首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Specific language impairment (SLI) is defined as an unexplained failure to acquire normal language skills despite adequate intelligence and opportunity. We have reported elsewhere a full-genome scan in 98 nuclear families affected by this disorder, with the use of three quantitative traits of language ability (the expressive and receptive tests of the Clinical Evaluation of Language Fundamentals and a test of nonsense word repetition). This screen implicated two quantitative trait loci, one on chromosome 16q (SLI1) and a second on chromosome 19q (SLI2). However, a second independent genome screen performed by another group, with the use of parametric linkage analyses in extended pedigrees, found little evidence for the involvement of either of these regions in SLI. To investigate these loci further, we have collected a second sample, consisting of 86 families (367 individuals, 174 independent sib pairs), all with probands whose language skills are 1.5 SD below the mean for their age. Haseman-Elston linkage analysis resulted in a maximum LOD score (MLS) of 2.84 on chromosome 16 and an MLS of 2.31 on chromosome 19, both of which represent significant linkage at the 2% level. Amalgamation of the wave 2 sample with the cohort used for the genome screen generated a total of 184 families (840 individuals, 393 independent sib pairs). Analysis of linkage within this pooled group strengthened the evidence for linkage at SLI1 and yielded a highly significant LOD score (MLS = 7.46, interval empirical P<.0004). Furthermore, linkage at the same locus was also demonstrated to three reading-related measures (basic reading [MLS = 1.49], spelling [MLS = 2.67], and reading comprehension [MLS = 1.99] subtests of the Wechsler Objectives Reading Dimensions).  相似文献   

2.
A susceptibility gene on chromosome 18 and a parent-of-origin effect have been suggested for bipolar affective disorder (BPAD). We have studied 28 nuclear families selected for apparent unilineal transmission of the BPAD phenotype, by using 31 polymorphic markers spanning chromosome 18. Evidence for linkage was tested with affected-sib-pair and LOD score methods under two definitions of the affected phenotype. The affected-sib-pair analyses indicated excess allele sharing for markers on 18p within the region reported previously. The greatest sharing was at D18S37: 64% in bipolar and recurrent unipolar (RUP) sib pairs (P = .0006). In addition, excess sharing of the paternally, but not maternally, transmitted alleles was observed at three markers on 18q: at D18S41, 51 bipolar and RUP sib pairs were concordant for paternally transmitted alleles, and 21 pairs were discordant (P = .0004). The evidence for linkage to loci on both 18p and 18q was strongest in the 11 paternal pedigrees, i.e., those in which the father or one of the father's sibs is affected. In these pedigrees, the greatest allele sharing (81%; P = .00002) and the highest LOD score (3.51; θ = 0.0) were observed at D18S41. Our results provide further support for linkage of BPAD to chromosome 18 and the first molecular evidence for a parent-of-origin effect operating in this disorder. The number of loci involved, and their precise location, require further study.  相似文献   

3.
A genome-wide linkage study was performed to identify chromosomal regions harboring genes influencing lipid and lipoprotein levels. Linkage analyses were conducted for four quantitative lipoprotein/lipid traits, i.e., total cholesterol, triglyceride, HDL-cholesterol (HDL-C), and LDL-C concentrations, in 930 subjects enrolled in the Québec Family Study. A maximum of 534 pairs of siblings from 292 nuclear families were available. Linkage was tested using both allele-sharing and variance-component linkage methods. The strongest evidence of linkage was found on chromosome 12q14.1 at marker D12S334 for HDL-C, with a logarithm of the odds (LOD) score of 4.06. Chromosomal regions harboring quantitative trait loci (QTLs) for LDL-C included 1q43 (LOD = 2.50), 11q23.2 (LOD = 3.22), 15q26.1 (LOD = 3.11), and 19q13.32 (LOD = 3.59). In the case of triglycerides, three markers located on 2p14, 11p13, and 11q24.1 provided suggestive evidence of linkage (LOD > 1.75). Tests for total cholesterol levels yielded significant evidence of linkage at 15q26.1 and 18q22.3 with the allele-sharing linkage method, but the results were nonsignificant with the variance-component method. In conclusion, this genome scan provides evidence for several QTLs influencing lipid and lipoprotein levels. Promising candidate genes were located in the vicinity of the genomic regions showing evidence of linkage.  相似文献   

