首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) is an essential component of the entry apparatus that is responsible for viral penetration and subsequent cell-cell spread. To test the hypothesis that gD may serve distinguishable functions in entry of free virus and cell-cell spread, mutants were selected for growth on U(S)11cl19.3 cells, which are resistant to both processes due to the lack of a functional gD receptor, and then tested for their ability to enter as free virus and to spread from cell to cell. Unlike their wild-type parent, HSV-1(F), the variants that emerged from this selection, which were named SP mutants, are all capable of forming macroscopic plaques on the resistant cells. This ability is caused by a marked increase in cell-cell spread without a concomitant increase in efficiency of entry of free virus. gD substitutions that arose within these mutants are sufficient to mediate cell-cell spread in U(S)11cl19.3 cells but are insufficient to overcome the restriction to entry of free virions. These results suggest that mutations in gD (i) are sufficient but not necessary to overcome the block to cell-cell spread exhibited by U(S)11cl19.3 cells and (ii) are insufficient to mediate entry of free virus in the same cells.  相似文献   

2.
Enveloped animal viruses enter host cells either by direct fusion at neutral pH or by endocytosis. Herpes simplex virus (HSV) is believed to fuse with the plasma membrane of cells at neutral pH, and the glycoproteins gB and gD have been implicated in virus entry and cell fusion. Using cloned gB or gD genes, we show that cells expressing HSV-1 glycoproteins gB or gD can undergo fusion to form polykaryons by exposure only to acidic pH. The low pH-induced cell fusion was blocked in the presence of monoclonal antibodies specific to the glycoproteins. Infection of cells expressing gB or gD glycoproteins with HSV-1 inhibited the low pH-induced cell fusion. The results suggest that although the glycoproteins gB and gD possess fusogenic activity at acidic pH, other HSV proteins may regulate it such that in the virus-infected cell, this fusion activity is blocked.  相似文献   

3.
The UV-inactivated herpes simplex virus 1 (HSV-1) and glycoprotein D (gD) of HSV-1 have been shown to activate nuclear factor kappaB (NF-kappaB) in U937 cells, but mechanisms involved in this activation have not been elucidated. Here we report that: (i) UV-inactivated HSV-1 induced an increased NF-kappaB activation in cells expressing human HVEM (for herpesvirus entry mediator) at surface level, naturally or following stable transfection, but not in cells in which this receptor was not detected by flow cytometry analysis, (ii) treatment with soluble gD induced a dose-dependent NF-kappaB activation in THP-1 cells naturally expressing HVEM, and a monoclonal antibody that prevents binding of gD to HVEM significantly reduced NF-kappaB activation by soluble gD in the same cells, (iii) coculture with transfectants expressing wild-type gD on their surface induced an approximately twofold increase in NF-kappaB activation in cells naturally expressing HVEM, while coculture with transfectants expressing a mutated form of gD, lacking its capability to bind HVEM, did not induce a similar effect and (iv) treatment with soluble gD induced a dose-dependent NF-kappaB activation in CHO transfectants expressing HVEM, but not in control CHO transfectants lacking any functional gD receptor. Overall, these results establish that HVEM is involved in NF-kappaB activation by HSV-1 gD.  相似文献   

4.
Cells that express glycoprotein D (gD) of herpes simplex virus type 1 (HSV-1) resist infection by HSV-1 and HSV-2 because of interference with viral penetration. The results presented here show that both HSV-1 and HSV-2 gD can mediate interference and that various HSV-1 and HSV-2 strains differ in sensitivity to this interference. The relative degree of sensitivity was not necessarily dependent on whether the cell expressed the heterologous or homologous form of gD but rather on the properties of the virus. Marker transfer experiments revealed that the allele of gD expressed by the virus was a major determinant of sensitivity to interference. Amino acid substitutions in the most distal part of the gD ectodomain had a major effect, but substitutions solely in the cytoplasmic domain also influenced sensitivity to interference. In addition, evidence was obtained that another viral gene(s) in addition to the one encoding gD can influence sensitivity to interference. The results indicate that HSV-1 and HSV-2 gD share determinants required to mediate interference with infection by HSV of either serotype and that the pathway of HSV entry that is blocked by expression of cell-associated gD can be cleared or bypassed through subtle alterations in virion-associated proteins, particularly gD.  相似文献   

