首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
为探讨植酸酶对中华绒螯蟹(Eriocheir sinensis)幼蟹生长、消化性能及物质利用率的影响, 设计了6种配合饲料, 以不含植酸和植酸酶的组别为对照组(C), 在含有10 g/kg植酸的饲料中, 分别加入0、500、1000、1500 U/kg的植酸酶, 分别记为P0、P500、P1000、P1500和P2000。投喂初始体重为(4.34±0.05) g的幼蟹, 56d后称重并取样分析。结果发现: P0幼蟹增重率、特定生长率、蛋白质效率低于对照组, 饲料系数则高于对照组(P<0.05); 幼蟹增重率、特定生长率、蛋白质效率随着饲料中植酸酶含量的增加而升高, 在P2000达到最高, 且该组的饲料系数最低(P<0.05); P1500和P2000全蟹体磷含量显著高于P0 (P<0.05); 在P2000中, 幼蟹肝胰腺中胰蛋白酶、淀粉酶以及肠道胰蛋白酶活力达到最高(P<0.05); 中华绒螯蟹蛋白质消化率和磷透析率随着饲料中植酸酶含量的增加而逐渐升高, 其中P2000显著高于P0(P<0.05), 与对照组无显著差异(P>0.05); P2000幼蟹的氮、磷保留率最高(P<0.05)。以上结果表明, 在含有植酸的饲料中添加2000 U/kg的植酸酶, 能够显著提高幼蟹的生长和胰蛋白酶活力, 进而提高幼蟹对蛋白质的利用率, 降低饲料系数。此外, 植酸酶的添加也能有效提高幼蟹体磷含量和氮/磷保留率。  相似文献   

2.
微生物制剂对奥尼罗非鱼生长及消化酶活性的影响   总被引:4,自引:0,他引:4  
选用192尾初始体重(34.50±0.25)g的健康奥尼罗非鱼(Oreochromis niloticus×O.aureu),研究在基础饲料中分别添加相同剂量(活菌含量为3.0×1011 cfu/kg饲料)的汉逊德巴利酵母、枯草芽孢杆菌和凝结芽孢杆菌对奥尼罗非鱼生长及消化酶活性的影响,试验期56d。试验结果表明,与对照组相比,添加枯草芽孢杆菌和凝结芽孢杆菌,奥尼罗非鱼的增重率分别提高12.27%和8.56%(P<0.05),饵料系数分别降低10.92%和8.18%(P<0.05)。饲料干物质表观消化率分别提高10.54%和10.07%(P<0.05),蛋白质表观消化率分别提高4.18%和3.63%(P<0.05)。添加枯草芽孢杆菌和凝结芽孢杆菌组,奥尼罗非鱼肠道、肝胰脏和胃蛋白酶活性显著高于对照组和汉逊德巴利酵母组(P<0.05),而添加三种微生物制剂对奥尼罗非鱼肠道、肝胰脏和胃的淀粉酶和脂肪酶没有显著影响(P>0.05)。结果显示,三种微生物制剂相互比较,饲料中添加剂量为3.0×1011 cfu/kg饲料的枯草芽孢杆菌和凝结芽孢杆菌能显著提高肠道、肝胰脏和胃的蛋白酶活性,满足最佳生长。  相似文献   

3.
为研究饲料中添加抗菌肽Surfactin对吉富罗非鱼(GIFT, Oreochromis niloticus)肠道健康指标的影响, 实验将平均体重为(12.010.03) g/尾的320尾吉富罗非鱼, 随机分为4组, 每组4个重复, 每个重复20尾鱼, 分别投喂抗菌肽Surfactin添加水平为0(对照组)、50、100和200 mg/kg的试验饲料7周。结果显示: 与对照组相比, 吉富罗非鱼饲料中添加抗菌肽Surfactin可使肠道皱襞高度显著增加(P0.05), 肌层厚度无显著变化(P0.05); 大肠杆菌数量显著降低(P0.05), 乳酸杆菌数量显著增加(P0.05), 细菌总数无显著变化(P0.05); 显著提高肠道总抗氧化能力水平、谷胱甘肽过氧化物酶活性和超氧化物歧化酶活性(200 mg/kg抗菌肽添加组除外)(P0.05), 显著降低肠道丙二醛水平(P0.05), 对过氧化氢酶活性无显著影响(P0.05); 吉富罗非鱼肠道健康指标以50 mg/kg抗菌肽Surfactin添加组最佳。试验表明, 吉富罗非鱼饲料中适量添加抗菌肽Surfactin可增加肠道皱襞高度、调节肠道菌群和提高肠道抗氧化能力而改善肠道健康状态。  相似文献   