4.
Improved molecular understanding of the pathogenesis of type 2 diabetes is essential if current therapeutic and preventative options are to be extended. To identify diabetes-susceptibility genes, we have completed a primary (418-marker, 9-cM) autosomal-genome scan of 743 sib pairs (573 pedigrees) with type 2 diabetes who are from the Diabetes UK Warren 2 repository. Nonparametric linkage analysis of the entire data set identified seven regions showing evidence for linkage, with allele-sharing LOD scores > or =1.18 (P< or =.01). The strongest evidence was seen on chromosomes 8p21-22 (near D8S258 [LOD score 2.55]) and 10q23.3 (near D10S1765 [LOD score 1.99]), both coinciding with regions identified in previous scans in European subjects. This was also true of two lesser regions identified, on chromosomes 5q13 (D5S647 [LOD score 1.22] and 5q32 (D5S436 [LOD score 1.22]). Loci on 7p15.3 (LOD score 1.31) and 8q24.2 (LOD score 1.41) are novel. The final region showing evidence for linkage, on chromosome 1q24-25 (near D1S218 [LOD score 1.50]), colocalizes with evidence for linkage to diabetes found in Utah, French, and Pima families and in the GK rat. After dense-map genotyping (mean marker spacing 4.4 cM), evidence for linkage to this region increased to a LOD score of 1.98. Conditional analyses revealed nominally significant interactions between this locus and the regions on chromosomes 10q23.3 (P=.01) and 5q32 (P=.02). These data, derived from one of the largest genome scans undertaken in this condition, confirm that individual susceptibility-gene effects for type 2 diabetes are likely to be modest in size. Taken with genome scans in other populations, they provide both replication of previous evidence indicating the presence of a diabetes-susceptibility locus on chromosome 1q24-25 and support for the existence of additional loci on chromosomes 5, 8, and 10. These data should accelerate positional cloning efforts in these regions of interest.  相似文献   

5.
As with many complex genetic diseases, genome scans for prostate cancer have given conflicting results, often failing to provide replication of previous findings. One factor contributing to the lack of consistency across studies is locus heterogeneity, which can weaken or even eliminate evidence for linkage that is present only in a subset of families. Currently, most analyses either fail to account for locus heterogeneity or attempt to account for it only by partitioning data sets into smaller and smaller portions. In the present study, we model locus heterogeneity among affected sib pairs with prostate cancer by including covariates in the linkage analysis that serve as surrogate measures of between-family linkage differences. The model is a modification of the Olson conditional logistic model for affected relative pairs. By including Gleason score, age at onset, male-to-male transmission, and/or number of affected first-degree family members as covariates, we detected linkage near three locations that were previously identified by linkage (1q24-25 [HPC1; LOD score 3.25, P=.00012], 1q42.2-43 [PCAP; LOD score 2.84, P=.0030], and 4q [LOD score 2.80, P=.00038]), near the androgen-receptor locus on Xq12-13 (AR; LOD score 3.06, P=.00053), and at five new locations (LOD score > 2.5). Without covariates, only a few weak-to-moderate linkage signals were found, none of which replicate findings of previous genome scans. We conclude that covariate-based linkage analysis greatly improves the likelihood that linked regions will be found by incorporation of information about heterogeneity within the sample.  相似文献   

