (ACh) has been reported to play various physiological roles, including wound healing in the cornea. Here, we study the role of ACh in the transition of corneal fibroblasts into myofibroblasts, and in consequence its role in the onset of fibrosis, in an in vitro human corneal fibrosis model. Primary human keratocytes were obtained from healthy corneas. Vitamin C (VitC) and transforming growth factor‐β1 (TGF‐β1) were used to induce fibrosis in corneal fibroblasts. qRT‐PCR and ELISA analyses showed that gene expression and production of collagen I, collagen III, collagen V, lumican, fibronectin (FN) and alpha‐smooth muscle actin (α‐SMA) were reduced by ACh in quiescent keratocytes. ACh treatment furthermore decreased gene expression and production of collagen I, collagen III, collagen V, lumican, FN and α‐SMA during the transition of corneal fibroblasts into myofibroblasts, after induction of fibrotic process. ACh inhibited corneal fibroblasts from developing contractile activity during the process of fibrosis, as assessed with collagen gel contraction assay. Moreover, the effect of ACh was dependent on activation of muscarinic ACh receptors. These results show that ACh has an anti‐fibrotic effect in an in vitro human corneal fibrosis model, as it negatively affects the transition of corneal fibroblasts into myofibroblasts. Therefore, ACh might play a role in the onset of fibrosis in the corneal stroma.  相似文献   

14.
Summary A widely utilized rabbit corneal cell line, SIRC, was characterized ultrastructurally and immunohistologically. Although SIRC cells are often described as being of epithelial origin, important ultrastructural and antigenic characteristics indicate that these cells are fibroblastic and not epithelial. SIRC cells lack desmosomes, cytoplasmic filaments, and cytokeratin—structures that are characteristic of corneal epithelial cells. By contrast, the dendritic morphology, presence of vimentin, and the extensive dense accumulations of ribosomes and rough endoplasmic reticulum are consistent with a fibroblastic phenotype. Collectively, the morphology, ultrastructural features, and antigenic composition favor the hypothesis that SIRC cells are fibroblastic cells (keratocytes) and not corneal epithelial cells. This work supported in part by grant EY 07641 from the National Institutes of Health, Bethesda, MD, and an unrestricted grant from Research to Prevent Blindness, Inc., New York.  相似文献   

15.
Echan LA  Tang HY  Ali-Khan N  Lee K  Speicher DW 《Proteomics》2005,5(13):3292-3303
Systematic detection of low-abundance proteins in human blood that may be putative disease biomarkers is complicated by an extremely wide range of protein abundances. Hence, depletion of major proteins is one potential strategy for enhancing detection sensitivity in serum or plasma. This study compared a recently commercialized HPLC column containing antibodies to six of the most abundant blood proteins ("Top-6 depletion") with either older Cibacron blue/Protein A or G depletion methods or no depletion. In addition, a prototype spin column version of the HPLC column and an alternative prototype two antibody spin column were evaluated. The HPLC polyclonal antibody column and its spin column version are very promising methods for substantially simplifying human serum or plasma samples. These columns show the lowest nonspecific binding of the depletion methods tested. In contrast other affinity methods, particularly dye-based resins, yielded many proteins in the bound fractions in addition to the targeted proteins. Depletion of six abundant proteins removed about 85% of the total protein from human serum or plasma, and this enabled 10- to 20-fold higher amounts of depleted serum or plasma samples to be applied to 2-D gels or alternative protein profiling methods such as protein array pixelation. However, the number of new spots detected on 2-D gels was modest, and most newly visualized spots were minor forms of relatively abundant proteins. The inability to detect low-abundance proteins near expected 2-D staining limits was probably due to both the highly heterogeneous nature of most plasma or serum proteins and masking of many low-abundance proteins by the next series of most abundant proteins. Hence, non2-D methods such as protein array pixelation are more promising strategies for detecting lower abundance proteins after depleting the six abundant proteins.  相似文献   

16.
Nuclear polyadenylate-binding protein.   总被引:7,自引:5,他引:2       下载免费PDF全文
Polyadenylate-binding activity can be detected in eluates from sodium dodecyl sulfate gels by a nitrocellulose filter-binding assay. Nuclear extracts from rat liver show a single peak of binding activity at 50 to 55 kilodaltons; cytoplasmic extracts show a single peak at 70 to 80 kilodaltons, corresponding to a 75-kilodalton protein previously described. Similar results are obtained with yeast and mouse fibroblasts, indicating a high degree of conservation of both nuclear and cytoplasmic polyadenylate-binding proteins. The activity from rat liver nuclei has been purified 125-fold on the basis of specific binding to polyadenylate and shows two main bands in sodium dodecyl sulfate gels at 53 and 55 kilodaltons.  相似文献   

