首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
无芒雀麦是浑善达克沙地植物群落中占优势的多年生根茎禾草。研究了克隆整合特性对无芒雀麦忍受沙埋能力的影响。结果表明,克隆整合显著提高了远端完全沙埋分株的存活,耗-益分析表明远端沙埋分株的生物量、分株数、叶片数、根茎节数和根茎总长显著受益于克隆整合,而与之相连的近端非沙埋分株却没有产生显著的损耗,并且随着沙埋程度增加时,远端沙埋分株的收益有增大的趋势。因而,克隆整合特性是无芒雀麦对严酷沙埋环境形成的重要适应对策,它能够缓解沙埋对无芒雀麦存活、生长的胁迫,提高其在半干旱沙化地区的适合度。  相似文献   

2.
无芒雀麦是浑善达克沙地植物群落中占优势的多年生根茎禾草.研究了克隆整合特性对无芒雀麦在异质性盐分环境中存活和生长的影响.结果表明,克隆整合显著提高了无芒雀麦分株在高盐环境中的存活能力,耗-益分析表明无芒雀麦在高盐斑块中分株的生物量、分株数、根茎节数和根茎总长显著受益于克隆整合,而与之相连的非盐分斑块中的分株却没有产生显著的损耗.因而,克隆整合特性是无芒雀麦对异质性环境形成的重要适应对策,它使无芒雀麦能够扩展到不适合植物生长的高盐分斑块中,从而增加了无芒雀麦在浑善达克沙地中的存活和生长,提高了其在半干旱沙化地区的适合度.  相似文献   

3.
沙埋对无芒雀麦种子萌发和幼苗生长的影响   总被引:4,自引:0,他引:4  
研究了沙埋对浑善达克沙地植物群落中多年生禾草无芒雀麦种子萌发、出苗和幼苗生长的影响.结果表明:无芒雀麦种子能在深度≤12cm的沙埋中萌发,≤8cm的沙埋中出苗.在此范围内,随着沙埋深度的增加,无芒雀麦种子的萌发率和出苗率逐渐降低.沙埋深度在植株高度的33%时,无芒雀麦1周龄和2周龄幼苗均全部存活,且总生物量≥对照(未沙埋幼苗);当沙埋深度增至植株高度的66%时,1周龄和2周龄幼苗的存活率分别降至70%和25%,生长也受到抑制;而遭受全部沙埋时,1周龄和2周龄幼苗均不能存活.遭受沙埋后,无芒雀麦幼苗分配较多的生物量用于地上部分的生长,其生物量分配模式改变可能是无芒雀麦幼苗对沙埋环境的重要适应对策.  相似文献   

4.
 不同程度的沙埋是生长在干旱和半干旱区内陆沙丘的植物经常遭遇的事件,沙埋可以改变植物所处的生物和非生物环境条件。已有研究表明不同程度的沙埋对于植物的影响不同 。轻微程度的沙埋可以增加植物高度、促进生物量的积累和新生分株的产生。如果沙埋强度不断增加,对植物的影响由正效应逐渐转变为负效应。即超过一定沙埋阈值后,沙埋会削弱植物的生长,甚至影响植物的存活。干旱和半干旱区内陆沙丘中常常生长着许多克隆植物, 克隆整合常常可以缓解克隆植物分株所遭受的局部环境胁迫。根茎型克隆植物羊柴(Hedysarum laeve)是毛乌素沙地的优势半灌木之一,也是当地重要的固沙植物。为了探讨克隆整合的作用是否可以提高沙埋阈值,并有助于羊柴忍受高强度的沙埋,以其为研究对象开展了野外实验。结果表明:轻微程度的沙埋(例如沙埋深度是原始羊柴分株高的10%~20%)可以加速羊柴分株的高生长,提高叶片生物量、茎生物量以及整个地上部分的生物量。高强度的沙埋(例如沙埋深度是原始羊柴分株高的80%~100%)会削弱羊柴分株的存活和生长。在与不遭受沙埋分株相连的情况下,羊柴分株遭受沙埋的阈值高于没有分株相连的,而且在高强度的沙埋下,前者(有分株相连的遭受沙埋的分株)比后者(没有分株相连的遭受沙埋的分株)在株高增量、茎生物量、叶片生物量以及地上分株生物量上都要显著高。这暗示着克隆整合提高了羊柴遭受沙埋的阈值并有助于羊柴分株忍受高强度的沙埋。  相似文献   

