首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 195 毫秒
1.
潘汝亮 《动物学研究》2007,28(6):569-579
为了研究亚洲疣猴牙齿形态与功能适应性之间的关系,建立异速生长公式比较分析生活于同一大陆的猕猴。主成份分析用来分析来自异速生长公式的残差。结果表明:疣猴出乎意料地展示了比猕猴更小的门齿。导致此结果的可能原因是:疣猴与猕猴之间的食物差异性。但是,这种差异小于亚-非大陆种类。也就是说,在过去的500万年左右的时间里,生活于同一大陆的疣猴和猕猴已经产生了一些对环境和食性的趋同性。当每一个疣猴属分别与猕猴进行比较时,它们之间的差异性揭示了地理分布的差异。金丝猴(Rhinopithecus)和长尾叶猴(Semnopithecus)具有比其他疣猴发达的臼齿。欧氏距离的结果说明疣猴和猕猴牙齿的差异性揭示了它们在系统发育方面的关系。  相似文献   

2.
潘汝亮 《动物学研究》2007,28(6):569-579
为了研究亚洲疣猴牙齿形态与功能适应性之间的关系,建立异速生长公式比较分析生活于同一大陆的猕猴。主成份分析用来分析来自异速生长公式的残差。结果表明:疣猴出乎意料地展示了比猕猴更小的门齿。导致此结果的可能原因是:疣猴与猕猴之间的食物差异性。但是,这种差异小于亚-非大陆种类。也就是说,在过去的500万年左右的时间里,生活于同一大陆的疣猴和猕猴已经产生了一些对环境和食性的趋同性。当每一个疣猴属分别与猕猴进行比较时,它们之间的差异性揭示了地理分布的差异。金丝猴(Rhinopithecus)和长尾叶猴(Semnopithecus)具有比其他疣猴发达的臼齿。欧氏距离的结果说明疣猴和猕猴牙齿的差异性揭示了它们在系统发育方面的关系。  相似文献   

3.
于黎  吴仲义  张亚平 《遗传》2016,38(7):676-677
正金丝猴属(Rhinopithecus)属于灵长目、猴科、疣猴亚科,是亚洲疣猴亚科中特化程度最高的一个类群。金丝猴属包括5个近缘物种:滇金丝猴(R.bieti)、怒江金丝猴(R.strykeri)、川金丝猴(R.roxellana)、黔金丝猴(R.brelichia)和越南金丝猴(R.avunculus)。所有物种均被列为红色物种名录濒危物种。除了重要保护生物学价值,金丝猴属物种还发展出以树叶为食的特化食性,而且占据了从低海拔到高海拔的生境类型(800~4500 m)。黔金丝猴和越南金丝猴  相似文献   

4.
黑叶猴(Trachypithecus francoisi)   总被引:1,自引:0,他引:1  
黑叶猴(Trachypithecusfrancoisi)别名乌猿、乌叶猴,属灵长目猴科疣猴亚科,为亚洲特有的灵长目动物,主要产于我国。黑叶猴是我国国家一级重点保护动物,中国濒危动物红皮书将其列为濒危(E)级保护动物。本种主要分布于我国南部和越南、老挝等局部地区。在我国,主要分布于广西西南  相似文献   

5.
青藏高原和喜马拉雅地区锦鸡儿属植物的地理分布   总被引:9,自引:0,他引:9  
锦鸡儿属Caragana是一个典型的温带亚洲分布属。本属在青藏高原和喜马拉雅约有24种1变种,约占整个属的1/3。这些种类几乎全部处于演化高级阶段,且既有叶轴宿存类群,也有假掌状叶类群。反映出种的分化很活跃,在横断山地区形成本属的分布中心、分化中心。本区内绝大多数种类是特有分布。替代现象主要受气候、植被变化作用,沿横断山和喜马拉雅分布的长齿系Ser. Bracteolatae Kom.是一个典型的替代分布类群。锦鸡儿属植物生态适应性很强,可在其生长的灌丛中形成优势种。 寒化和旱化现象十分突出,它们有一系列森林种、草原种和荒漠种及相关的形态变异。用锦鸡儿属植物进行青藏高原和喜马拉雅区域内的分布区关系分析及最小生成树MST和特有性简约性分析(PAE),表明横断山地区特别是其北部是本属植物的一个地理结点。以此沿横断山向北部唐古特和西部藏东南适应性辐射。横断山和西喜马拉雅联系微弱,看不出植物长距离扩散的踪迹,大多是由于生态因子限制而产生的隔离。虽然本区不可能是锦鸡儿属的起源地,然而,通过本区与邻近地区的地理联系,可推测它们在我国适应性辐射方向是从东北向西南。结合豆科蝶形花亚科其它属化石记录及其分布区局限在温带亚洲等现象,认为锦鸡儿植物是一组特化、晚近衍生的类群,起源于北方东西伯利亚晚第三纪中新世后期至上新世。  相似文献   