6.
An autosomal genomic scan to search for linkage to obesity and energy metabolism was completed in Pima Indians, a population prone to obesity. Obesity was assessed by percent body fat (by hydrodensitometry) and fat distribution (the ratio of waist circumference to thigh circumference). Energy metabolism was measured in a respiratory chamber as 24-h metabolic rate, sleeping metabolic rate, and 24-h respiratory quotient (24RQ), an indicator of the ratio of carbohydrate oxidation to fat oxidation. Five hundred sixteen microsatellite markers with a median spacing of 6.4 cM were analyzed, in 362 siblings who had measurements of body composition and in 220 siblings who had measurements of energy metabolism. These comprised 451 sib pairs in 127 nuclear families, for linkage analysis to obesity, and 236 sib pairs in 82 nuclear families, for linkage analysis to energy metabolism. Pointwise and multipoint methods for regression of sib-pair differences in identity by descent, as well as a sibling-based variance-components method, were used to detect linkage. LOD scores >=2 were found at 11q21-q22, for percent body fat (LOD=2.1; P=.001), at 11q23-q24, for 24-h energy expenditure (LOD=2.0; P=.001), and at 1p31-p21 (LOD=2.0) and 20q11.2 (LOD=3.0; P=.0001), for 24RQ, by pointwise and multipoint analyses. With the variance-components method, the highest LOD score (LOD=2.3 P=.0006) was found at 18q21, for percent body fat, and at 1p31-p21 (LOD=2.8; P=.0003), for 24RQ. Possible candidate genes include LEPR (leptin receptor), at 1p31, and ASIP (agouti-signaling protein), at 20q11.2.  相似文献   

7.
Type 1 diabetes (T1D) is a genetically complex disorder of glucose homeostasis that results from the autoimmune destruction of the insulin-secreting cells of the pancreas. Two previous whole-genome scans for linkage to T1D in 187 and 356 families containing affected sib pairs (ASPs) yielded apparently conflicting results, despite partial overlap in the families analyzed. However, each of these studies individually lacked power to detect loci with locus-specific disease prevalence/sib-risk ratios (lambda(s)) <1.4. In the present study, a third genome scan was performed using a new collection of 225 multiplex families with T1D, and the data from all three of these genome scans were merged and analyzed jointly. The combined sample of 831 ASPs, all with both parents genotyped, provided 90% power to detect linkage for loci with lambda(s) = 1.3 at P=7.4x10(-4). Three chromosome regions were identified that showed significant evidence of linkage (P<2.2x10(-5); LOD scores >4), 6p21 (IDDM1), 11p15 (IDDM2), 16q22-q24, and four more that showed suggestive evidence (P<7.4x10(-4), LOD scores > or =2.2), 10p11 (IDDM10), 2q31 (IDDM7, IDDM12, and IDDM13), 6q21 (IDDM15), and 1q42. Exploratory analyses, taking into account the presence of specific high-risk HLA genotypes or affected sibs' ages at disease onset, provided evidence of linkage at several additional sites, including the putative IDDM8 locus on chromosome 6q27. Our results indicate that much of the difficulty in mapping T1D susceptibility genes results from inadequate sample sizes, and the results point to the value of future international collaborations to assemble and analyze much larger data sets for linkage in complex diseases.  相似文献   

8.
Autistic disorder (AutD) is a neurodevelopmental disorder characterized by significant disturbances in social, communicative, and behavioral functioning. A two-stage genomic screen analysis of 99 families with AutD revealed suggestive evidence for linkage to chromosome 2q (D2S116 nonparametric sib-pair LOD score [MLS] 1.12 at 198 cM). In addition, analysis of linkage disequilibrium for D2S116 showed an allele-specific P value of <.01. Recently, linkage to the same region of 2q was reported in an independent genome screen. This evidence for linkage increased when analysis was restricted to the subset of patients with AutD who had delayed onset (>36 mo) of phrase speech (PSD). We similarly classified our data set of 82 sib pairs with AutD, identifying 45 families with AutD and PSD. Analysis of this PSD subset increased our support for linkage to 2q (MLS 2.86 and HLOD 2.12 for marker D2S116). These data support evidence for a gene on chromosome 2 contributing to risk of AutD, and they suggest that phenotypic homogeneity increases the power to find susceptibility genes for AutD.  相似文献   