5.
克隆植物可通过克隆整合较好地适应逆境胁迫,克隆整合对克隆植物忍耐逆境胁迫能力的促进作用可能随环境条件而异。本文以海南恶性入侵植物薇甘菊为对象,通过温室盆栽实验,研究不同土壤养分条件下(低或高)克隆整合对薇甘菊匍匐茎克隆片段(具2个节)忍耐部分分株被埋藏(仅远端分株被埋藏)能力的影响。结果表明:当远端分株被埋藏3 cm时,无论有无克隆整合,其均有较高的出苗率;当远端分株被埋藏入土壤6 cm时,克隆整合显著提高了其出苗率(从不足17%提高到67%),且这些结果不受土壤养分条件的影响。对于近远端均出苗的克隆片段,埋藏深度、是否保持克隆连接对克隆片段的总生物量未见显著影响,尽管近端或远端分株生物量可能受到影响。即便是对远端分株埋藏6cm的处理,克隆整合也可使克隆片段的总生物量维持在和远端分株没有被埋藏时克隆片段总生物量相当的水平,且这些结果也不受土壤养分条件的影响。因此,克隆整合是薇甘菊对局部埋藏胁迫的生态适应对策之一,它能够提高薇甘菊被埋藏分株的存活,提高薇甘菊在局部埋藏胁迫下的适合度。不同土壤养分条件下,克隆整合对出苗率和生物量的影响差异不大,可能是因为不同土壤养分条件下,克隆分株间的资源输送并没有差别,或埋藏深度(6 cm)不足以使植物生长表现出差别。  相似文献   

6.
研究了克隆整合特性对天胡荽在异质性土壤养分环境中繁殖策略的影响。结果表明: 克隆整合可显著提高相连分株中处于低资源条件下近端分株的结果数和坐果率、总种子数量, 及其单个克隆分株的平均结籽数, 但对各处理单果重量的无显著影响。克隆整合有利于促进资源缺乏端的有性繁殖; 促进生理顶端分株的克隆繁殖。在低资源条件下, 克隆整合促进近端分株的有性繁殖以及远端分株的克隆繁殖; 相反则促进远端分株的有性繁殖和克隆繁殖。因此, 克隆整合特性是天胡荽对异质性环境的重要适应对策, 它使天胡荽能够扩展到不适合植物生长的低养分斑块中, 从而增加了天胡荽对恶劣环境的繁殖适合度及适应能力。  相似文献   

7.
切断根茎对根茎禾草沙鞭和赖草克隆生长的影响   总被引:13,自引:0,他引:13  
为了研究半干旱内陆沙化生境中植物克隆整合对克隆植物基株扩展能力和对克隆植物分株定居逆境能力的贡献,在内蒙古鄂尔多斯高原毛乌素沙地对根茎禾草沙鞭(Rsammochloavillosa(Trin.)Bor)和赖草(Leymussecali-nus(Georgi.)Tzvel.)进行了以切断根茎为处理的野外实验。实验结果表明,切断根茎处理使根茎禾草沙鞭基株的幼小部分(观测单元)在实验期间根茎数量增量、地上技数量增量、地上枝总长度增量、主根茎节数增量、根茎节总数增量、主根茎长度增量和根茎总长度增量显著地减少。然而,切断根茎处理对另一根茎禾草赖草基株幼小部分(观测单元)的上述7个特征在实验期间的增量没有影响。这些结果指示着在克隆整合及其对克隆生长贡献方面的种间差异。沙鞭的克隆整合特性和克隆生长特性对它在水分短缺、蒸散剧烈、养分贫瘠、生境斑块化和扰动经常的沙化草地环境中的生存能力有重要贡献。  相似文献   

