首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 113 毫秒
1.

Aims

Litter decomposition and subsequent nutrient release play a major role in forest carbon and nutrient cycling. To elucidate how soluble or bulk nutrient ratios affect the decomposition process of beech (Fagus sylvatica L.) litter, we conducted a microcosm experiment over an 8 week period. Specifically, we investigated leaf-litter from four Austrian forested sites, which varied in elemental composition (C:N:P ratio). Our aim was to gain a mechanistic understanding of early decomposition processes and to determine microbial community changes.

Methods

We measured initial litter chemistry, microbial activity in terms of respiration (CO2), litter mass loss, microbial biomass C and N (Cmic and Nmic), non purgeable organic carbon (NPOC), total dissolved nitrogen (TDN), NH4 +, NO3 - and microbial community composition (phospholipid fatty acids – PLFAs).

Results

At the beginning of the experiment microbial biomass increased and pools of inorganic nitrogen (N) decreased, followed by an increase in fungal PLFAs. Sites higher in NPOC:TDN (C:N of non purgeable organic C and total dissolved N), K and Mn showed higher respiration.

Conclusions

The C:N ratio of the dissolved pool, rather than the quantity of N, was the major driver of decomposition rates. We saw dynamic changes in the microbial community from the beginning through the termination of the experiment.  相似文献   

2.

Background and aims

Soil microbial responses to global change can affect organic matter turnover and nutrient cycling thereby altering the overall ecosystem functioning. In a large-scale experiment, we investigated the impact of 5 years of climate change and elevated atmospheric CO2 on soil microorganisms and nutrient availability in a temperate heathland.

Methods

The future climate was simulated by increased soil temperature (+0.3 °C), extended pre-summer drought (excluding 5–8 % of the annual precipitation) and elevated CO2 (+130 ppm) in a factorial design. Soil organic matter and nutrient pools were analysed and linked to microbial measures by quantitative PCR of bacteria and fungi, chloroform fumigation extraction, and substrate-induced respiration to assess their impact of climate change on nutrient availability.

Results

Warming resulted in higher measures of fungi and bacteria, of microbial biomass and of microbial growth potential, however, this did not reduce the availability of nitrogen or phosphorus in the soil. Elevated CO2 did not directly affect the microbial measures or nutrient pools, whereas drought shifted the microbial community towards a higher fungal dominance.

Conclusions

Although we were not able to show strong interactive effects of the global change factors, warming and drought changed both nutrient availability and microbial community composition in the heathland soil, which could alter the ecosystem carbon and nutrient flow in the long-term.  相似文献   

3.
No-till reduces global warming potential in a subtropical Ferralsol   总被引:1,自引:0,他引:1  

Aims

We investigated the link between tree community composition and soil microbial community biomass and structure in central-eastern Spain.

Methods

The effects of the forest stand composition on the soil organic matter dynamics and on the structure and activity of the soil microbial community have been determined using phospholipid fatty acid profiles and soil enzymatic activities.

Results

The soil and litter N and C contents were higher in Pinus nigra Arn. ssp. salzmannii and Quercus ilex mixed forest stands (SBHO) and in long-term unmanaged Pinus nigra Arn. ssp. salzmannii forest stands (SBPC) than in pure Pinus nigra Arn. ssp. salzmannii forest stands (SBPA) and Pinus nigra Arn. ssp. salzmannii and Juniperus thurifera mixed forest stands (SBSJ). The bacterial biomass was significantly higher in SBSJ and SBPA than in SBPC and SBHO. The results show an uncoupling of the soil microbial biomass and its activity. pH is related to microbial biomass and its community structure under a Mediterranean humid climate.

Conclusions

The tree species seem to affect the biomass of the soil microbial community and its structure. The pH, but not the C/N ratio, is a factor influencing the microbial dynamics, biomass, and community structure.  相似文献   

4.

Background and aims

Invasion by N2-fixing species may alter biogeochemical processes. We hypothesized that the grade of invasion by the N2-fixer black locust (Robinia pseudoacacia L.) could be related to the distribution and pools of carbon (C) and nitrogen (N) along the profile of two Mediterranean mixed forests of stone pine (Pinus pinea L.) and holm oak (Quercus ilex L.).

Methods

A low-invaded (LIN) and a high-invaded (HIN) mixed forest were studied. We assessed: N concentration in green and in senescent leaves; C and N pools along the soil profile; seasonal changes of soluble C and N fractions, and microbial activity.