4.
匙吻鲟仔稚鱼消化酶发育的研究   总被引:3,自引:0,他引:3  
对出膜后0—53d匙吻鲟的酸性蛋白酶、碱性蛋白酶、α-淀粉酶、脂肪酶以及磷酸酶的活性变化进行了测定。匙吻鲟出膜后饲养于室内水泥培育池中,从第3天开始投喂枝角类,之后于第40天将试验鱼转移至池塘。试验材料为受精卵及出膜后第3、第6、第12、第20、第30、第40、第44、第47、第53天仔稚鱼样品。研究发现主要消化酶在出膜时或卵黄期即可检测出活力。碱性蛋白酶和酸性蛋白酶分别在出膜后3d(3DAH)和刚出膜时(0DAH)检测出活力。碱性蛋白酶活力在44DAH达到最大值[(1.96±0.09)U/fish],47DAH出现下降,但在53DAH开始上升,比活力在53DAH达到最大值[(8.84±0.59)U/mg protein]。酸性蛋白酶在44DAH达到最大值[(0.52±0.05)U/fish],比活力在6DAH出现第一个峰值[(2.08±0.09)U/mg protein],并在30DAH出现最小值[(0.83±0.06)U/mg protein]。试验期间碱性蛋白酶活力高于酸性蛋白酶。在12DAH—40DAH期间α-淀粉酶活力相对稳定,并在47DAH达到最大值[(0.42±0.03)U/fish],比活力在12DAH出现一个峰值[(1.18±0.12)U/mg protein],并于47DAH出现最大值[(1.94±0.16)U/mg protein]。发育早期脂肪酶活力较高,活力和比活力分别在30DAH[(0.20±0.02)U/fish]和6DAH[(2.28±0.22)U/mg protein]出现最大值。碱性磷酸酶活力变化趋势与比活力变化趋势相似,但是最大值分别出现在44DAH[(0.08±0.00)U/fish]和30DAH[(1.96±0.15)U/mg protein]。酸性磷酸酶活力在3DAH出现一个峰值[(0.01±0.00)U/fish],之后显著升高,并在44DAH达到最大值[(0.05±0.00)U/fish],其比活分别在30DAH[(1.19±0.10)U/mg protein]和44DAH[(1.10±0.08)U/mg protein]出现两个峰值。结果表明,蛋白酶、α-淀粉酶和磷酸酶随个体发育活力增加,碱性蛋白酶在个体发育早期对蛋白质的消化具有重要作用。养殖环境发生改变时,酸性蛋白酶、α-淀粉酶、碱性磷酸酶和酸性磷酸酶活力在生长减慢时增加,生长加快时降低,而脂肪酶活力则维持稳定。  相似文献   

5.
复合酶制剂EA-2对鲤生长的影响   总被引:2,自引:0,他引:2  
利用复合酶制剂EA-2在池溏中饲养鲤50d,实验组鲤尾增重率高于对照组12.3—27.5%,而饲料系数低于对照组18.76—10.89%。实验组鲤肝胰脏淀粉酶活力显著增加,而肝、胰脏蛋白酶活力显著降低,实验组鲤肠内蛋白酶活力和淀粉酶活力均显著增加。酶制剂对鲤肥满度、肝胰比、内脏比、肝胰脏和背部肌肉的生化成份均无显著影响。  相似文献   