5.
Members of the herpesvirus family mature at inner nuclear membranes, although a fraction of the viral glycoproteins is expressed on the cell surface. In this study, we investigated the localization of herpes simplex virus type 2 (HSV-2) glycoproteins in virus-infected epithelial cells by using a panel of monoclonal antibodies directed against each of the major viral glycoproteins. All of the HSV-2 glycoproteins were localized exclusively on the basolateral membranes of Vero C1008, Madin-Darby bovine kidney, and mouse mammary epithelial cells. Using a monoclonal antibody to HSV-2 gD which cross-reacts with HSV-1 strains, we could also localize HSV-1 gD on the basolateral membranes of Madin-Darby bovine kidney cells. These results indicate that these molecules contain putative sorting signals that direct them to basolateral membrane domains.  相似文献   

6.
Yoon M  Spear PG 《Journal of virology》2002,76(14):7203-7208
Nectin-1, a cell adhesion molecule belonging to the immunoglobulin superfamily, can bind to virion glycoprotein D (gD) to mediate entry of herpes simplex viruses (HSV) and pseudorabies virus (PRV). Nectin-1 colocalizes with E-cadherin at adherens junctions in epithelial cells. The disruption of cell junctions can result in the redistribution of nectin-1. To determine whether disruption of junctions by calcium depletion influenced the susceptibility of epithelial cells to viral entry, Madin-Darby canine kidney cells expressing endogenous nectin-1 or transfected human nectin-1 were tested for the ability to bind soluble forms of viral gD and to be infected by HSV and PRV, before and after calcium depletion. Confocal microscopy revealed that binding of HSV and PRV gD was localized to adherens junctions in cells maintained in normal medium but was distributed, along with nectin-1, over the entire cell surface after calcium depletion. Both the binding of gD and the fraction of cells that could be infected by HSV-1 and PRV were enhanced by calcium depletion. Taken together, these results provide evidence that nectin-1 confined to adherens junctions in epithelial cells is not very accessible to virus, whereas dissociation of cell junctions releases nectin-1 to serve more efficiently as an entry receptor.  相似文献   

7.
Martinez WM  Spear PG 《Journal of virology》2001,75(22):11185-11195
One step in the process of herpes simplex virus (HSV) entry into cells is the binding of viral glycoprotein D (gD) to a cellular receptor. Human nectin-2 (also known as HveB and Prr2), a member of the immunoglobulin (Ig) superfamily, serves as a gD receptor for the entry of HSV-2, variant forms of HSV-1 that have amino acid substitutions at position 25 or 27 of gD (for example, HSV-1/Rid), and porcine pseudorabies virus (PRV). The gD binding region of nectin-2 is believed to be localized to the N-terminal variable-like (V) Ig domain. In order to identify specific amino acid sequences in nectin-2 that are important for HSV entry activity, chimeric molecules were constructed by exchange of sequences between human nectin-2 and its mouse homolog, mouse nectin-2, which mediates entry of PRV but not HSV-1 or HSV-2. The nectin-2 chimeric molecules were expressed in Chinese hamster ovary cells, which normally lack a gD receptor, and tested for cell surface expression and viral entry activity. As expected, chimeric molecules containing the V domain of human nectin-2 exhibited HSV entry activity. Replacement of either of two small regions in the V domain of mouse nectin-2 with amino acids from the equivalent positions in human nectin-2 (amino acids 75 to 81 or 89) transferred HSV-1/Rid entry activity to mouse nectin-2. The resulting chimeras also exhibited enhanced HSV-2 entry activity and gained the ability to mediate wild-type HSV-1 entry. Replacement of amino acid 89 of human nectin-2 with the corresponding mouse amino acid (M89F) eliminated HSV entry activity. These results identify two different amino acid sequences, predicted to lie adjacent to the C' and C" beta-strands of the V domain, that are critical for HSV entry activity. This region is homologous to the human immunodeficiency virus binding region of CD4 and to the poliovirus binding region of CD155.  相似文献   