8.
克隆整合对异质性盐分胁迫下积雪草生长的影响   总被引:1,自引:0,他引:1  
以匍匐茎草本克隆植物积雪草(Centella asiatica)为材料进行盆栽试验,研究了克隆整合特性对异质性盐分胁迫条件下植物生长的影响。试验中将远端分株(较幼分株)分别处于盐分胁迫或正常土壤条件下,切断或保持其与近端分株(较老分株)间的匍匐茎连接。结果表明:盐分胁迫下,克隆整合提高了受胁迫远端分株和整个克隆片断的叶面积和生物量等生长指标;与未遭受盐分胁迫处理相比,匍匐茎连接处理导致远端分株的根冠比显著降低。克隆整合还减轻了盐分胁迫对分株的叶绿素含量和光化学效率的影响,但盐分胁迫下,匍匐茎连接处理远端分株的净光合速率与匍匐茎切断处理远端分株并无显著差异,连接受胁迫的远端分株并没有引起近端分株生物量的明显损耗以及光合速率的补偿性提高。总之,克隆整合促进了积雪草遭受盐分胁迫的分株和整个克隆片段的生长,这对于丰富和发展异质性环境胁迫下克隆植物的生态适应对策具有重要意义。  相似文献   

9.
以中国荒漠区优良的防风固沙克隆灌木沙拐枣为对象,研究了长期风蚀、沙埋环境下沙拐枣母株和克隆分株的同化枝对环境异质性的响应。结果发现:(1)风蚀母株、风蚀分株的叶绿素含量、净光合速率、气孔导度、蒸腾速率、胞间CO2浓度和水分利用效率只有沙埋分株的一半左右,导致同化枝的长度、数量、簇数也仅是沙埋分株的一半,而且风蚀母株的果实宽和果实长也都最小,但浅沙埋有利于沙拐枣的生长和繁殖,表明严峻的风蚀对母株和分株的生长与繁殖都产生了胁迫,但浅沙埋有利于沙拐枣的生长和繁殖。(2)风蚀母株倒伏后同化枝的形态特征是基部优于中部优于顶部,表明严峻风蚀下母株的死亡是从顶部-中部-底部逐渐舍弃的过程。(3)母株的全部根系以及风蚀水平根全部裸露在外但依然能够存活,间接证明沙拐枣克隆整合的方向性——不仅可在分株间进行传递,分株-母株间也可进行传递,否则遭受严峻风蚀胁迫的母株和克隆分株会直接死亡。本研究结果为沙拐枣克隆生长对风沙环境的生态适应机制提供了基础,也是对植物克隆生态学在自然异质环境中研究缺乏的有效补充。  相似文献   

10.
根茎禾草沙鞭的克隆基株及分株种群特征   总被引:47,自引:2,他引:45       下载免费PDF全文
 在内蒙古沙地站对根茎禾草沙鞭的观测实验发现,沙鞭具有规则的克隆生长、“游击型”克隆构型和相当快的克隆扩展。其地下根茎的寿命至少2年。这些发现指示着该植物种可能具有很强的克隆整合。对内蒙古沙地站和内蒙古草原站的单种沙鞭分株种群的比较和在各站对单种和混交沙鞭分株种群的比较发现,不同地点和在不同群落条件下的沙鞭分株种群在许多重要性状上都存在差异。这些结果暗示着克隆可塑性对沙鞭生态适应性的可能贡献。关于沙鞭克隆整合和克隆可塑性的进一步研究是必要的。  相似文献   

11.
On Ordos plateau, a semi-arid, desertified area in China, sand burial is a common stress factor for plants. The extent to which sand burial occurs is heterogeneous and unpredictable in space and in time. Therefore, clonal fragments (i.e., interconnected ramets of a clonal plant) often experience partial sand burial, with some ramets buried in sand while the rest may remain unburied. It was hypothesized that clonal fragments are able to benefit from clonal integration, in case they experience partial sand burial. A pot experiment was conducted with Potentilla anserina, a stoloniferous herb often found on Ordos plateau. We used clonal fragments consisting of four interconnected ramets. In the experiment, the two proximal (older) ramets were unburied while the two distal (younger) ramets were either unburied (control) or buried with a 2, 4 or 6 cm deep layer of sand (burial treatments). The stolon connection between the proximal and the distal ramets was either severed or left intact. Stolon severing dramatically decreased the survival of buried ramets. Stolon severing and sand burial had significant effects on plant performance in terms of biomass production, number of leaves and leaf area. A cost–benefit analysis based on performance measures shows that the proximal ramets supported their connected distal ramets and did not incur any cost from this resource export. These results suggest that clonal integration, which is one of the functionally most important consequences of clonal growth, contributes significantly to our test species' capacity to withstand partial sand burial on Ordos plateau, a semi-arid and desertified area of China.  相似文献   