Results

Compared to coexisting holm oak and stone pine, black locust had higher N content in green and in senescent leaves. In the mineral soil: N stocks were similar in LIN and HIN; water soluble C and microbial activity, were lower in HIN compared to LIN; water soluble N showed seasonal changes consistent with tree growth activity in both HIN and LIN. In the organic layer of HIN, C and N stocks were about twofold larger than expected on the basis of stand density.

Conclusion

Black locust increased C and N stocks in the upper organic layers that are more vulnerable to disturbance. However, it did not increase N stocks in the mineral soil.  相似文献   

5.
In Mediterranean ecosystems the effect of aboveground and belowground environmental factors on soil microbial biomass and nutrient immobilization-release cycles may be conditioned by the distinctive seasonal pattern of the Mediterranean-type climates. We studied the effects of season, canopy cover and soil depth on microbial C, N and P in soils of two Mediterranean forests using the fumigation-extraction procedure. Average microbial values recorded were 820 μg C g?1, 115 μg N g?1 and 19 μg P g?1, which accounted for 2.7, 4.7 and 8.8% of the total pools in the surface soil, respectively. Microbial N and P pools were about 10 times higher than the inorganic N and P fractions available for plants. Microbial C values differed between forest sites but in each site they were similar across seasons. Both microbial and inorganic N and P showed maximum values in spring and minimum values in summer, which were positively correlated with soil moisture. Significant differences in soil microbial properties among canopy cover types were observed in the surface soil but only under favourable environmental conditions (spring) and not during summer. Soil depth affected microbial contents which decreased twofold from surface to subsurface soil. Microbial nutrient ratios (C/N, C/P and N/P) varied with seasons and soil depth. Soil moisture regime, which was intimately related to seasonality, emerged as a potential key factor for microbial biomass growth in the studied forests. Our research shows that under a Mediterranean-type climate the interaction among season, vegetation type and structure and soil properties affect microbial nutrient immobilization and thus could influence the biogeochemical cycles of C, N and P in Mediterranean forest ecosystems.  相似文献   

6.
Forest fragmentation in tropical ecosystems can alter nutrient cycling in diverse ways. We have analysed the effects of the forest-pasture edge on nutrient soil dynamics in a tropical deciduous forest (TDF) in Mexico. In two remnant forest fragments, both larger than 10 ha, litterfall, litter and soil samples associated to the tree Caesalpinia eriostachys were collected at five distances from the pasture edge into the inner forest (10 m in the pasture and 0–10, 30–40, 70–80 and 100–110 m towards the forest interior). We measured the concentrations of carbon (C), nitrogen (N) and phosphorus (P) in litterfall, surface litter and soil, and soil microbial C (Cmic) and microbial N (Nmic). Soil nutrient concentrations and Cmic and Nmic were lower in the pasture soils than in the forest soil samples. Total C and N pools, and Cmic and Nmic in the pasture were lower than in the forest. In contrast, net N immobilization and the increase in Nmic from rain to dry season increased from the edge to the inner forest. Soil P concentration was lower in the pasture and at the first distance class in the forest margin (0–10 m) than in the sites located further into the forest, while litter P concentration had the inverse pattern. Litterfall P was also reduced near the edge and increased towards the forest interior. As a consequence, litterfall C:P and N:P ratios decreased from the edge to the inner forest. These results suggest that the forest–pasture edge disrupts P dynamics within the first 10 m in the forest. Thus, plants' use of nutrients and productivity could be altered in the edge of fragmented forests.  相似文献   

7.

Context

In acidic forest soils, aluminium can alter tree health due to its potential toxicity. Aluminium phytotoxicity is mainly influenced by its chemical form and its availability.

Methods

As physical-chemical indicators of Al toxicity in soil, Al speciation in soil solutions and in the exchange complex was measured in the rhizosphere and the bulk soil of two tree species (Norway spruce (Picea abies (L.) Karst.) and European Beech (Fagus sylvatica L.) in an acidic soil and in 4 months (November, February, May and August) representing the four seasons in a year.

Results

In the bulk soil, Al toxicity was generally higher under Norway spruce than under beech. Furthermore, temporal changes in Al behaviour were identified under Norway spruce but not under beech. The monomeric Al in the soil solutions and the exchangeable Al in the solid soil increased significantly in February under Norway spruce and were positively correlated with nitrate concentration, suggesting that nitrate influence Al speciation and mobility under Norway spruce. In the rhizosphere, Al toxicity was restricted through Al complexation by organic compounds and by nutrient contents independently from the season. The ecological importance of the rhizosphere in Al detoxification is discussed.