6.
试验旨在研究饲料中添加植酸酶对斑点叉尾 [初始平均体重(1.70±0.04) g]生长性能及植酸磷利用的影响, 确定植酸酶的磷当量。试验采用单因素试验设计, 以 Ca(H2PO4)2提供外源无机磷, 同时添加不同浓度植酸酶, 试验设计为 10 个处理组, 分别为 1 个对照试验组、4 个无机磷试验组(0.3%、0.5%、0.8%、1.2%)和 5 个植酸酶试验组(300、500、1000、1500、2000 U/kg), 每个处理 3 个重复, 每个重复 30 尾鱼。通过折线模型确定植酸酶的最佳添加量; 通过回归分析, 建立响应指标(特定生长率、椎骨磷)与外源磷添加量之间的线性关系, 进而确定植酸酶的磷当量值。结果表明: (1)添加植酸酶的处理组与对照组相比, 增重率、特定生长率、蛋白质效率、肥满度均有显著提高(P<0.05), 饲料系数、肝体比、脏体比均有下降(P<0.05), 成活率各处理组没有显著差别(P>0.05); 鱼体粗蛋白、粗灰分、钙、磷及椎骨粗灰分、钙、磷均有显著提高(P<0.05), 鱼体粗脂肪含量有所下降。(2)无机磷添加水平与响应指标之间线性关系如下: Y1=0.2714X+2.294(X-无机磷, Y1-特定生长率, R2=0.9238), 300、500、1000、1500 和 2000 U/kg 植酸酶分别可替代 1 kg 饲料中 0.13%、0.57%、0.76%、1.46% 和 1.35% 的 磷 酸 二 氢 钙 , 等 效 于 添 加 了 0.03% 、 0.14% 、 0.19% 、 0.36% 和 0.33% 的 有 效 磷 ;Y2=0.8737X+5.1028(X-无机磷, Y2-椎骨磷, R2=0.9638), 300、500、1000、1500 和 2000 U/kg 植酸酶分别可替代1 kg 饲料中 0.47%、1.11%、1.18%、1.38%和 1.41%的磷酸二氢钙, 等效于添加了 0.12%、0.27%、0.29%、0.34%和 0.35%的有效磷。在试验条件下, 添加 1000―2000 U/kg 植酸酶能有效改善斑点叉尾 生长性能, 有利于营养物质在鱼体中的沉积, 促进骨骼矿化。以特定生长率为响应指标, 植酸酶最佳添加量为 1435 U/kg等效于添加了 0.37%的有效磷; 以椎骨磷为响应指标, 植酸酶最佳添加量为 1226 U/kg 等效于添加了 0.33%的有效磷。  相似文献   

7.
在无鱼粉低磷饲料中添加中性蛋白酶、中性植酸酶, 考察对建鲤(Cyprinus carpio var. Jian)生长、营养物质消化率和沉积率、血浆生化指标及肠道组织学的影响。配制含鱼粉5%和磷酸二氢钙1.5%的正对照饲料、无鱼粉饲料、无鱼粉低磷饲料(磷酸二氢钙1.0%)和在无鱼粉饲料中添加175 mg/kg蛋白酶, 在无鱼粉低磷饲料中添加175 mg/kg蛋白酶+300 mg/kg植酸酶的5组等蛋白饲料, 饲喂初始体重为(52.5±2.0) g的建鲤10周。结果表明: 对照组具有最高增重率和最低饲料系数(P<0.05), 无鱼粉饲料和无鱼粉低磷饲料组的增重率、蛋白质和磷沉积率、蛋白质和钙消化率均显著下降(P<0.05); 在无鱼粉饲料中添加蛋白酶后, 提高了建鲤增重率13.1%(P<0.05), 达到和对照组基本一致的水平; 显著提高了蛋白质、钙消化率和肠绒毛高度, 降低了饲料系数(P<0.05); 在无鱼粉低磷饲料中添加蛋白酶和植酸酶后, 显著提高了脂肪、蛋白质、磷沉积率和蛋白质、钙、磷消化率(P<0.05), 增加了前肠绒毛长度和隐窝深度(P<0.05), 提高了血浆磷浓度(P<0.05)。以上结果表明, 在全植物性蛋白饲料中添加蛋白酶, 在全植物蛋白的低磷饲料中同时添加蛋白酶和植酸酶可以促进建鲤生长, 提高对营养物质的消化率和沉积率, 促进肠道生长发育。  相似文献   