6.
黑叶猴     
马强  苏化龙 《动物学杂志》2004,39(3):32-32,54
黑叶猴(Trachypithecus framcoisi)别名乌猿、乌叶猴,属灵长目猴科疣猴亚科,为亚洲特有的灵长目动物,主要产于我国。黑叶猴是我国国家一级重点保护动物,中国濒危动物红皮书将其列为濒危(E)级保护动物。本种主要分布于我国南部和越南、老挝等局部地区。在我国,主要分布于广西西南部、西部(大新、崇左、龙州、扶绥、宁明、隆安、  相似文献   

7.
由于栖息地质量下降,近年来齿突蟾属物种种群数量急剧减少,明确齿突蟾属物种空间分布,是监测、管理、保护齿突蟾属物种的基础。横断山区可能是齿突蟾属的起源中心和分化中心,但齿突蟾属在横断山区的地理分布格局尚不明确。利用优化后Maxent模型,首次预测西藏齿突蟾Scutiger boulengeri、刺胸齿突蟾Scutiger mammatus、胸腺齿突蟾Scutiger glandulatus、圆疣齿突蟾Scutiger tuberculatus、贡山齿突蟾Scutiger gongshanensis 5种高海拔齿突蟾属物种在横断山南生物多样性保护优先区域的潜在地理分布,并分析其与环境因子的关系。结果显示,5种齿突蟾属物种在横断山南的潜在地理分布格局存在差异,西藏齿突蟾主要分布在横断山南的北部,圆疣齿突蟾主要分布在横断山南东北部的四川省境内,贡山齿突蟾主要分布在横断山南的西南部,刺胸齿突蟾和胸腺齿突蟾的潜在分布格局较为相似,在横断山南的中部、西北部地区都有较多分布,但胸腺齿突蟾潜在分布区更为碎片化。另外,横断山南北部地区的齿突蟾属丰富度明显高于南部地区。环境变量贡献率和刀切法结果显示温度因子和降水因子是决定横断山南齿突蟾属潜在分布的主要因素,最冷季降水量对西藏齿突蟾、贡山齿突蟾、圆疣齿突蟾潜在分布有重要影响,但它们对最冷季降水量的偏好存在差异。此外,研究也显示,通过评估潜在的Maxent参数组合,选择最佳的Maxent模型是有效且必要的。  相似文献   

8.
黑叶猴是分布于我国广西、贵州、重庆南部和越南北部喀斯特石山特有的灵长类,全世界不足2000只,其中四分之三以上分布在我国。黑叶猴隶属于哺乳纲灵长目猴科疣猴亚科乌叶猴属,该属是疣猴亚科种类最多的一个属,共有20个种。根据系统演化,这个属可以分为戴帽叶猴种组、郁乌叶猴种组、银叶猴种组和黑叶猴种组,其中黑叶猴种组包括了我国的黑叶猴、白头叶猴、越南的金头叶猴、德氏叶猴、越南乌叶猴、印支乌叶猴和老挝乌叶猴,这7个种只生活在喀斯特石山环境,所以它们又被称为石山叶猴,其中黑叶猴扩散能力最强,是分布范围最广和分布纬度最高的种类。  相似文献   

9.
簇毛黄耆亚属的种类主要沿亚洲的“山链”分布,即横断山,喜马拉雅,查谟和克什米尔,帕米尔—阿赖,兴都库什和苏莱曼山脉,表达了东亚、西亚和中亚的植物区系地理关系。本文基于亚属的分布式样,对其8个分布区进行了分析生物地理学中的成分分析。结果表明,这8个分布区可划分为4类,即1)华北—东北;2)横断山和西藏;3)西喜马拉雅,西巴基斯坦,塔吉克斯坦;4)内蒙古—新疆。在本亚属的分布式样中,有两个地理“结点”,即横断山和西喜马拉雅,后者主要指克什米尔。推断地理上的衍进方向是由东向西发展,喜马拉雅是连接东西分布的通道。  相似文献   

10.
黑叶猴和灰叶猴的线粒体DNA限制性片段长度多态研究   总被引:1,自引:0,他引:1  
本文以15种限制性内切酶分析黑叶猴和灰叶猴种内及种间mtDNA多态。从各个样品中分别检出了41—50个酶切位点。综合15种限制内酶的酶切类型,在2只黑叶猴和2只灰叶猴中分别检出了两种限制性类型,并与其4个地理来源相对应。结合恒河猴和红面猴的资料,构建了4种猴科动物的分子系统树。结果表明,黑叶猴和灰叶猴种内的分歧分别始于30和35万年以前,两种叶猴的分离始于190万年以前,猴亚科和疣猴亚科的分离应早于1100万年。叶猴属在中国的扩散不是很晚才发生的。  相似文献   

