首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Wierup N  Sundler F 《Peptides》2006,27(8):2031-2036
CART peptides have emerged as important islet regulators. CART is expressed both in islet endocrine cells and in parasympathetic and sensory nerves innervating the islets. In adult rats the intra-islet expression of CART is limited to the somatostatin producing delta-cells, while in adult mice CART is mainly expressed in nerve fibers. During development islet CART is upregulated; in rats in almost all types of islet endocrine cells, including the insulin-producing beta-cells, and in mice mainly in the alpha-cells. This pattern of expression peaks around birth. CART is also expressed in human pancreatic nerves and in islet tumours where the expression level of CART may be related to the degree of differentiation of the tumour. Interestingly, in several rat models of type 2 diabetes CART expression is robustly upregulated in the beta-cells, and is prominent during the phase of beta cell proliferation and hypertrophy. While CART inhibits glucose stimulated insulin secretion from rat islets it augments insulin secretion amplified by cAMP. Mice lacking CART, on the other hand, have islet dysfunction, and humans with a missense mutation in the cart gene are prone to develop type 2 diabetes. These data favor a role of CART in normal islet function and in the pathophysiology of type 2 diabetes.  相似文献   

3.
4.
Type 1 diabetes results from the selective destruction of insulin-producing pancreatic beta-cells during islet inflammation, which involves inflammatory cytokines and free radicals. However, mechanisms for protecting beta-cells from destruction have not been clarified. In this study, we define the role of SOCS3 on beta-cell destruction using beta-cell-specific SOCS3-conditional knockout (cKO) mice. The beta-cell-specific SOCS3-deficient mice were resistant to the development of diabetes caused by streptozotocin (STZ), a genotoxic methylating agent, which has been used to trigger beta-cell destruction. The islets from cKO mice demonstrated hyperactivation of STAT3 and higher induction of Bcl-xL than did islets from WT mice, and SOCS3-deficient beta-cells were more resistant to apoptosis induced by STZ in vitro than were WT beta-cells. These results suggest that enhanced STAT3 signaling protects beta-cells from destruction induced by a genotoxic stress and that STAT3/SOCS3 can be a potential therapeutic target for the treatment of type 1 diabetes.  相似文献   

5.
Tissue-specific disruption of genes by targeted expression of Cre recombinase in insulin-producing cells has been widely used to explore pathways involved in regulation of pancreatic beta-cell mass. One particular line of transgenic mice [B6.Cg-Tg(Ins2-cre)25Mgn/J], commonly called RIP-Cre, in which the expression of Cre recombinase is controlled by a short fragment of the rat insulin II gene promoter has been used on at least 20 genes in at least 27 studies. In the majority of these studies (15 out of 27) inactivation of the gene of interest was associated with alterations in islet architecture, islet mass, or pancreatic insulin content. We have tested the hypothesis that genomic integration or expression of Cre recombinase alone causes alterations of beta-cell mass by quantifying islet number and mass in RIP-Cre mice. We have observed a significant hypoplasia of beta-cells in young RIP-Cre mice, and a significant hyperplasia of islets in older RIP-Cre animals. These findings suggest that glucose intolerance and impaired insulin secretion previously described for younger RIP-Cre mice might be caused by transgene-associated islet hypoplasia, and that hyperplasia in older mice might reflect a compensatory response to transgene-related glucose intolerance.  相似文献   

6.
An adipokine resistin, a small cysteine-rich protein, is one of the major risk factors of insulin resistance. In the present study, transiently resistin-expressing mice using adenovirus method showed an impaired glucose tolerance due to insulin resistance. We found that resistin-expressing mice exhibited impaired insulin secretory response to glucose. In addition, in vitro treatment with resistin for 1 day induced insulin resistance in pancreatic islets and impaired glucose-stimulated insulin secretion by elevating insulin release at basal glucose (2.8 mM) and suppressing insulin release at stimulatory glucose (8.3 mM). In addition, resistin inhibited insulin-induced phosphorylation of Akt in islets as well as other insulin target organs. Furthermore, resistin induced SOCS-3 expression in beta-cells. In conclusion, resistin induces insulin resistance in islet beta-cells at least partly via induction of SOCS-3 expression and reduction of Akt phosphorylation and impairs glucose-induced insulin secretion.  相似文献   