9.
Low bone mineral density (BMD) is a major risk factor for osteoporotic fracture. Studies of BMD in families and twins have shown that this trait is under strong genetic control. To identify regions of the genome that contain quantitative trait loci (QTL) for BMD, we performed independent genomewide screens, using two complementary study designs. We analyzed unselected nonidentical twin pairs (1,094 pedigrees) and highly selected, extremely discordant or concordant (EDAC) sib pairs (254 pedigrees). Nonparametric multipoint linkage (NPL) analyses were undertaken for lumbar spine and total-hip BMD in both cohorts and for whole-body BMD in the unselected twin pairs. The maximum evidence of linkage in the unselected twins (spine BMD, LOD 2.7) and the EDAC pedigrees (spine BMD, LOD 2.1) was observed at chromosome 3p21 (76 cM and 69 cM, respectively). These combined data indicate the presence, in this region, of a gene that regulates BMD. Furthermore, evidence of linkage in the twin cohort (whole-body BMD; LOD 2.4) at chromosome 1p36 (17 cM) supports previous findings of suggestive linkage to BMD in the region. Weaker evidence of linkage (LOD 1.0-2.3) in either cohort, but not both, indicates the locality of additional QTLs. These studies validate the use, in linkage analysis, of large cohorts of unselected twins phenotyped for multiple traits, and they highlight the importance of conducting genome scans in replicate populations as a prelude to positional cloning and gene discovery.  相似文献   

10.
Most multipoint linkage programs assume linkage equilibrium among the markers being studied. The assumption is appropriate for the study of sparsely spaced markers with intermarker distances exceeding a few centimorgans, because linkage equilibrium is expected over these intervals for almost all populations. However, with recent advancements in high-throughput genotyping technology, much denser markers are available, and linkage disequilibrium (LD) may exist among the markers. Applying linkage analyses that assume linkage equilibrium to dense markers may lead to bias. Here, we demonstrated that, when some or all of the parental genotypes are missing, assuming linkage equilibrium among tightly linked markers where strong LD exists can cause apparent oversharing of multipoint identity by descent (IBD) between sib pairs and false-positive evidence for multipoint model-free linkage analysis of affected sib pair data. LD can also mimic linkage between a disease locus and multiple tightly linked markers, thus causing false-positive evidence of linkage using parametric models, particularly when heterogeneity LOD score approaches are applied. Bias can be eliminated by inclusion of parental genotype data and can be reduced when additional unaffected siblings are included in the analysis.  相似文献   

11.
In this paper, we applied the nonparametric linkage regression approach to the Caucasian genome scan data from the Collaborative Study on the Genetics of Alcoholism to search for regions of the genome that exhibit evidence for linkage to putative alcoholism-predisposing genes. The multipoint single-locus model identified four regions of the genome with LOD scores greater than one. These regions were on 7p near D7S1790 (LOD = 1.31), two regions on 7q near D7S1870 (LOD = 1.15) and D7S1799 (LOD = 1.13) and 21q near D21S1440 and D21S1446 (LOD = 1.78). Jointly modeling these loci provided stronger evidence for linkage in each of these regions (LOD = 1.58 on 7q11, LOD = 1.61 on 11q23, and LOD = 1.95 on 21q22). The evidence for linkage tended to increase among pedigrees with earlier mean age of onset at 8q23 (p = 0.0016), 14q21 (p = 0.0079), and 18p12 (p = 0.0021) and with later mean age of onset at 4q35 (p = 0.0067) and 9p22 (p = 0.0008).  相似文献   

12.
A combined analysis of genome scans for obesity was undertaken using the interim results from the National Heart, Lung, and Blood Institute Family Blood Pressure Program. In this research project, four multicenter networks of investigators conducted eight individual studies. Data were available on 6,849 individuals from four ethnic groups (white, black, Mexican American, and Asian). The sample represents the largest single collection of genomewide scan data that has been analyzed for obesity and provides a test of the reproducibility of linkage analysis for a complex phenotype. Body mass index (BMI) was used as the measure of adiposity. Genomewide linkage analyses were first performed separately in each of the eight ethnic groups in the four networks, through use of the variance-component method. Only one region in the analyses of the individual studies showed significant linkage with BMI: 3q22.1 (LOD 3.45, for the GENOA network black sample). Six additional regions were found with an associated LOD >2, including 3p24.1, 7p15.2, 7q22.3, 14q24.3, 16q12.2, and 17p11.2. Among these findings, the linkage at 7p15.2, 7q22.3, and 17p11.2 has been reported elsewhere. A modified Fisher's omnibus procedure was then used to combine the P values from each of the eight genome scans. A complimentary approach to the meta-analysis was undertaken, combining the average allele-sharing identity by descent (pi) for whites, blacks, and Mexican Americans. Using this approach, we found strong linkage evidence for a quantitative-trait locus at 3q27 (marker D3S2427; LOD 3.40, P=.03). The same location has been shown to be linked with obesity-related traits and diabetes in at least two other studies. These results (1) confirm the previously reported obesity-susceptibility locus on chromosomes 3, 7, and 17 and (2) demonstrate that combining samples from different studies can increase the power to detect common genes with a small-to-moderate effect, so long as the same gene has an effect in all samples considered.  相似文献   