11.
In order to study the differentiation of Asian colobines, fourteen variables were analysed in one way, on 123 skulls, includingRhinopithecus, Presbytis, Presbytiscus, Pygathrix, andNasalis with both cluster and differentiated functions tests. Information on paleoenvironment changes in China and South-East Asia since late Tertiary have been used to examine the influences of migratory habits and the distribution range in Asian colobines. The cladogram among different Asian colobines genera was made from the results of various analysis. Some new points or revisions were suggested: 1. Following the second migratory way, ancient species of Asian colobines perhaps passed through Xizang along the northern bank of Tethis sea and Heng-Duan Shan regions, across Yunnan into Vietnam, since the ancient continent between Yunnan and Xizang was already located in on eastern bank of Tethis sea. Thus, during the evolution, Asian colobines must have had two original centres, i.e. “Sundaland” and Heng-Duan Shan Chinese regions; 2. Pygatrix possesses a lot of cranial features more similar toPresbytiscus than toRhinopithecus. The small difference from the modification combinesPygatrix with other two genera as shown by Groves (1970), but it is better to putPygatrix andPresbytiscus together as one genus; 3.Nasalis (2n=48) may be the most primitive genus within Asian colobines. Some features shared withRhinopithecus, for example body size, terrestrial activities, limb proportion etc. ...seem to be considered as a common inheritance of symlesiomorphus characters; 4.Rhinopithecus, with reference to cranioface and cranium or to its origin, is a special genus of Asian colobine. It may represent the highest level of evolutionary position within various genera (Peng et al., 1985).  相似文献   

12.
The exceptional diploid number (2n=48) of the proboscis monkey (Nasalis larvatus) has played a pivotal role in phylogenies that view the proboscis monkey as the most primitive colobine, and a long-isolated genus of the group. In this report we used molecular cytogenetic methods to map the chromosomal homology of the proboscis monkey in order to test these hypotheses. Our results reveal that the N. larvatus karyotype is derived and is not primitive in respect to other colobines (2n=44) and most other Old World monkeys. The diploid number of 2n=48 can be best explained by derived fissions of a segment of human chromosomes 14 and 6. The fragmentation and association of human chromosomes 1 and 19 as seen in other Asian colobines, but not in African colobines, is best explained as a derived reciprocal translocation linking all Asian colobines. The alternating hybridization pattern between four segments homologous to human chromosomes 1 and 19 on N. larvatus chromosome 6 is the result of the reciprocal translocation followed by a pericentric inversion. N. larvatus shares this pericentric inversion with Trachypithecus, but not with Pygathrix. This inversion apparently links Nasalis and Trachypithecus after the divergence of Pygathrix. The karyological data support the view that Asian colobines, including N. larvatus, are monophyletic. They share many linking karyological features separating them from the African colobines. The hybridization pattern also suggests that Nasalis is nested within Asian Colobines and shares a period of common descent with other Asian colobines after the divergence of Pygathrix.  相似文献   

13.
Odd-nosed monkeys represent one of the two major groups of Asian colobines. Our knowledge about this primate group is still limited as it is highlighted by the recent discovery of a new species in Northern Myanmar. Although a common origin of the group is now widely accepted, the phylogenetic relationships among its genera and species, and the biogeographic processes leading to their current distribution are largely unknown. To address these issues, we have analyzed complete mitochondrial genomes and 12 nuclear loci, including one X chromosomal, six Y chromosomal and five autosomal loci, from all ten odd-nosed monkey species. The gene tree topologies and divergence age estimates derived from different markers were highly similar, but differed in placing various species or haplogroups within the genera Rhinopithecus and Pygathrix. Based on our data, Rhinopithecus represent the most basal lineage, and Nasalis and Simias form closely related sister taxa, suggesting a Northern origin of odd-nosed monkeys and a later invasion into Indochina and Sundaland. According to our divergence age estimates, the lineages leading to the genera Rhinopithecus, Pygathrix and Nasalis+Simias originated in the late Miocene, while differentiation events within these genera and also the split between Nasalis and Simias occurred in the Pleistocene. Observed gene tree discordances between mitochondrial and nuclear datasets, and paraphylies in the mitochondrial dataset for some species of the genera Rhinopithecus and Pygathrix suggest secondary gene flow after the taxa initially diverged. Most likely such events were triggered by dramatic changes in geology and climate within the region. Overall, our study provides the most comprehensive view on odd-nosed monkey evolution and emphasizes that data from differentially inherited markers are crucial to better understand evolutionary relationships and to trace secondary gene flow.  相似文献   