7.
The insulin/insulin-like growth factor-1 (IGF-1) signalling pathways are present in most mammalian cells and play important roles in the growth and metabolism of tissues. Most proteins in these pathways have also been identified in the beta-cells of the pancreatic islets. Tissue-specific knockout of the insulin receptor (betaIRKO) or IGF-1 receptor (betaIGFRKO) in pancreatic beta-cells leads to altered glucose-sensing and glucose intolerance in adult mice, and betaIRKO mice show an age-dependent decrease in islet size and beta-cell mass. These data indicate that these receptors are important for differentiated function and are unlikely to play a major role in the early growth and/or development of the pancreatic islets. Conventional insulin receptor substrate-1 (IRS-1) knockouts manifest growth retardation and mild insulin resistance. The IRS-1 knockouts also display islet hyperplasia, defects in insulin secretory responses to multiple stimuli both in vivo and in vitro, reduced islet insulin content and an increased number of autophagic vacuoles in the beta-cells. Re-expression of IRS-1 in cultured beta-cells is able to partially restore the insulin content indicating that IRS-1 is involved in the regulation of insulin synthesis. Taken together, these data provide evidence that insulin and IGF-1 receptors and IRS-1, and potentially other proteins in the insulin/IGF-1 signalling pathway, contribute to the regulation of islet hormone secretion and synthesis and therefore in the maintenance of glucose homeostasis.  相似文献   

8.
9.
BACKGROUND: The function and survival of pancreatic beta-cells strongly depend on glucose concentration and on autocrine secretion of peptide growth factors. NGF and its specific receptors TrkA and p75NTR play a pivotal role in islet survival and glucose-dependent insulin secretion. We therefore investigated whether or not glucose concentration influences expression of TrkA and p75NTR in rat islets and in INS-1E beta-cells at the mRNA and protein level (INS-1E). METHODS: Gene expression of the NGF receptors TrkA and p75NTR but also of the metabolic gene liver-type pyruvate kinase (L-PK) and the neurotrophin receptors TrkB and TrkC was studied by semi-quantitative PCR and by real-time PCR in islets and INS-1E beta-cells. RESULTS: In rat islets, high glucose exposure (25 mmol/l) increased gene expression of TrkA, p75NTR and L-PK. Expression of TrkA, p75NTR and L-PK reflected insulin secretion at the respective glucose concentration. In rat INS-1E insulinoma cells, expression of L-PK and p75NTR was suppressed by low glucose as in the islets, while expression of TrkA was strongly increased by low glucose levels and thus was regulated differently than in islets. Expression of TrkB and TrkC was not regulated by glucose concentration at all. TrkA protein was regulated in the same fashion as its mRNA expression, while p75NTR protein was not significantly regulated within 24 h. CONCLUSION: Glucose interacts with gene expression of TrkA and p75NTR that are strongly involved in beta-cell growth and glucose-dependent insulin secretion. The fact that TrkA expression is regulated the opposite way in islets and in INS-1E beta-cells might reflect their specific grade of differentiation and tendency to proliferate.  相似文献   

10.
In-vitro differentiation of pancreatic β-cells   总被引:13,自引:0,他引:13  
  相似文献   

11.
A much greater insulin response is observed after oral glucose load than after intravenous injection of glucose. The hormonal factor(s) implicated as transmitters of signals from the gut to pancreatic beta-cells was referred to incretin; gastric inhibitory polypeptide or glucose-dependent insulinotropic polypeptide (GIP) is identified as one of the incretins. GIP exerts its effects by binding to its specific receptor, the GIP receptor, which is expressed in various tissues including pancreatic islets, adipose tissue, and brain. However, the physiological role of GIP has been generally thought to stimulate insulin secretion from pancreatic beta-cells, and the other actions of GIP have received little attention. We have bred and characterized mice with a targeted mutation of the GIP receptor gene. From these studies, we now know that GIP not only mediates early insulin secretion by acting on pancreatic beta-cells, but also links overnutrition to obesity by acting on adipocytes.  相似文献   