8.
To investigate the interaction of herpes simplex virus type 1 (HSV-1) with the cell surface, we studied the formation of complexes by HSV-1 virion proteins with biotinylated cell membrane components. HSV-1 virion proteins reactive with surface components of HEp-2 and other cells were identified as gC, gB, and gD. Results from competition experiments suggested that binding of gC, gB, and gD occurred in a noncooperative way. The observed complex formation could be specifically blocked by monospecific rabbit antisera against gB and gD. The interaction of gD with the cell surface was also inhibited by monoclonal antibody IV3.4., whereas other gD-specific monoclonal antibodies, despite their high neutralizing activity, were not able to inhibit this interaction. Taken together, these data provide direct evidence that at least three of the seven known HSV-1 glycoproteins are able to form complexes with cellular surface structures.  相似文献   

9.
A mouse member of the immunoglobulin superfamily, originally designated the murine poliovirus receptor homolog (Mph), was found to be a receptor for the porcine alphaherpesvirus pseudorabies virus (PRV). This mouse protein, designated here murine herpesvirus entry protein B (mHveB), is most similar to one of three related human alphaherpesvirus receptors, the one designated HveB and also known as poliovirus receptor-related protein 2. Hamster cells resistant to PRV entry became susceptible upon expression of a cDNA encoding mHveB. Anti-mHveB antibody and a soluble protein composed of the mHveB ectodomain inhibited mHveB-dependent PRV entry. Expression of mHveB mRNA was detected in a variety of mouse cell lines, but anti-mHveB antibody inhibited PRV infection in only a subset of these cell lines, indicating that mHveB is the principal mediator of PRV entry into some mouse cell types but not others. Coexpression of mHveB with PRV gD, but not herpes simplex virus type 1 (HSV-1) gD, inhibited entry activity, suggesting that PRV gD may interact directly with mHveB as a ligand that can cause interference. By analogy with HSV-1, envelope-associated PRV gD probably also interacts directly with mHveB during viral entry.  相似文献   

10.
A baby hamster kidney [BHK(tk-)] cell line (US11cl19) which stably expresses the US11 and alpha 4 genes of herpes simplex virus 1 strain F [HSV-1(F)] was found to be resistant to infection with HSV-1. Although wild-type HSV-1(F) attached with normal kinetics to the surface of US11cl19 cells, most cells showed no evidence of infection and failed to accumulate detectable amounts of alpha mRNAs. The relationship between the expression of UL11 and resistance to HSV infection in US11cl19 cells has not been defined, but the block to infection with wild-type HSV-1 was overcome by exposing cells with attached virus on their surface to the fusogen polyethylene glycol, suggesting that the block to infection preceded the fusion of viral and cellular membranes. An escape mutant of HSV-1(F), designated R5000, that forms plaques on US11cl19 cells was selected. This mutant was found to contain a mutation in the glycoprotein D (gD) coding sequence that results in the substitution of the serine at position 140 in the mature protein to asparagine. A recombinant virus, designated R5001, was constructed in which the wild-type gD gene was replaced with the R5000 gD gene. The recombinant formed plaques on US11cl19 cells with an efficiency comparable to that of the escape mutant R5000, suggesting that the mutation in gD determines the ability of the mutant R5000 to grow on US11cl19 cells. The observation that the US11cl19 cells were slightly more resistant to fusion by polyethylene glycol than parental BHK(tk-) cells led to the selection and testing of clonal lines from unselected and polyethylene glycol-selected BHK(tk-) cells. The results were that 16% of unselected to as much as 36% of the clones selected for relative resistance to polyethylene glycol fusion exhibited various degrees of resistance to infection. The exact step at which the infection was blocked is not known, but the results illustrate the ease of selection of cell clones with one or more sites at which infection could be blocked.  相似文献   

