首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
鱼类性别与性别鉴定   总被引:14,自引:4,他引:10  
性别分化和性别决定相互联系又有所区别,具双向潜力的未分化性腺经过程序性发生的一系列事件,发育成精巢或卵巢,并出现第二性征的过程称为性别分化,而性别决定则是确定性分化方向的方式。鱼类在整个脊椎动物中,其性别类型和表现形式格外丰富多彩。近20多年来对于鱼类性别决定的遗传基础研究已取得不少重要进展,鱼类性别的分子鉴定研究过程也慢慢从鱼类基因组中寻找哺乳动物性别基因的同源基因,逐渐转向寻找鱼类自身的性别决定基因,但离最终阐明鱼类性别决定的机制还有距离。深化对鱼类性别决定机制、性别生理生化与遗传学的研究,不仅有助于…  相似文献   

2.
芦笋性别决定与性别分化研究进展   总被引:1,自引:0,他引:1  
从芦笋性别表现及其决定的遗传基础、性别分化途径,性别决定基因的定位以及性别分化特异表达基因的分离与分析等方面来综述芦笋性别决定与性别分化最新研究进展。目前,已构建了围绕芦笋性别决定基因M比较精细的遗传图谱,将M定位在L5染色体着丝点附近的0.63 cM区域内,并构建了含有8个跨叠克隆群的物理图谱,但由于大量重复序列的存在,跨叠克隆之间的空隙不能闭合;同时先后分离得到11个芦笋花器官发育特异表达基因,并通过序列分析和原位杂交等技术对这些基因的功能进行了分析。最后,对今后进一步研究提出了建议。  相似文献   

3.
4.
性别决定基因   总被引:2,自引:0,他引:2  
在个体发育过程中,动物的种类不同,性别决定的方式亦有差异。这取决于胚胎早期不同的性别初级信号对性别决定基因的启动和活化,活化的性别决定基因启动性别分化基因的表达,使个体的性别表现出来。本文略述与线虫、果蝇等的性别决定有关的基因。线虫(Caenorhabditis elegans)体长约1mm,雌雄同体,自体受精。有两条 X 染色体(XX);XO型线虫为雄性。线虫(C.elegans)性别决定的初级信号是 X 染色体与常染色体的比率(X∶  相似文献   

5.
赵光强 《生物学通报》2002,37(12):19-21
高等植物的性别表型具多态性,这与植物性别决定的遗传基础有关,高等植的性别与性别决定基因,性染色体及常染色体有关,其性别决定系统有性别决定基因决定性别、性染色体决定性别及X染色体与常染色体间的基因平衡决定性别等多种方式。  相似文献   

6.
《生命科学研究》2017,(2):159-165
雌雄异株是雌雄性别分离的一种性系统,在被子植物中广泛分布。一般认为雌雄异株的性别决定受遗传、环境和激素三者的影响和调控。随着第二代测序技术和分子标记技术的发展,对于被子植物雌雄异株性别决定的研究已深入到基因水平。现从性别决定机制及性别连锁的分子标记对被子植物雌雄异株的研究进行总结,并对未来的研究方向进行了展望,以期为深入研究雌雄异株的遗传机制及系统发生奠定基础。  相似文献   

7.
人类性别决定和性别分化研究进展   总被引:3,自引:0,他引:3  
SRY基因在人类性别分化中起着关键作用,目前研究认为SRY仅是涉及性别决定过程的基因之一,其他基因和SRY相关基因SOX9,抗副中肾激素基因AMH,编码缁类因子的基因SF1,X-连锁的DAX基因,wilm‘s肿瘤抑制基因WT1等基因都参与了人类性腺分化和发育,本文拟就人类性别决定基因的研究进展及其与人类性别分化的关系作一综述。  相似文献   

8.
环境决定爬行动物性别研究的进展   总被引:4,自引:0,他引:4  
王培潮 《生态学报》1989,9(1):84-90
爬行动物的性别决定机制有两种,一种是由环境决定性别,另一种是异型性染色体决定性别。前者,在爬行动物中具有普遍性;未发现有异型性染色体的爬行动物,其性别由环境因子决定。剧烈的环境条件,可能压倒基因型性别决定。H-Y抗原,可检测未发现异型性染色体决定性别物种的遗传决定型。  相似文献   

9.
王子龙  潘露霞  胡弯弯  李茫  曾志将 《昆虫学报》2019,62(11):1335-1343
昆虫性别决定机制存在多样性和复杂性,其中膜翅目昆虫的性别决定由单双倍体决定,单倍体为雄性,二倍体为雌性。本文就膜翅目昆虫的性别决定模式和分子机制进行综述。膜翅目昆虫性别决定有6种模式,即互补性性别决定(complementary sex determination, CSD)、多位点互补性性别决定(multiple-locus CSD, ml-CSD)、基因组印记、母体效应、内共生体诱导产雌单性生殖、父本遗传基因组消除(paternal genome elimination, PGE)。其中,CSD机制是目前在膜翅目昆虫中普遍接受的性别决定模式。而蜜蜂的CSD性别决定机制是膜翅目昆虫性别决定模式中的典型代表,受csd→fem→dsx这一调控级联的控制。  相似文献   