Conclusions

This study suggests that plant specific differences as well as seasonal changes in plant physiology, microbial activity and microclimatology influence aluminum toxicity in acid forest soils.  相似文献   

8.

Backgrounds and aims

In Mediterranean frequently burnt areas, the decrease of soil fertility leads to regressive vegetation dynamics. Organic amendments could help to accelerate post-fire ecosystem resilience, by improving soil properties and plant nutrition. This study was conducted to assess the potential of a composted biosolid to restore an early post-fire shrubland.

Methods

About 50 Mg.ha?1 of fresh co-composted sewage sludge and green wastes were surface applied 7 months after fire on a silty-clayey soil. We monitored over a 2-year period organic matter and nutrient transfers to soil, nutrient responses of dominant plant species, and ecosystem contamination by potentially toxic trace elements.

Results

Over the experimental survey, compost rapidly and durably improved soil P2O5, MgO and K2O content, and temporarily increased N-(NO3 ? + NO2 ?) content. Plant nutrition was improved more or less durably depending species. The most positive compost effect was on plant and soil phosphorus content. Plant nutrient storage was not improved 2 years after amendment, suggesting luxury consumption. No contamination by trace elements was detected in soil and plant.

Conclusions

The use of compost after fire could help for rapidly restoring soil fertility and improving plant nutrition. The increase of soil nutrient pools after amendment emphazised the diversity of plant nutritional traits. Eutrophication risk could occur from high compost and soil P2O5 content.  相似文献   

9.

Background and aims

Future climate scenarios for the Mediterranean imply increasing precipitation variability. This study presents a large-scale water manipulation experiment simulating changes in precipitation variability, aiming at a better understanding of the effects of rainfall patterns on soil C and N cycling and understorey productivity in a Mediterranean oak woodland.

Methods

We used rain-out shelters to achieve (1) a normal dry period (7 days), and (2) a dry period increased three-fold (21 days), without altering total annual precipitation inputs.

Results

The temporal patterns of soil respiration (R s) and soil inorganic N were not affected by treatment. However, water infiltration and N leaching increased with large infrequent watering events. R s and soil NH4 +-N correlated with soil temperature, with soil NO3 ?-N being influenced by leaching.

Conclusions

The lack of significant treatment effects on either R s or soil inorganic N can be explained by (1) minor differences in plant productivity between the treatments, suggesting equal plant N demand, and (2) the absence of moisture dependence of R s and soil NH4 +-N. Increased N leaching with large infrequent precipitation events may have longer-term consequences for ecosystem functioning. Our results contribute to an improved understanding of possible climate change effects on key ecosystem processes in Mediterranean ecosystems.  相似文献   

10.

Background and Aims

Mediterranean forests are vulnerable to numerous threats including wildfires due to a combination of climatic factors and increased urbanization. In addition, increased temperatures and summer drought lead to increased risk of forest fires as a result of climate change. This may have important consequences for C dynamics and balance in these ecosystems. Soil respiration was measured over 2 successive years in Holm oak (Quercus ilex subsp. ballota; Qi); Pyrenean Oak (Quercus pyrenaica Willd; Qp); and Scots pine (Pinus sylvestris L.; Ps) forest stands located in the area surrounding Madrid (Spain), to assess the long term effects of wildfires on C efflux from the soil, soil properties, and the role of soil temperature and soil moisture in the variation of soil respiration.

Methods

Soil respiration, soil temperature, soil moisture, fine root mass, microbial biomass, biological and chemical soil parameters were compared between non burned (NB) and burned sites (B).

Results

The annual C losses through soil respiration from NB sites in Qi, Qp and Ps were 790, 1010, 1380 gCm?2?yr?1, respectively, with the B sites emitting 43 %, 22 % and 11 % less in Qi, Qp and Ps respectively. Soil microclimate changed with higher soil temperature and lower soil moisture in B sites after fire. Exchangeable cations and the pH also decreased. The total SOC stocks were not significantly altered, but 6–8 years after wildfires, there was still measurably lower fine root and microbial biomass, while SOC quality changed, indicated by lower the C/N ratio and the labile carbon and a relative increase in refractory SOC forms, which resulted in lower Q10 values.

Conclusions

We found long term effects of wildfires on the physical, chemical and biological soil characteristics, which in turn affected soil respiration. The response of soil respiration to temperature was controlled by moisture and changed with ecosystem type, season, and between B and NB sites. Lower post-burn Q10 integrated the loss of roots and microbial biomass, change in SOC quality and a decrease in soil moisture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号