11.
The BJ cell line which constitutively expresses herpes simplex virus 1 glycoprotein D is resistant to infection with herpes simplex viruses. Analysis of clonal lines indicated that resistance to superinfecting virus correlates with the expression of glycoprotein D. Resistance was not due to a failure of attachment to cells, since the superinfecting virus absorbed to the BJ cells. Electron microscopic studies showed that the virions are juxtaposed to coated pits and are then taken up into endocytic vesicles. The virus particles contained in the vesicles were in various stages of degradation. Viral DNA that reached the nucleus was present in fewer copies per BJ cell than that in the parental BHKtk- cells infected at the same multiplicity. Moreover, unlike the viral DNA in BHKtk- cells which was amplified, that in BJ cells decreased in copy number. The results suggest that the glycoprotein D expressed in the BJ cell line interfered with fusion of the virion envelope with the plasma membrane but not with the adsorption of the virus to cells and that the viral proteins that mediate adsorption to and fusion of membranes appear to be distinct.  相似文献   

12.
The receptors for entry of herpes simplex viruses 1 and 2 (HSV-1 and -2), widely expressed in human cell lines, are members of a subset of the immunoglobulin superfamily exemplified by herpesvirus entry mediator C (HveC) and the herpesvirus immunoglobulin-like receptor (HIgR). This report focuses on two members of this subset, herpesvirus entry mediator B (HveB), recently designated nectin2/PRR2alpha, and its splice variant isoform, nectin2/PRR2delta. Nectin2alpha and -delta share the ectodomain but differ in the transmembrane and cytoplasmic regions. HveB was reported to enable entry of HSV-1 carrying mutations in glycoprotein D (gD) and of HSV-2, but not of wild-type (wt) HSV-1. We report that (i) both nectin2alpha and -delta served as receptors for the entry of HSV-1 mutant viruses HSV-1(U10) and -(U21) and AP7(r) that carry the Leu25Pro substitution in gD but not for HSV-1 mutants U30 and R5000 that carry the Ser140 or Ala185 substitution in gD. All of these mutants were able to overcome the block to entry mediated by expression of wt gD. (ii) Infection of cells expressing nectin2alpha or -delta required exposure to multiplicities of infection about 100-fold higher than those required to infect cells expressing HveC or HIgR. (iii) gD from HSV-1(U21) bound in vitro soluble forms of nectin2. The association was weaker than that to the soluble form of HveC/HIgR. Binding of wt HSV-1 gD to soluble nectin2 was not detectable. (iv) A major region of nectin2 functional in virus entry mapped to the V domain, located at the N terminus.  相似文献   