12.
Alteration of pancreatic beta-cell survival and Preproinsulin gene expression by prolonged hyperglycemia may result from increased c-MYC expression. However, it is unclear whether c-MYC effects on beta-cell function are compatible with its proposed role in glucotoxicity. We therefore tested the effects of short-term c-MYC activation on key beta-cell stimulus-secretion coupling events in islets isolated from mice expressing a tamoxifen-switchable form of c-MYC in beta-cells (MycER) and their wild-type littermates. Tamoxifen treatment of wild-type islets did not affect their cell survival, Preproinsulin gene expression, and glucose stimulus-secretion coupling. In contrast, tamoxifen-mediated c-MYC activation for 2-3 days triggered cell apoptosis and decreased Preproinsulin gene expression in MycER islets. These effects were accompanied by mitochondrial membrane hyperpolarization at all glucose concentrations, a higher resting intracellular calcium concentration ([Ca(2+)](i)), and lower glucose-induced [Ca(2+)](i) rise and islet insulin content, leading to a strong reduction of glucose-induced insulin secretion. Compared with these effects, 1-wk culture in 30 mmol/l glucose increased the islet sensitivity to glucose stimulation without reducing the maximal glucose effectiveness or the insulin content. In contrast, overnight exposure to a low H(2)O(2) concentration increased the islet resting [Ca(2+)](i) and reduced the amplitude of the maximal glucose response as in tamoxifen-treated MycER islets. In conclusion, c-MYC activation rapidly stimulates apoptosis, reduces Preproinsulin gene expression and insulin content, and triggers functional alterations of beta-cells that are better mimicked by overnight exposure to a low H(2)O(2) concentration than by prolonged culture in high glucose.  相似文献   

13.
14.
Development of diabetes generally reflects an inadequate mass of insulin-producing beta-cells. beta-cell proliferation and differentiation are regulated by a variety of growth factors and hormones, including insulin-like growth factor I (IGF-I). GRF1 is a Ras-guanine nucleotide exchange factor known previously for its restricted expression in brain and its role in learning and memory. Here we demonstrate that GRF1 is also expressed in pancreatic islets. Interestingly, our GRF1-deficient mice exhibit reduced body weight, hypoinsulinemia and glucose intolerance owing to a reduction of beta-cells. Whereas insulin resistance is not detected in peripheral tissues, GRF1 knockout mice are leaner due to increased lipid catabolism. The reduction in circulating insulin does not reflect defective glucose sensing or insulin production but results from impaired beta-cell proliferation and reduced neogenesis. IGF-I treatment of isolated islets from GRF1 knockouts fails to activate critical downstream signals such as Akt and Erk. The observed phenotype is similar to manifestations of preclinical type 2 diabetes. Thus, our observations demonstrate a novel and specific role for Ras-GRF1 pathways in the development and maintenance of normal beta-cell number and function.  相似文献   

15.
Heparan sulfate (HS) binds with several signaling molecules and regulates ligand-receptor interactions, playing an essential role in embryonic development. Here we showed that HS was intensively expressed in pancreatic islet β-cells after 1 week of age in mice. The enzymatic removal of HS in isolated islets resulted in attenuated glucose-induced insulin secretion with a concomitant reduction in gene expression of several key components in the insulin secretion machinery. We further depleted islet HS by inactivating the exostosin tumor-like 3 gene specifically in β-cells. These mice exhibited abnormal islet morphology with reduced β-cell proliferation after 1 week of age and glucose intolerance due to defective insulin secretion. These results demonstrate that islet HS is involved in the regulation of postnatal islet maturation and required to ensure normal insulin secretion.  相似文献   

16.
17.
Studies with genetically modified insulinoma cells suggest that group VIA phospholipase A(2) (iPLA(2)beta) participates in amplifying glucose-induced insulin secretion. INS-1 insulinoma cells that overexpress iPLA(2)beta, for example, exhibit amplified insulin-secretory responses to glucose and cAMP-elevating agents. To determine whether similar effects occur in whole animals, we prepared transgenic (TG) mice in which the rat insulin 1 promoter (RIP) drives iPLA(2)beta overexpression, and two characterized TG mouse lines exhibit similar phenotypes. Their pancreatic islet iPLA(2)beta expression is increased severalfold, as reflected by quantitative PCR of iPLA(2)beta mRNA, immunoblotting of iPLA(2)beta protein, and iPLA(2)beta enzymatic activity. Immunofluorescence microscopic studies of pancreatic sections confirm iPLA(2)beta overexpression in RIP-iPLA(2)beta-TG islet beta-cells without obviously perturbed islet morphology. Male RIP-iPLA(2)beta-TG mice exhibit lower blood glucose and higher plasma insulin concentrations than wild-type (WT) mice when fasting and develop lower blood glucose levels in glucose tolerance tests, but WT and TG blood glucose levels do not differ in insulin tolerance tests. Islets from male RIP-iPLA(2)beta-TG mice exhibit greater amplification of glucose-induced insulin secretion by a cAMP-elevating agent than WT islets. In contrast, islets from male iPLA(2)beta-null mice exhibit blunted insulin secretion, and those mice have impaired glucose tolerance. Arachidonate incorporation into and the phospholipid composition of RIP-iPLA(2)beta-TG islets are normal, but they exhibit reduced Kv2.1 delayed rectifier current and prolonged glucose-induced action potentials and elevations of cytosolic Ca(2+) concentration that suggest a molecular mechanism for the physiological role of iPLA(2)beta to amplify insulin secretion.  相似文献   