17.
Candida albicans yeast-to-hypha morphological transition is involved in the virulence strategy of this opportunistic fungal pathogen. Changes in relative abundance of the Candida proteome related to this process were analyzed using different two-dimensional differential in-gel electrophoresis (2D-DIGE)-based approaches. First, a comparative analysis of yeast and hyphal cytoplasmic proteins allowed the detection of 106 protein spots with significant variation in abundance. Sixty-one of them, corresponding to 46 proteins, were identified. As most of the differentially abundant proteins had an acidic isoelectric point, a large-scale prefractionation approach to analyze the acidic C. albicans subproteome was carried out. Ninety acidic C. albicans proteins were identified by either gel-based or nongel-based approaches. Additionally, different workflows combining preparative isoelectric focusing, Cy labeling, and narrow pH gradient 2-DE gels were tested to analyze the differences in relative protein abundance between yeast and hyphal acidic subproteomes. It was possible to identify 21 differentially abundant acidic proteins; 10 of them were not identified in the previous 2D-DIGE gels. Functional and network interaction analyses of the 56 differentially abundant proteins identified by both approaches rendered an integrated view of metabolic and cellular process reorganization during the yeast-to-hypha transition. With these results, we propose a model of metabolic reorganization.  相似文献   

18.
Non enzymatic glycosylation( glycation) of proteins, described by L. C. Maillard in 1912, results in the formation of advanced glycation end products (AGE-s). These exhibit a number of harmful reactions, increasing with age and involved in several age-associated pathologies. In ocular pathology, their role was demonstrated at several levels of age-associated eye-diseases, such as the rigidification of cornea, in the separation of vitreous fibers from the hyaluronan jelly, which might result in retinal detachment. AGE-s are involved also in retinal microvascular alterations in diabetics as well as in age-related macular degeneration. We compared the cytotoxic effect of several AGE-s on human skin fibroblasts and corneal keratocytes. Keratocytes were shown to be much more resistant to the cytotoxic effect of several AGE-products than fibroblasts. This higher resistance of keratocytes to the free radical mediated cytotoxic effect of AGE-s might be the result of the constant exposure of cornea to UV-light possibly mediating the appearance of more efficient protective mechanisms during evolution.  相似文献   

19.
The in vivo quiescent corneal stroma keratocytes need to be transformed to activated state in order to obtain sufficient number of cells either for monolayer evaluation or corneal stroma reconstruction. This study aimed to investigate the phenotypic characterization of corneal stromal cells during culture expansion from the limbal region of the cornea. Isolated corneal keratocytes from limbal tissue of New Zealand White Strain rabbits’ corneas (n = 6) were culture expanded until three passages. Keratocytes morphology was examined daily with viability, growth rate, number of cell doubling and population doubling time were recorded at each passage. The expression of collagen type 1, aldehyde dehydrogenase (ALDH), lumican and alpha smooth muscle actin (α-SMA) were detected by RT-PCR. Immunocytochemistry was also used to detect ALDH, α-SMA, collagen type I and Cytokeratin-3 (CK3). Growth kinetic study revealed that the growth rate was low at the initial passage but increase to about two folds with concomitant reduction in population doubling time in later passages. Freshly isolated and cultured keratocytes expressed collagen type 1, ALDH and lumican but α-SMA expression was absent. However, α-SMA was expressed along with the other genes during culture expansion. Keratocytes at P1 expressed all the proteins except CK3. These results suggest that cultured keratocytes maintained most of the gene expression profile of native keratocytes while the emergence of α-SMA in serial passages showed a mix population of various phenotypes. The phenotypic characterization of monolayer keratocytes provides useful information before reconstruction of bioengineered tissue or in vitro pharmaceutical applications.  相似文献   

20.
We analyzed brush border membrane vesicle proteins from isolated midguts of the mosquito Aedes aegypti, by two proteomic methods: two-dimensional gel electrophoresis (isoelectric focusing and SDS-PAGE) and a shotgun two-dimensional liquid chromatographic (LS/LS) approach based on multidimensional protein identification technology (MudPIT). We were interested in the most abundant proteins of the apical brush border midgut membrane. About 400 spots were detected on 2D gels and 39 spots were cored and identified by mass spectrometry. 86 proteins were identified by MudPIT. Three proteins, arginine kinase, putative allergen and actin are shown to be the most predominant proteins in the sample. The total number of 36 proteins detected by both methods represents the most abundant proteins in the BBMV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号