8.
草鱼、鲤、鲢、鳙肝胰脏和肠蛋白酶的最适pH值分别为8.7、8.7、7.6、7.6和8.4、8.7、8.0、8.4。草鱼、鲤和尼罗罗非鱼的肝胰脏蛋白酶活性比肠的高;鲢和鳙的肝胰脏蛋白酶的活性却比肠的低;尼罗罗非鱼胃的蛋白酶活性明显高于肝胰脏和肠的。草鱼、鲤和尼罗罗非鱼的肝胰脏蛋白酶活性明显高于鲢和鳙的;5种鱼的肠蛋白酶活性,鲤最高,尼罗罗非鱼最低,草鱼、鲢、鳙和尼罗罗非鱼间蛋白酶活性无明显差异。草鱼、鲤、鲢和尼罗罗非鱼的肠蛋白酶活性由前向后递减,而鳙的则以中肠活性最高。  相似文献   

9.
为研究三丁酸甘油酯(tributyrin, TB)对异育银鲫生长和免疫的影响,以基础饲料作为对照,分别在基础饲料中添加0.5 g/kg、1 g/kg、1.5 g/kg、2 g/kg TB配制成4种实验饲料。实验选择健康、体重相近(43.58±1.6) g的异育银鲫450尾,随机分为5组,每组3个重复,每个重复30尾。预试期2周,正试期8周,实验结束后检测其生长性能和免疫指标。结果表明:各实验组异育银鲫的增重率、特定生长率与对照组相比都得到提高,其中添加1 g/kg TB效果最佳,显著降低了饵料系数(p0.05)。各实验组的头肾和脾脏指数在添加量为0.5~1.0 g/kg范围内显著高于对照组(p0.05)。各实验组的肝胰脏中一氧化氮含量均低于对照组、过氧化氢酶含量均高于对照组,且除2 g/kg TB外其他实验组均差异显著(p0.05);肝胰脏中超氧化物歧化酶活性在添加量为1 g/kg和1.5 g/kg显著高于对照组(p0.05),超过2 g/kg时则会抑制其活性,但差异不显著(p0.05);各实验组的肝胰脏中丙二醛和溶菌酶的含量均低于对照组,且在添加量为1 g/kg TB时差异显著(p0.05)。综合来看,添加适量的TB能提高异育银鲫的生长性能,增强其免疫能力,当添加量为1.02 g/kg时效果最佳。  相似文献   

10.
以含不同浓度黄曲霉毒素B1(AFB1)(0、10、20、100、1000和5000 μg/kg饲料)的6种等氮等能(32.96%蛋白质, 14.55 kJ/g能量)配合饲料饲喂平均初始体质量为(2.90±0.16) g草鱼(Ctenopharyngodon idellus)幼鱼84d, 探讨AFB1对草鱼幼鱼生长、肝胰脏和肾脏组织结构以及鱼体肌肉中的毒素积累的影响。实验分为6个实验组, 每组3个平行。结果表明, 在整个实验过程中各实验组幼鱼的行为均未表现出异常, 各组幼鱼的存活率、终末体重、摄食率、特定生长率、饲料效率、肝体比、脏体比均无显著差异。饲料AFB1水平对草鱼幼鱼血清谷丙转氨酶(ALT)、谷草转氨酶(AST)、碱性磷酸酶(AKP)、超氧化物岐化酶(SOD)和谷胱甘肽过氧化物酶(GSH-Px)活性均无显著影响。各毒素组和对照组肝胰脏、肾脏组织学观察中未发现病理变化。摄食AFB1≤1000 μg/kg的草鱼幼鱼肌肉中未检测出AFB1残留, 仅在5000 μg/kg实验组中检测出肌肉中含有(1.21±0.18) μg/kg的AFB1, 低于FDA食品安全限定标准。由此可见, 草鱼幼鱼至少可耐受AFB1含量达5000 μg/kg饲料(实测值: 4979.2 μg/kg饲料) 84d。  相似文献   