18.
Inosine is a potent primary stimulus of insulin secretion from isolated mouse islets. The inosine-induced insulin secretion was totally depressed during starvation, but was completely restored by the addition of 5 mM-caffeine to the medium and partially restored by the addition of 5 mM-glucose. Mannoheptulose (3 mg/ml) potentiated the effect of 10 mM-inosine in islets from fed mice. The mechanism of the stimulatory effect of inosine was further investigated, and it was demonstrated that pancreatic islets contain a nucleoside phosphorylase capable of converting inosine into hypoxanthine and ribose 1-phosphate. Inosine at 10 mM concentration increased the lactate production and the content of ATP, glucose 6-phosphate (fructose 1,6-diphosphate + triose phosphates) and cyclic AMP in islets from fed mice. In islets from starved mice inosine-induced lactate production was decreased and no change in the concentration of cyclic AMP could be demonstrated, whereas the concentration of ATP and glucose 6-phosphate rose. Inosine (10 mM) induced a higher concentration of (fructose 1,6-diphosphate + triose phosphates) in islets from starved mice than in islets from fed mice suggesting that in starvation the activities of glyceraldehyde 3-phosphate dehydrogenase or other enzymes below this step in glycolysis are decreased. Formation of glucose from inosine was negligible. Inosine had no direct effect on adenylate cyclase activity in islet homogenates. The observed changes in insulin secretion and islet metabolism mimic what is seen when glucose and glyceraldehyde stimulate insulin secretion, and as neither ribose nor hypoxanthine-stimulated insulin release, the results are interpreted as supporting the substrate-site hypothesis for glucose-induced insulin secretion according to which glucose has to be metabolized in the beta-cells before secretion is initiated.  相似文献   

19.
The FRK tyrosine kinase has previously been shown to transduce beta-cell cytotoxic signals in response to cytokines and streptozotocin and to promote beta-cell proliferation and an increased beta-cell mass. We therefore aimed to further evaluate the effects of overexpression of FRK tyrosine kinase in beta-cells. A transgenic mouse expressing kinase-active FRK under control of the insulin promoter (RIP-FRK) was studied with regard to islet endocrine function and vascular morphology. Mild glucose intolerance develops in RIP-FRK male mice of at least 4 mo of age. This effect is accompanied by reduced glucose-stimulated insulin secretion in vivo and reduced second-phase insulin secretion in response to glucose and arginine upon pancreas perfusion. Islets isolated from the FRK transgenic mice display a glucose-induced insulin secretory response in vitro similar to that of control islets. However, islet blood flow per islet volume is decreased in the FRK transgenic mice. These mice also exhibit a reduced islet capillary lumen diameter as shown by electron microscopy. Total body weight and pancreas weight are not significantly affected, but the beta-cell mass is increased. The data suggest that long-term expression of active FRK in beta-cells causes an in vivo insulin-secretory defect, which may be the consequence of islet vascular abnormalities that yield a decreased islet blood flow.  相似文献   

20.
Numerous overexpression studies have recently implicated Syntaxin 4 as an effector of insulin secretion, although its requirement in insulin granule exocytosis is unknown. To address this, islets from Syntaxin 4 heterozygous (-/+) knockout mice were isolated and compared with islets from wild-type mice. Under static incubation conditions, Syntaxin 4 (-/+) islets showed a 60% reduction in glucose-stimulated insulin secretion compared with wild-type islets. Perifusion analyses revealed that Syntaxin 4 (-/+) islets secreted 50% less insulin during the first phase of glucose-stimulated insulin secretion and that this defect could be fully restored by the specific replenishment of recombinant Syntaxin 4. This essential role for Syntaxin 4 in secretion from the islet was localized to the beta-cells because small interfering RNA-mediated depletion of Syntaxin 4 in MIN6 beta-cells abolished glucose-stimulated insulin secretion. Moreover, immunofluorescent confocal microscopy revealed that Syntaxin 4 was principally localized to the beta-cells and not the alpha-cells of the mouse islet. Remarkably, islets isolated from transgenic mice that express 2.4-fold higher levels of Syntaxin 4 relative to wild-type mice secreted approximately 35% more insulin during both phases of insulin secretion, suggesting that increased Syntaxin 4 may be beneficial for enhancing biphasic insulin secretion in a regulated manner. Taken together, these data support the notion that Syntaxin 4-based SNARE complexes are essential for biphasic insulin granule fusion in pancreatic beta-cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号