14.
To obtain a more complete understanding of the evolutionary history of the leaf-eating monkeys we have examined the mitochondrial genome sequence of two African and six Asian colobines. Although taxonomists have proposed grouping the "odd-nosed" colobines (proboscis monkey, douc langur, and the snub-nosed monkey) together, phylogenetic support for such a clade has not been tested using molecular data. Phylogenetic analyses using parsimony, maximum likelihood, and Bayesian methods support a monophyletic clade of odd-nosed colobines consisting of Nasalis, Pygathrix, and Rhinopithecus, with tentative support for Nasalis occupying a basal position within this clade. The African and Asian colobine lineages are inferred to have diverged by 10.8 million years ago (mya or Ma). Within the Asian colobines the odd-nosed clade began to diversify by 6.7 Ma. These results augment our understanding of colobine evolution, particularly the nature and timing of the colobine expansion into Asia. This phylogenetic information will aid those developing conservation strategies for these highly endangered, diverse, and unique primates.  相似文献   

15.
16.
主分量分析(PCA)在动物分类学中的运用   总被引:2,自引:1,他引:1  
潘汝亮  彭燕章 《兽类学报》1991,11(3):194-199
  相似文献   

17.
The classification and phylogenetic relationships of the Old World monkeys are still controversial. For Asian colobines, from three to nine genera were recognized by different primatologists. In the present study, we have sequenced a 424 bp mitochondrial tRNAThr gene and cytochrome b gene fragment fromMacaca mulatta, Mandrillus sphinx, Mandrillus leucophaeus, Semnopithecus entellus, Trachypithecus vetulus, T. johnii, T. phayrei, T. francoisi, Pygathrix nemaeus, Rhinopithecus roxellanae, R. bieti, R. avunculus, Nasalis larvatus, andColobus polykomos in order to gain independent information on the classification and phylogenetic relationships of those species. Phylogenetic trees were constructed with parsimony analysis by weighting transversions 5 or 10 fold greater than transitions. Our results support the following conclusions: (1) the Old World monkeys are divided into two subfamilies; (2) that among the colobines,Colobus, the African group, diverged first, andNasalis andRhinopithecus form a sister clade toPygathrix; (3) that there are two clades within leaf monkeys, i.e. 1)S. entellus, T. johnii, andT. vetulus, and 2)T. phayrei andT. francoisi; (4) thatRhinopithecus avunculus, R. roxellanae, andR. bieti are closely related to each other, and they should be placed into the same subgenus; (5) thatRhinopithecus is a distinct genus; and (6) that the ancestors of Asian colobines migrated from Africa to Asia during the late Pliocene or early Pleistocene.  相似文献   

18.
Dental development is one aspect of growth that is linked to diet and to life history but has not been investigated among colobines since the work of Schultz [1935]. This study establishes the dental eruption sequence for several colobine species and compares it to that of other catarrhines. The mandibles and maxillae of two hundred and four juvenile colobine specimens were scored for presence or absence of permanent teeth and for stages of partial eruption. Eruption was defined as ranging between tooth emergence (any part of a tooth crown above the alveolar margin) and full occlusion, with three intermediate levels manifest between these boundaries. In African colobines, represented by C. guereza, C. angolensis and P. badius, M2 erupts before I2, and in C. angolensis it also erupts before I1. The canine is delayed, erupting after the premolars in females and after M3 in males. Asian colobines show greater diversity in eruption sequences. Nasalis shows no early eruption of the molars and is very similar to Macaca. In Trachypithecus and Pygathrix M(2) erupts before I(2). The canine in Trachypithecus is delayed, erupting after the premolars and, in some males, after M3. In Presbytis M2 erupts before both incisors; M3 erupts before C in both sexes, and often before both premolars. Although the actual timing of eruption is unknown, all colobine species examined except N. larvatus showed some degree of relatively early eruption of M2 and M3. The lack of this tendency in Nasalis sets this genus apart from all other colobines represented in this study. Dental eruption sequence is thought to reflect life history patterns. Early molar eruption in colobines was thought by Schultz (1935) to be a primitive character reflecting shorter life history. Faster growth rates found in folivorous primates have been interpreted as being related to an adaptation to folivory (Leigh 1994), and early eruption of molars may be part of this dietary specialization. The relationships between dental development and both diet and life history are investigated.  相似文献   

19.
青藏高原跳甲亚科昆虫区系研究   总被引:3,自引:0,他引:3  
讨论青藏高原(包括横断山区)的跳甲亚科昆虫区系。该区已知47属228种。1)据属级阶元的分布类型分析,以东洋属和南型属种显占优势,是区系主体,显示该区跳甲区系的热带渊源,其中高山属种赋予该区以高山区系特征;2)该区物种分化活跃,是某些多种属中国种类的分布中心和分化中心;3)联系中国跳甲亚科区系,在地理分布格局上显示西-东分布,如Hespera属的分布和西南-东北分布或西南-东北的间断分布格局,如Pentamesa和Stenoluperus属的分布。这种地理分布格局反映青藏高原的隆起给中国昆虫区系带来重要影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号