11.
用不加枯草芽孢杆菌的对照饲料和分别添加2×106、2×107、2×108和5×108 cfu/g枯草芽孢杆菌的4种实验饲料, 分别喂养初始均重为(4.16±0.03) g的5组三重复的青鱼鱼种8周。饲养试验在15只容积为80 L循环式水簇箱内进行, 水温控制为(25±0.5) ℃。结果表明: 饲料中添加枯草芽孢杆菌的实验组青鱼鱼体终重和鱼体增重比不添加的饲料组显著提高, 而饲料系数则显著降低(P<0.05), 不同枯草芽孢杆菌添加量对青鱼鱼体增重和饲料系数均无显著影响(P>0.05)。饲料中添加枯草芽孢杆菌对青鱼的成活率无显著影响(P>0.05)。青鱼摄食添加枯草芽孢杆菌的实验饲料后其肠蛋白酶活性比不添加组显著升高(P<0.05), 并随着枯草芽孢杆菌添加量的增加而显著上升(P<0.05), 但添加量到2×107 cfu/g后继续增加则不再显著变化(P>0.05)。青鱼摄食添加枯草芽孢杆菌的实验饲料后, 其肠淀粉酶活性均比不添加组显著升高(P<0.05), 且随枯草芽孢杆菌添加量增大呈不断升高的趋势。青鱼摄食添加2×107、2×108和5×108 cfu/g枯草芽孢杆菌的饲料后, 其肝胰脏蛋白酶活性显著高于摄食不添加或添加2×106 cfu/g枯草芽孢杆菌的实验组(P<0.05)。青鱼摄食添加枯草芽孢杆菌的实验饲料后, 其肝胰脏淀粉酶、肝胰脏脂肪酶和肠脂肪酶的活性均与不添加的实验组无显著差异(P>0.05)。青鱼鱼种摄食添加枯草芽孢杆菌的饲料与摄食不添加枯草芽孢杆菌的饲料相比, 其全鱼营养组成均无显著差异(P>0.05)。因此, 在实验条件下, 饲料中添加2×106—5×108 cfu/g的枯草芽孢杆菌能促进青鱼鱼种的生长和降低饲料系数, 而对鱼体组成没有影响。  相似文献   

12.
研究了长期饥饿对草鱼(Ctenopharyngodon idellus)非特异性免疫水平的影响。实验选取平均体质量(31.86±1.47)g的草鱼,随机分为2个实验组(对照组和饥饿组),每组3个平行,饥饿处理15、30、45和60 d,测定饥饿对草鱼头肾和脾中自然杀伤(NK)细胞的杀伤活性、血清和肝胰脏中溶菌酶活性、血清中碱性磷酸酶活性的影响。结果表明:受饥饿胁迫的影响,草鱼自然杀伤性细胞在脾和头肾中的杀伤活性显著低于对照组(P0.05)且不随着饥饿时间的延长发生显著性变化;随着饥饿时间的延长,血清和肝胰脏中溶菌酶呈现先升高后降低的趋势,血清碱性磷酸酶在饥饿15、45、60 d时显著低于对照组;饥饿组的碱性磷酸酶活性在饥饿30 d以后,维持恒定。由此可见,长时间的饥饿胁迫降低了草鱼的免疫水平。相比较而言,自然杀伤细胞的杀伤活性在反映鱼类免疫状况时比溶菌酶和碱性磷酸酶可能更为灵敏。  相似文献   

13.
It has been shown that protease activity increases and amylase activity decreases from the first to the fifth intestinal segment of pike, while lipase and esterase activities vary within fairly narrow limits. The level of proteolytic enzyme activities increases in pikes infected with Triaenophorus nodulosus (Pallas), but the invasion has no effect on amylase, lipase, or esterase activities. The T. nodulosus infection of pike had no substantial influence on glycogen or protein content in the hepatopancreas of fish. However, it was noted that the ratio of protease and amylase activities in the intestines changed toward an increase in the share of proteases and the share of protein in the hepatopancreas of infected fish.  相似文献   