13.
The entry of herpes simplex virus (HSV) into mammalian cells is a multistep process beginning with an attachment step involving glycoproteins gC and gB. A second step requires the interaction of glycoprotein gD with a cell surface molecule. We explored the interaction between gC and the cell surface by using purified proteins in the absence of detergent. Truncated forms of gC and gD, gC1(457t), gC2(426t), and gD1(306t), lacking the transmembrane and carboxyl regions were expressed in the baculovirus system. We studied the ability of these proteins to bind to mammalian cells, to bind to immobilized heparin, to block HSV type 1 (HSV-1) attachment to cells, and to inhibit plaque formation by HSV-1. Each of these gC proteins bound to conformation-dependent monoclonal antibodies and to human complement component C3b, indicating that they maintained the same conformation of gC proteins expressed in mammalian cells. Biotinylated gC1(457t) and gC2(426t) each bind to several cell lines. Binding was inhibited by an excess of unlabeled gC but not by gD, indicating specificity. The attachment of gC to cells involves primarily heparan sulfate proteoglycans, since heparitinase treatment of cells reduced gC binding by 50% but had no effect on gD binding. Moreover, binding of gC to two heparan sulfate-deficient L-cell lines, gro2C and sog9, both of which are mostly resistant to HSV infection, was markedly reduced. Purified gD1 (306t), however, bound equally well to the two mutant cell lines. In contrast, saturating amounts of gC1(457t) interfered with HSV-1 attachment to cells but failed to block plaque formation, suggesting a role for gC in attachment but not penetration. A mutant form of gC lacking residues 33 to 123, gC1(delta 33-123t), expressed in the baculovirus system, bound significantly less well to cells than did gC1(457t) and competed poorly with biotinylated gC1(457t) for binding. These results suggest that residues 33 to 123 are important for gC attachment to cells. In contrast, both the mutant and wild-type forms of gC bound to immobilized heparin, indicating that binding of these proteins to the cell surface involves more than a simple interaction with heparin. To determine that the contribution of the N-terminal region of gC is important for HSV attachment, we compared several properties of a mutant HSV-1 which contains gC lacking amino acids 33 to 123 to those of its parental virus, which contains full-length gC. The mutant bound less well to cells than the parental virus but exhibited normal growth properties.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Herpes simplex virus glycoprotein D (gD) is a major component of the virion envelope and infected cell membranes and is essential for virus entry into cells. We have recently shown that gD interacts with a limited number of cell surface receptors which are required for virus penetration into cells. To define domains of gD which are required for aspects of virus replication including receptor binding, deletion mutations of 5 to 14 amino acids were constructed by using oligonucleotide-directed mutagenesis. Plasmids containing mutant genes for gD were assayed for the ability to rescue a recombinant virus, F-gD beta, in which beta-galactosidase sequences replace gD-coding sequences. Effects on global folding and posttranslational processing of the molecules were assessed by using a panel of monoclonal antibodies which recognize both continuous and discontinuous epitopes. A region near the amino terminus (residues 7 to 21) of gD which is recognized by monoclonal antibodies able to neutralize herpes simplex virus in the absence of complement was not essential for function. In addition, virtually all of the cytoplasmic domain of gD and an extracellular domain close to the membrane were dispensable. In contrast, deletion mutations in the central region of the molecule, save for one exception, led to alterations in global folding of the molecule and maturation of the protein was inhibited.  相似文献   

15.
The adaptor protein CIN85 is widely distributed in different tissues and has three Src homology 3 (SH3) domains, a proline-rich region (PRR), and a coiled-coil domain. During studies on the function of CIN85, it was reported to form a complex with herpes simplex virus 1 (HSV-1) infected cell protein 0 (ICP0), which plays a key role in enabling viral replication. Here, we demonstrate that plaque formation by HSV-1 is reduced on HeLa cells expressing CIN85 ectopically. The PRR of CIN85 was found to be essential for the inhibition of virus growth, whereas the three SH3 domains were not required. CIN85 also suppressed HSV-1 growth in Chinese hamster ovary (CHO) cells expressing the receptor for herpes simplex virus entry (herpes virus entry mediator A; HVEM). However, immunoprecipitation experiments showed that CIN85 did not interact with HVEM directly, indicating that CIN85 is not involved in the HSV-1 cell-entry pathway, but rather in another downstream pathway. Collectively, our data indicate that CIN85 might play an important role in HSV-1 infection.  相似文献   