12.
In arid and semi-arid inland deserts,one of the environmental stresses for plants is recurrent sand burial,which can influence the physical and biotic microenvironments of the plants and soil.Previous studies have shown that different levels of sand burial have different effects on plants.Slight sand burial could increase the height increment,leaf biomass and the number of new ramets of the plants while heavy sand burial could impair the growth of the plants and even decrease their chances of survival.In other words,below a certain threshold level of burial,the growth of plants is stimulated probably because of multiple factors.However,as the level of burial increases,the positive response starts to decline until it becomes a negative value.Arid and semi-arid inland deserts are frequently colonized and stabilized by many rhizomatous clonal plants.Clonal physiological integration often helps clonal plants buffer local environmental stress encountered by ramets.A rhizomatous clonal semishrub,Hedysarum laeve (H.laeve),is the dominant plant species and important for vegetation restoration in the Mu Us sandland.To investigate whether clonal integration can increase the threshold of sand burial and help rhizomatous H.laeve tolerate heavy sand burial,we conducted a field experiment.The results showed that slight sand burial could accelerate ramet growth and enhance leaf biomass,stem biomass and shoot biomass,while heavy sand burial reducesed the biomass of the plant and impairs survival and growth of the ramets.Clonal integration increased the threshold of sand burial.Under heavy sand burial,ramets connected to other ramets not buried in sand were more in terms of height increment,stem biomass,leaf biomass and shoot biomass compared to the ramets encountering sand burial but disconnected from other ramets.It suggested that clonal physiological integration could help H.laeve ramets tolerate relatively heavy sand burial.We also discussed that clonal integration plays a role in H.laeve presence in the Mu Us sandland.  相似文献   

13.
Clonal growth allows plants to spread horizontally and to experience different levels of resources. If ramets remain physiologically integrated, clonal plants can reciprocally translocate resources between ramets in heterogeneous environments. But little is known about the interaction between benefits of clonal integration and patterns of resource heterogeneity in different patches, i.e., coincident patchiness or reciprocal patchiness. We hypothesized that clonal integration will show different effects on ramets in different patches and more benefit to ramets under reciprocal patchiness than to those under coincident patchiness, as well as that the benefit from clonal integration is affected by the position of proximal and distal ramets under reciprocal or coincident patchiness. A pot experiment was conducted with clonal fragments consisting of two interconnected ramets (proximal and distal ramet) of Fragaria orientalis. In the experiment, proximal and distal ramets were grown in high or low availability of resources, i.e., light and water. Resource limitation was applied either simultaneously to both ramets of a clonal fragment (coincident resource limitation) or separately to different ramets of the same clonal fragment (reciprocal resource limitation). Half of the clonal fragments were connected while the other half were severed. From the experiment, clonal fragments growing under coincident resource limitation accumulated more biomass than those under reciprocal resource limitation. Based on a cost-benefit analysis, the support from proximal ramets to distal ramets was stronger than that from distal ramets to proximal ramets. Through division of labour, clonal fragments of F. orientalis benefited more in reciprocal patchiness than in coincident patchiness. While considering biomass accumulation and ramets production, coincident patchiness were more favourable to clonal plant F. orientalis.  相似文献   

14.
Clonal plants in highly disturbed habitats are often broken into small fragments of various sizes and buried at various soil depths. As a storage organ, rhizome fragments play an important role in enabling plants to survive in such habitats. But few studies have been concerned about the regenerative capacity of rhizome fragments of clonal shrubs of different rhizome diameter and at different burial depths. Here, we investigated whether deeper burial decreased, and diameter of the rhizome fragment increased, the regenerative capacity of a clonal shrub. Research samples of rhizome fragment (rhizome diameters of 2, 5, 10, 15, and 20 mm) of the clonal shrub Calligonum arborescens were buried at different depths (0, 1, 5, 10, and 20 cm). Increasing the diameter of the rhizome fragments significantly increased the survival rate of fragments, and increased the above-ground, below-ground and total biomass production of fragments. Vegetative reproduction ability also increased with an increase in diameter of the rhizome fragments. With an increase in sand burial depth, above-ground, below-ground, total biomass production and vegetative reproduction ability first decreased and then increased, and no fragments survived at the 0 cm burial depth. These results indicate that sand burial depth and diameter of the rhizome fragments significantly affected the regeneration capacity of C. arborescens. Sand burial is one of the essential prerequisites for C. arborescens rhizome fragments’ survival. Moderate burial depth (5 cm) and larger fragment diameter (20 mm diameter) were more suitable for biomass production and vegetative reproduction. These results indicate that reserves stored in rhizome fragments can contribute greatly to the regeneration capacity of the C. arborescens—responses that are very important for C. arborescens survival and establishment in frequently disturbed habitats.  相似文献   