13.
Epidemiological studies have shown that genetic factors contribute to the pathogenesis of the idiopathic inflammatory bowel diseases (IBD), Crohn disease (CD) and ulcerative colitis (UC). Recent genome scans and replication studies have identified replicated linkage between CD and a locus on chromosome 16 (the IBD1 locus), replicated linkage between IBD (especially UC) and a locus on chromosome 12q (the IBD2 locus), and replicated linkage between IBD (especially CD) and a locus on chromosome 6p (the IBD3 locus). Since the estimated locus-specific lambdas values for the regions of replicated linkage do not account for the overall lambdas in CD, and since the published genome scans in IBD show at least nominal evidence for linkage to regions on all but two chromosomes, we performed an independent genome scan using 751 microsatellite loci in 127 CD-affected relative pairs from 62 families. Single-point nonparametric linkage analysis using the GENEHUNTER-PLUS program shows evidence for linkage to the adjacent D14S261 and D14S283 loci on chromosome 14q11-12 (LOD = 3.00 and 1.70, respectively), and the maximal multipoint LOD score is observed at D14S261 (LOD = 3.60). In the multipoint analysis, nominal evidence for linkage (P<.05) is observed near D2S117 (LOD = 1.25), near D3S3045 (LOD = 1.31), between D7S40 and D7S648 (LOD = 0.91), and near D18S61 (LOD = 1.15). Our finding of significant linkage to D14S261 and the finding of suggestive linkage to the same locus in an independent study (multipoint LOD = 2.8) satisfies criteria for confirmed linkage, so we propose that the region of interest on chromosome 14q11-12 should be designated the IBD4 locus.  相似文献   

14.
Human height is an important and heritable trait. Our previous two genome-wide linkage studies using 630 (WG1 study) and an extended sample of 1,816 Caucasians (WG2 study) identified 9q22 [maximum LOD score (MLS)=2.74 in the WG2 study] and preliminarily confirmed Xq24 (two-point LOD score=1.91 in the WG1 study, 2.64 in the WG2 study) linked to height. Here, with a much further extended large sample containing 3,726 Caucasians, we performed a new genome-wide linkage scan and confirmed, in high significance, the two regions’ linkage to height. An MLS of 4.34 was detected on 9q22 and a two-point LOD score of 5.63 was attained for Xq24. In an independent sub-sample (i.e., the subjects not involved in the WG1 and WG2 studies), the two regions also achieved significant empirical P values (0.002 and 0.004, respectively) for “region-wise” linkage confirmation. Importantly, the two regions were replicated on a genotyping platform different from the WG1 and WG2 studies (i.e., a different set of markers and different genotyping instruments). Interestingly, 9q22 harbors the ROR2 gene, which is required for growth plate development, and Xq24 was linked to short stature. With the largest sample from a single population of the same ethnicity in the field of linkage studies for complex traits, our current study, together with two previous ones, provided overwhelming evidence substantiating 9q22 and Xq24 for height variation. In particular, our three consecutive whole genome studies are uniquely valuable as they represent the first practical (rather than simulated) example of how significant increase in sample size may improve linkage detection for human complex traits.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