14.
Supplementation with phytase is an effective way to increase the availability of phosphorus in seed-based animal feed. The biochemical characteristics of an ideal phytase for this application are still largely unknown. To extend the biochemical characterization of wild-type phytases, the catalytic properties of a series of fungal phytases, as well as Escherichia coli phytase, were determined. The specific activities of the fungal phytases at 37°C ranged from 23 to 196 U · (mg of protein)−1, and the pH optima ranged from 2.5 to 7.0. When excess phytase was used, all of the phytases were able to release five phosphate groups of phytic acid (myo-inositol hexakisphosphate), which left myo-inositol 2-monophosphate as the end product. A combination consisting of a phytase and Aspergillus niger pH 2.5 acid phosphatase was able to liberate all six phosphate groups. When substrate specificity was examined, the A. niger, Aspergillus terreus, and E. coli phytases were rather specific for phytic acid. On the other hand, the Aspergillus fumigatus, Emericella nidulans, and Myceliophthora thermophila phytases exhibited considerable activity with a broad range of phosphate compounds, including phenyl phosphate, p-nitrophenyl phosphate, sugar phosphates, α- and β-glycerophosphates, phosphoenolpyruvate, 3-phosphoglycerate, ADP, and ATP. Both phosphate liberation kinetics and a time course experiment in which high-performance liquid chromatography separation of the degradation intermediates was used showed that all of the myo-inositol phosphates from the hexakisphosphate to the bisphosphate were efficiently cleaved by A. fumigatus phytase. In contrast, phosphate liberation by A. niger or A. terreus phytase decreased with incubation time, and the myo-inositol tris- and bisphosphates accumulated, suggesting that these compounds are worse substrates than phytic acid is. To test whether broad substrate specificity may be advantageous for feed application, phosphate liberation kinetics were studied in vitro by using feed suspensions supplemented with 250 or 500 U of either A. fumigatus phytase or A. niger phytase (Natuphos) per kg of feed. Initially, phosphate liberation was linear and identical for the two phytases, but considerably more phosphate was liberated by the A. fumigatus phytase than by the A. niger phytase at later stages of incubation.  相似文献   

15.
A feeding trial was conducted to study the effect of partial replacement of dietary monocalcium phosphate (MCP) with phytase on growth performance, feed utilization and phosphorus discharge in black sea bream, Acanthopagrus schlegelii. In the feeding trial, the control diet (designated as P1.5) was prepared with 1.5% MCP but without phytase, and the three other diets (designated as PP1.0, PP0.5 and PP0, respectively) were supplemented with 1.0%, 0.5% and 0% MCP, respectively, along with 200 mg (400 U) phytase/kg diet in each. Each diet was tested in triplicate tanks and fish were fed twice daily to satiation. After an 8‐week feeding trial in indoor flow‐through cylindrical fibreglass tanks (25 fish per tank, initial body weight: 11.5 ± 0.12 g), fish fed with PP1.0 and PP0.5 had no significant change in weight gain (WG), specific growth rate (SGR), protein efficiency rate (PER) or feed conversion ratio (FCR) compared to the control (p > .05), whereas fish fed with PP0 showed a significantly lower growth performance in the above parameters (p < .05). The addition of phytase did not affect the body composition or muscle composition. The apparent digestibility coefficients (ADCs) of crude protein and phosphorus increased when fish were fed diets in which MCP was replaced by phytase. Phosphorus discharge was also significantly reduced in fish fed diets in which MCP was replaced by phytase (10.2 ± 0.50 to 8.01 ± 0.47 g/kg weight gain). The present study suggests that dietary MCP can be reduced when phytase is added to the black sea bream diet, with a maximum MCP reduction level of up to 1% when phytase is supplemented at 200 mg (400 U)/kg diet. Thus, phytase in the diet of black sea bream is economically and ecologically beneficial.  相似文献   

16.

Background:

Degradation of phytic acid to inorganic phosphate in domestic animals’ diets requires thermostable phytase. Although Basillus subtilis phytase shows a potential to be degraded phytate complex in high temperature, the enzyme activities and yields need to be increased to make them possible for industrial application.

Methods:

The phytase gene from Bacillus subtilis DR8886 was isolated from Dig Rostam hot mineral spring in Iran and cloned into pET21(+) and pET32(+). Expression was induced with 1.5 mM IPTG and the proteins were purified.

Results:

The recombinant protein affected by thioredoxin (Trx) from pET32a-PhyC was estimated to constitute about 31% of the total soluble protein in the cells; its concentration was 3.5 µg/ml, and its maximal phytase activity was 15.9 U/ml, whereas the recombinant phytase from pET21a-PhyC was estimated to comprise about 19% of the total soluble protein; its concentration was 2.2 µg/ml, and its maximal phytase activity was 69 U/ml. The molecular masses of recombinant phytase with and without Trx were about 60 kDa and 42 kDa, respectively. Zymography confirmed that the recombinant enzymes were active. Although the concentration of the alkaline phytase expressed by pET32a was approximately 59% greater than that expressed by pET21, its phytase activity was approximately 77% less.