15.
In arid and semi-arid inland deserts, one of the environmental stresses for plants is recurrent sand burial, which can influence the physical and biotic microenvironments of the plants and soil. Previous studies have shown that different levels of sand burial have different effects on plants. Slight sand burial could increase the height increment, leaf biomass and the number of new ramets of the plants while heavy sand burial could impair the growth of the plants and even decrease their chances of survival. In other words, below a certain threshold level of burial, the growth of plants is stimulated probably because of multiple factors. However, as the level of burial increases, the positive response starts to decline until it becomes a negative value. Arid and semi-arid inland deserts are frequently colonized and stabilized by many rhizomatous clonal plants. Clonal physiological integration often helps clonal plants buffer local environmental stress encountered by ramets. A rhizomatous clonal semishrub, Hedysarum laeve (H. laeve), is the dominant plant species and important for vegetation restoration in the Mu Us sandland. To investigate whether clonal integration can increase the threshold of sand burial and help rhizomatous H. laeve tolerate heavy sand burial, we conducted a field experiment. The results showed that slight sand burial could accelerate ramet growth and enhance leaf biomass, stem biomass and shoot biomass, while heavy sand burial reducesed the biomass of the plant and impairs survival and growth of the ramets. Clonal integration increased the threshold of sand burial. Under heavy sand burial, ramets connected to other ramets not buried in sand were more in terms of height increment, stem biomass, leaf biomass and shoot biomass compared to the ramets encountering sand burial but disconnected from other ramets. It suggested that clonal physiological integration could help H. laeve ramets tolerate relatively heavy sand burial. We also discussed that clonal integration plays a role in H. laeve presence in the Mu Us sandland. __________ Translated from Journal of Plant Ecology (formerly Acta Phytoecologica Sinica), 2006, 30(2): 278–285 [译自: 植物生态学报]  相似文献   

16.
Sui Y  He W  Pan X  Dong M 《Annals of botany》2011,107(4):693-697

Background and Aims

Mechanical stimulation (MS) often induces plants to undergo thigmomorphogenesis and to synthesize an array of signalling substances. In clonal plants, connected ramets often share resources and hormones. However, little is known about whether and how clonal integration influences the ability of clonal plants to withstand MS. We hypothesized that the effects of MS may be modulated by clonal integration.

Methods

We conducted an experiment in which ramet pairs of Leymus secalinus were subjected to three treatments: (1) connected ramet pairs under a homogeneous condition [i.e. the proximal (relatively old) and distal (relatively young) ramets were not mechanically stressed]; (2) connected ramet pairs under a heterogeneous condition (i.e. the proximal ramet was mechanically stressed but the distal ramet was not); and (3) disconnected ramet pairs under the same condition as in treatment 2. At the end of the experiment, we harvested all plants and determined their biomass and allocation.

Key Results

Clonal integration had no significant influence on measured traits of distal L. secalinus ramets without MS. However, under MS, plants with distal ramets that were connected to a mother ramet produced more total plant biomass, below-ground biomass, ramets and total rhizome length than those that were not connected. Partial MS exerted local effects on stimulated ramets and remote effects on connected unstimulated ramets. Partial MS increased total biomass, root/shoot ratio, number of ramets and total rhizome length of stimulated proximal ramets, and increased total biomass, root weight ratio, number of ramets and total rhizome length of connected unstimulated ramets due to clonal integration.

Conclusions

These findings suggest that thigmomorphogenesis may protect plants from the stresses caused by high winds or trampling and that thigmomorphogenesis can be strongly modulated by the degree of clonal integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号