15.
We used a covariate-based linkage method to reanalyze genome scan data from affected sibships collected by the Alzheimer Disease (AD) Genetics Initiative of the National Institute of Mental Health. As reported in an earlier article, the amyloid-beta precursor protein (APP) region is strongly linked to affected sib pairs of the oldest current age (i.e., age either at last exam or at death) who lack E4 alleles at the apolipoprotein E (ApoE) locus. We now report that a region on 20p shows the same pattern. A model that includes current age and the number of E2 alleles as covariates gives a LOD score of 4.1. The signal on 20p is near the location of the gene coding for cystatin-C, previously shown to be associated with late-onset AD and to codeposit with APP in the brains of patients with AD. Two-locus analysis provides evidence of strong epistasis between 20p and the APP region, limited to the oldest age group and to those lacking ApoE4 alleles. We speculate that high-risk polymorphisms in both regions produce a biological interaction between these two proteins that increases susceptibility to a very-late-onset form of AD.  相似文献   

16.
It is well known that maximizing the maximum LOD score over multiple parameter values or models (i.e., the method of mod scores, or MMLS), will inflate type I error, compared with assuming only one parameter value/model in the linkage analysis. On the other hand, a mod score often has greater power to detect linkage than does a LOD score (Z) calculated under a wrong genetic model. Therefore, it is of interest to determine the actual magnitude of type I error in realistic genetic situations. Simulated data sets with no linkage were generated under three dominant and three recessive single-locus models, with reduced penetrance (f = .8, .5, and .2). Data sets were analyzed for linkage by (1) maximizing over penetrance only, (2) maximizing over "dominance model" (i.e., dominant versus recessive), and (3) maximizing over both penetrance and dominance model simultaneously. In (1), the resultant significance levels were approximately doubled, compared with baseline values if one had not maximized over penetrances (i.e., compared with a one-sided chi2(1)). In (2), significance levels were increased somewhat less, and, in (3), they were increased by approximately two to three times (but not more than four times) over those of the one-sided chi2(1). This means that, for a given size of test alpha, an investigator would need to increase the Z used as a test criterion, by approximately 0.30 LOD units for analyses as in (1) or (2) and by 0.60 Z units for analyses as in (3). These guidelines, which are valid up to approximately Z = 3.0, are conservative for (1) and are very conservative for (2) and (3). By quantifying the increase in significance level (or, correspondingly, the increase in Z), our findings will enable users to rationally assess the advantages versus the disadvantages of mod scores.  相似文献   

17.
On the basis of accumulating evidence that obesity has a substantial genetic component, a genomewide search for linkages of DNA markers to percent body fat is ongoing in Pima Indians, a population with a very high prevalence of obesity. An initial screen of the genome (>600 markers in 874 individuals) has been completed using highly polymorphic markers (mean heterozygosity = .67). Reported here are the sib-pair linkage results for percent body fat (277 siblings), the best available indicator of overall obesity. Single-marker linkages to percent body fat were evaluated by sib-pair analysis for quantitative traits. From these analyses, the best evidence of genes influencing body fat came from markers at chromosome 11q21-q22 and 3p24.2-p22 (P = .001; LOD = 2.0). Regions flanking these markers were further investigated by multipoint linkage. The evidence for linkage at 11q21-q22 increased to P = .0002 (LOD = 2.8), peaking between markers D11S2000 and D11S2366. Evidence for linkage at 3p24.2-p22 did not change. No association was detected for any marker in the region. Although several genes are known in the 11q21-q22 region, none have been implicated as candidate genes for obesity.  相似文献   

18.
The significance of gallbladder wall thickness (GBWT) in regard to gallbladder disease (GBD) is not completely understood. Thickening of the gallbladder wall has been observed in patients with acute calculous and acalculous cholecystitis and chronic cholecystitis. However, various pathologic processes, such as gallbladder cancer and nonbiliary disorders such as liver cirrhosis and viral hepatitis, could also cause thickening of the gallbladder wall. To date, there is no report available on the genetic factors influencing GBWT. Therefore we sought to estimate the heritability (h2) of GBWT and to perform a genome-wide search to identify the susceptibility genes for GBWT, using data from the San Antonio Family Diabetes/Gallbladder Study (SAFDGS), a family study of Mexican Americans. GBWT was measured by ultrasound. After adjusting for the significant effects of age, sex, GBD (i.e., asymptomatic gallstones), metabolic syndrome, and duration of type 2 diabetes (T2DM), GBWT was found to be under significant and appreciable additive genetic influences (h2 +/- SE = 0.38 +/- 0.09, P < 0.0001). The strongest evidence for linkage occurred between markers D11S912 and D11S968 on chromosome 11q24-q25 (LOD = 2.7), where we have already shown suggestive evidence for linkage of GBD (LOD = 2.7) in a subset of our SAFDGS data. Potential evidence for linkage occurred at markers D1S1728 (1p31.1; LOD = 1.4) and D16S748 (16p13.1; LOD = 1.4), respectively. In conclusion, our study provides suggestive evidence for linkage of GBWT on chromosome 11q in Mexican Americans, and future tasks of mapping susceptibility gene(s) for GBD and its related traits, such as GBWT, in this chromosomal region can be fruitful.  相似文献   