10.
罗非鱼性别决定及分化的研究进展   总被引:4,自引:0,他引:4  
董在杰 《动物学杂志》2004,39(4):100-103
对罗非鱼的性别决定和分化的研究现状和研究成果进行综述,并探讨了在罗非鱼性别决定研究上的研究趋势。  相似文献   

11.
12.
Sex     
《Current biology : CB》2014,24(8):R305-R306
  相似文献   

13.
哺乳动物性别决定和性反转   总被引:13,自引:0,他引:13  
目前已知SRY仅是涉及性别决定过程的基因之一.近年来又发现和克隆了许多可能参与性腺分化与发育的基因,如副中肾抑制基因MIS,也称抗副中肾激素基因AMH;SRY相关基因SOX9;编码甾类因子的基因SFI;X-连锁的DAX基因;Wilm′s肿瘤抑制基因WTI;以及X-连锁的剂量敏感基因DSS等,并新建立了性别决定的Z-基因模型,DSS-基因模型和Jimenez等的模型,较合理地解释了哺乳动物性别决定的分子机理和以前难以解释的各种奇特的性反转现象,使性别决定的研究取得了长足的进展,但仍有一些悬而未决的问题有待于进一步探索.  相似文献   

14.
15.
Sex Determination by Sex Chromosomes in Dioecious Plants   总被引:5,自引:0,他引:5  
Abstract: Sex chromosomes have been reported in several dioecious plants. The most general system of sex determination with sex chromosomes is the XY system, in which males are the heterogametic sex and females are homogametic. Genetic systems in sex determination are divided into two classes including an X chromosome counting system and an active Y chromosome system. Dioecious plants have unisexual flowers, which have stamens or pistils. The development of unisexual flowers is caused by the suppression of opposite sex primordia. The expression of floral organ identity genes is different between male and female flower primordia. However, these floral organ identity genes show no evidence of sex chromosome linkage. The Y chromosome of Rumex acetosa contains Y chromosome-specific repetitive sequences, whereas the Y chromosome of Silene latifolia has not accumulated chromosome-specific repetitive sequences. The different degree of Y chromosome degeneration may reflect on evolutionary time since the origination of dioecy. The Y chromosome of S. latifolia functions in suppression of female development and initiation and completion of anther development. Analyses of mutants suggested that female suppressor and stamen promoter genes are localized on the Y chromosome. Recently, some sex chromosome-linked genes were isolated from flower buds of S. latifolia.  相似文献   

16.
17.
Incubation temperature determines sex in the mugger crocodile,Crocodylus palustris. Exclusively females are produced at constanttemperatures of 28.0°C through 31°C. At 32.5°C,only males are produced. Both sexes are produced in varyingproportions at 31.5, 32.0, and 33.0°C. Embryo survival isnot affected within this range, but developmental rate and totalincubation time are strongly temperature dependent. In naturalnests laid in breeding enclosures, cool incubation temperaturesproduced only females whereas males were produced only in warmnests. Clutch sex ratios were female or male biased. Yearlysex ratios (=percent male) varied from 0.05 to 0.58; overallsex ratio during six nesting seasons was 0.24 (1 male: 3 females).Sex ratio and incubation time vary with nest location and temperaturein a manner consistent with the constant temperature results.Incubation time decreases with increasing incubation temperature,and is an accurate predictor of sex ratio in the field and laboratory. To date, temperature-dependent sex determination (TSD) has beenreported in five species of Crocodylus and in three speciesof Alligatorinae; but the TSD patterns in these groups differ.The TSD pattern of C. palustris is similar to that of C. porosus.Nesting in C. palustris is synchronized with the seasonal availabilityof thermal regimes suitable for incubation. Resultant sex ratiosare a consequence of when and where eggs are laid. Early nestsare located in warm, sunny sites; in contrast, late season nestsare located in the shade. An egg transplant experiment demonstratedthat sex ratios could be altered by simple manipulations ofnest temperatures in the field. The adaptive significance ofTSD in crocodilians may relate to the influence of incubationtemperature on various hatchling attributes, particularly growth.  相似文献   

18.
19.
Sex ratios     
West SA  Reece SE  Sheldon BC 《Heredity》2002,88(2):117-124
Sex ratio theory attempts to explain variation at all levels (species, population, individual, brood) in the proportion of offspring that are male (the sex ratio). In many cases this work has been extremely successful, providing qualitative and even quantitative explanations of sex ratio variation. However, this is not always the situation, and one of the greatest remaining problems is explaining broad taxonomic patterns. Specifically, why do different organisms show so much variation in the amount and precision with which they adjust their offspring sex ratios?  相似文献   

20.
Sex education     
Lewis C. Rose 《CMAJ》1982,127(3):197
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号