Conclusion:

This study showed that the peripheral gene (Trx) encoded by the pET32a (+) vector are the principal reason for the decrease in recombinant phytase enzyme activity.Key Words: Bacillus subtilis DR8806, PhyC Gene, Thioredoxin  相似文献   

17.
大头鲤(Cyprinus pellegrini)是一种云南高原湖泊特有的国家Ⅱ级重点保护鱼类。土著种大头鲤与外来种鲤(C.carpio)的渐渗杂交在星云湖野生种群中已经广泛发生。本研究结合形态和微卫星及线粒体DNA分析检测了螺蛳铺大头鲤原种种群的遗传现状。结果显示,螺蛳铺大头鲤样本所有个体在形态上位于大头鲤与鲤的参照样本之间;在微卫星因子对应分析中也显示,其位于大头鲤与鲤的参照样本之间,但与大头鲤参照样本较为相似;在线粒体DNA分析中显示,都具有鲤的单倍型。中间性形态特征以及核基因组成与线粒体基因组成的不一致现象,表明螺蛳铺大头鲤样本均为杂种个体。因此,螺蛳铺大头鲤原种种群可能是一个杂种种群,有必要重新建立大头鲤人工繁殖计划。  相似文献   

18.
The present study investigated the effects of prebiotic fructooligosaccharide (FOS) on the innate immune response, stress resistance, digestive enzyme activities, growth factors and survival of Caspian Roach (Rutilus rutilus) fry. After acclimation, fish (0.67 ± 0.03 g) were allocated into 12 tanks (50 fish per tank) and triplicate groups were fed a control diet or diets containing 1%, 2% or 3% FOS. At the end of the trial (7 weeks), humoral innate immune parameters (serum Ig levels, lysozyme activity and alternative complement activity (ACH50)), resistance to salinity stress (150 g L−1), digestive enzyme activities (amylase, lipase and protease) and growth factors (final weight, weight gain, specific growth rate (SGR), food conversion ratio (FCR), and condition factor) were assessed. At the end of the study the innate immune responses (Ig levels, lysozyme activity and ACH50) were significantly higher in 2% and 3% FOS fed fish (P < 0.05), whereas, 1% dietary FOS only elevated serum lysozyme activity. All dietary FOS levels significantly increased resistance to a salinity stress challenge (P < 0.05) and highest survival was observed in the 3% FOS group. Similarly, digestive enzyme activities were significantly elevated with increasing levels of dietary FOS (P < 0.05). Subsequently, elevated growth performance (final weight, SGR and FCR) was observed in roach fed 2% and 3% FOS compared to the control group (P < 0.05). These results indicate that FOS can be considered as a beneficial dietary supplement for improving the immune response, stress resistance, digestive enzyme activities and growth performance of Caspian roach fry.  相似文献   

19.
The present experiment was conducted to study effects of Cu, Fe and Zn on activities of digestive enzymes of the hybrid tilapia Oreochromis niloticus×Oreochromis aureus. The acidic protease activities increased 65·5 and 55·1% by addition of homogenates of digesta‐containing stomach with copper (75 mg l−1) and zinc (50 mg l−1) respectively. Addition of Cu and Zn increased the activities of protease in the hepatopancreas homogenates by 132·7 and 38·1% respectively, and reduced the activity of protease in the digesta‐containing intestine homogenates by 11·0 and 13·8% respectively. Addition of Fe (50 mg l−1) increased the acidic protease activity by 96·7% but did not alter the activities of protease in the intestine and hepatopancreas. Addition of Cu markedly inhibited activities of amylase in intestine and hepatopancreas homogenates, while Zn addition showed no effects. Addition of Fe reduced activities of amylase in the intestine homogenates by 47·9% but had no effect on amylase activities in the hepatopancreas. When Cu (75 mg kg−1), Fe (50 mg kg−1) and Zn (50 mg kg−1) were supplemented to basal diet for 3 weeks, the activities of amylase in hepatopancreas homogenates increased 125·3, 215·6 and 70·0%, respectively, the activities of amylase in intestine increased 79·8, 74·6 and 48·5%, respectively, and the activities of lipase in intestine increased 90·5, 149·8 and 84·0%, respectively. Supplementation of Cu, Fe or Zn into diet had no effects on activity of protease in all digestive organs. Therefore, the results suggest that effects of Cu, Fe and Zn on activity of digestive enzymes in vitro were different from those seen in vivo, and that the positive effects of Cu, Fe and Zn supplemented to fish diet would be valuable information for formulating fish feed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号