16.
Nine monoclonal antibodies specific for glycoprotein D (gD) of herpes simplex virus type 1 were selected for their ability to neutralize virus in the presence of complement. Four of these antibodies exhibited significant neutralization titers in the absence of complement, suggesting that their epitope specificities are localized to site(s) which contribute to the role of gD in virus infectivity. Each of these antibodies was shown to effectively neutralize virus after virion adsorption to cell surfaces, indicating that neutralization did not involve inhibition of virus attachment. Although some of the monoclonal antibodies partially inhibited adsorption of radiolabeled virions, this effect was only observed at concentrations much higher than that required to neutralize virus and did not correlate with complement-independent virus-neutralizing activity. All of the monoclonal antibodies slowed the rate at which virus entered cells, further suggesting that antibody binding of gD inhibits virus penetration. Experiments were carried out to determine the number of different epitopes recognized by the panel of monoclonal antibodies and to identify epitopes involved in complement-independent virus neutralization. Monoclonal antibody-resistant (mar) mutants were selected by escape from neutralization with individual gD-specific monoclonal antibodies. The reactivity patterns of the mutants and antibodies were then used to construct an operational antigenic map for gD. This analysis identified a minimum of six epitopes on gD that could be grouped into four antigenic sites. Antibodies recognizing four distinct epitopes contained in three antigenic sites were found to neutralize virus in a complement-independent fashion. Moreover, mar mutations in these sites did not affect the processing of gD, rate of virus penetration, or the ability of the virus to replicate at high temperature (39 degrees C). Taken together, these results (i) confirm that gD is a major target antigen for neutralizing antibody, (ii) indicate that the mechanism of neutralization can involve inhibition of virus penetration of the cell surface membrane, and (iii) strongly suggest that gD plays a direct role in the virus entry process.  相似文献   

17.
The rapid spread of herpes simplex virus type 1 (HSV-1) in mucosal epithelia and neuronal tissue depends primarily on the ability of the virus to navigate within polarized cells and the tissues they constitute. To understand HSV entry and the spread of virus across cell junctions, we have previously characterized a human keratinocyte cell line, HaCaT. These cells appear to reflect cells infected in vivo more accurately than many of the cultured cells used to propagate HSV. HSV mutants lacking gE/gI are highly compromised in spread within epithelial and neuronal tissues and also show defects in cell-to-cell spread in HaCaT cells, but not in other, nonpolarized cells. HSV gD is normally considered absolutely essential for entry and cell-to-cell spread, both in cultured cells and in vivo. Here, an HSV-1 gD mutant virus, F-US6kan, was found to efficiently enter HaCaT cells and normal human keratinocytes and could spread from cell to cell without gD provided by complementing cells. By contrast, entry and spread into other cells, especially highly transformed cells commonly used to propagate HSV, were extremely inefficient. Further analyses of F-US6kan indicated that this mutant expressed extraordinarily low (1/500 wild-type) levels of gD. Neutralizing anti-gD monoclonal antibodies inhibited entry of F-US6kan, suggesting F-US6kan utilized this small amount of gD to enter cells. HaCaT cells expressed high levels of an HSV gD receptor, HveC, and entry of F-US6kan into HaCaT cells could also be inhibited with antibodies specific for HveC. Interestingly, anti-HveC antibodies were not fully able to inhibit entry of wild-type HSV-1 into HaCaT cells. These results help to uncover important properties of HSV and human keratinocytes. HSV, with exceedingly low levels of a crucial receptor-binding glycoprotein, can enter cells expressing high levels of receptor. In this case, surplus gD may be useful to avoid neutralization by anti-gD antibodies.  相似文献   