19.
The genetic contribution to common forms of osteoarthritis (OA) is well established but poorly understood. We performed a genome scan, using 302 markers for loci predisposing to distal interphalangeal joint (DIP) OA. To minimize genetic heterogeneity in our study sample, we identified siblings with a severe, radiologically defined phenotype from the nationwide registers of Finland. In the initial genome scan, linkage analysis in 27 sibships gave a pairwise LOD score (Z) >1.00 with nine of the screening markers. In the second stage, additional markers and family members were genotyped in these chromosomal regions. On 2q12-q13, IL1R1 resulted in Z=2.34 at recombination fraction (theta) 0, allowing a dominant mode of inheritance. Association analysis of markers D2S2264, IL1R1, D2S373, and D2S1789 jointly provided some evidence for a shared haplotype among the affected individuals (P value of.012). Also, multipoint nonparametric linkage analysis yielded a P value of.0001 near the locus IL1R1 and P=.0007 approximately 20 cM telomeric near marker D2S1399, which, in two-point analysis, gave Z=1.48 (straight theta=. 02). This chromosomal region on 2q harbors the interleukin 1 gene cluster and, thus, represents a good candidate region for inflammatory and autoimmune disorders. Three additional chromosomal regions-4q26-q27, 7p15-p21, and Xcen-also provided some evidence for linkage, and further analyses would be justified to clarify their potential involvement in the genetic predisposition to DIP OA.  相似文献   

20.
To examine the genetic basis of age-related macular degeneration (ARMD), a degenerative disease of the retinal pigment epithelium and neurosensory retina, we conducted a genomewide scan in 34 extended families (297 individuals, 349 sib pairs) ascertained through index cases with neovascular disease or geographic atrophy. Family and medical history was obtained from index cases and family members. Fundus photographs were taken of all participating family members, and these were graded for severity by use of a quantitative scale. Model-free linkage analysis was performed, and tests of heterogeneity and epistasis were conducted. We have evidence of a major locus on chromosome 15q (GATA50C03 multipoint P=1.98x10-7; empirical P< or =1.0x10-5; single-point P=3.6x10-7). This locus was present as a weak linkage signal in our previous genome scan for ARMD, in the Beaver Dam Eye Study sample (D15S659, multipoint P=.047), but is otherwise novel. In this genome scan, we observed a total of 13 regions on 11 chromosomes (1q31, 2p21, 4p16, 5q34, 9p24, 9q31, 10q26, 12q13, 12q23, 15q21, 16p12, 18p11, and 20q13), with a nominal multipoint significance level of P< or =.01 or LOD > or =1.18. Family-by-family analysis of the data, performed using model-free linkage methods, suggests that there is evidence of heterogeneity in these families. For example, a single family (family 460) individually shows linkage evidence at 8 loci, at the level of P<.0001. We conducted tests for heterogeneity, which suggest that ARMD susceptibility loci on chromosomes 9p24, 10q26, and 15q21 are not present in all families. We tested for mutations in linked families and examined SNPs in two candidate genes, hemicentin-1 and EFEMP1, in subsamples (145 and 189 sib pairs, respectively) of the data. Mutations were not observed in any of the 11 exons of EFEMP1 nor in exon 104 of hemicentin-1. The SNP analysis for hemicentin-1 on 1q31 suggests that variants within or in very close proximity to this gene cause ARMD pathogenesis. In summary, we have evidence for a major ARMD locus on 15q21, which, coupled with numerous other loci segregating in these families, suggests complex oligogenic patterns of inheritance for ARMD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号