18.
We examined the entry process of herpes simplex virus type 1 (HSV-1) by using infectious virus and previously characterized noninfectious viruses that can bind to cells but cannot penetrate as a result of inactivation of essential viral glycoprotein D (gD) or H (gH). After contact of infectious virus with the cell plasma membrane, discernible changes of the envelope and tegument could be seen by electron microscopy. Noninfectious virions were arrested at distinct steps in interactions with cells. Viruses inactivated by anti-gD neutralizing antibodies attached to cells but were arrested prior to initiation of a visible fusion bridge between the virus and cell. As judged from its increased sensitivity to elution, virus lacking gD was less stably bound to cells than was virus containing gD. Moreover, soluble gD could substantially reduce virus attachment when added to cells prior to or with the addition of virus. Virus inactivated by anti-gH neutralizing antibodies attached and could form a fusion bridge but did not show expansion of the fusion bridge or extensive rearrangement of the envelope and tegument. We propose a model for infectious entry of HSV-1 by a series of interactions between the virion envelope and the cell plasma membrane that trigger virion disassembly, membrane fusion, and capsid penetration. In this entry process, gD mediates a stable attachment that is likely required for penetration, and gH seems to participate in fusion initiation or expansion.  相似文献   

19.
During virus entry, herpes simplex virus (HSV) glycoprotein D (gD) binds to one of several human cellular receptors. One of these, herpesvirus entry mediator A (HveA), is a member of the tumor necrosis factor receptor (TNFR) superfamily, and its ectodomain contains four characteristic cysteine-rich pseudorepeat (CRP) elements. We previously showed that gD binds the ectodomain of HveA expressed as a truncated, soluble protein [HveA(200t)]. To localize the gD-binding domain of HveA, we expressed three additional soluble forms of HveA consisting of the first CRP [HveA(76t)], the second CRP [HveA(77-120t)], or the first and second CRPs [HveA(120t)]. Biosensor and enzyme-linked immunosorbent assay studies showed that gD bound to HveA(120t) and HveA(200t) with the same affinity. However, gD did not bind to HveA(76t) or HveA(77-120t). Furthermore, HveA(200t) and HveA(120t), but not HveA(76t) or HveA(77-120t), blocked herpes simplex virus (HSV) entry into CHO cells expressing HveA. We also generated six monoclonal antibodies (MAbs) against HveA(200t). MAbs CW1, -2, and -4 bound linear epitopes within the second CRP, while CW7 and -8 bound linear epitopes within the third or fourth CRPs. None of these MAbs blocked the binding of gD to HveA. In contrast, MAb CW3 recognized a discontinuous epitope within the first CRP of HveA, blocked the binding of gD to HveA, and exhibited a limited ability to block virus entry into cells expressing HveA, suggesting that the first domain of HveA contains at least a portion of the gD binding site. The inability of gD to bind HveA(76t) suggests that additional amino acid residues of the gD binding site may reside within the second CRP.  相似文献   

20.
The human herpesvirus entry mediator C (HveC), also known as the poliovirus receptor-related protein 1 (PRR1) and as nectin-1, allows the entry of herpes simplex virus type 1 (HSV-1) and HSV-2 into mammalian cells. The interaction of virus envelope glycoprotein D (gD) with such a receptor is an essential step in the process leading to membrane fusion. HveC is a member of the immunoglobulin (Ig) superfamily and contains three Ig-like domains in its extracellular portion. The gD binding site is located within the first Ig-like domain (V domain) of HveC. We generated a panel of monoclonal antibodies (MAbs) against the ectodomain of HveC. Eleven of these, which detect linear or conformational epitopes within the V domain, were used to map a gD binding site. They allowed the detection of HveC by enzyme-linked immunosorbent assay, Western blotting, and biosensor analysis or directly on the surface of HeLa cells and human neuroblastoma cell lines, as well as simian Vero cells. The anti-HveC V-domain MAbs CK6, CK8, and CK41, as well as the previously described MAb R1.302, blocked HSV entry. Their binding to soluble HveC was blocked by the association of gD with the receptor, indicating that their epitopes overlap a gD binding site. Competition assays on an optical biosensor showed that CK6 and CK8 (linear epitopes) inhibited the binding of CK41 and R1.302 (conformational epitopes) to HveC and vice versa. Epitope mapping showed that CK6 and CK8 bound between residues 80 and 104 of HveC, suggesting that part of the gD binding site colocalizes in the same region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号