首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were conducted to examine the pulsatile nature of biologically active luteinizing hormone (LH) and progesterone secretion during the luteal phase of the menstrual cycle in rhesus monkeys. As the luteal phase progressed, the pulse frequency of LH release decreased dramatically from a high of one pulse every 90 min during the early luteal phase to a low of one pulse every 7-8 h during the late luteal phase. As the pulse frequency decreased, there was a corresponding increase in pulse amplitude. During the early luteal phase, progesterone secretion was not episodic and there were increments in LH that were not associated with elevations in progesterone. However, during the mid-late luteal phase, progesterone was secreted in a pulsatile fashion. During the midluteal phase (Days 6-7 post-LH surge), 67% of the LH pulses were associated with progesterone pulses, and by the late luteal phase (Days 10-11 post-LH surge), every LH pulse was accompanied by a dramatic and sustained release of progesterone. During the late luteal phase, when the LH profile was characterized by low-frequency, high-amplitude pulses, progesterone levels often rose from less than 1 ng/ml to greater than 9 ng/ml and returned to baseline within a 3-h period. Thus, a single daily progesterone determination is unlikely to be an accurate indicator of luteal function. These results suggest that the changing pattern of mean LH concentrations during the luteal phase occurs as a result of changes in frequency and amplitude of LH release. These changes in the pulsatile pattern of LH secretion appear to have profound effects on secretion of progesterone by the corpus luteum, especially during the mid-late luteal phase when the patterns of LH concentrations are correlated with those of progesterone.  相似文献   

2.
A sustained volley of high-frequency pulses of GnRH secretion is a fundamental step in the sequence of neuroendocrine events leading to ovulation during the breeding season of sheep. In the present study, the pattern of GnRH secretion into pituitary portal blood was examined in ewes during both the breeding and anestrous seasons, with a focus on determining whether the absence of ovulation during the nonbreeding season is associated with the lack of a sustained increase in pulsatile GnRH release. During the breeding season, separate groups (n = 5) of ovary-intact ewes were sampled during the midluteal phase of the estrous cycle and following the withdrawal of progesterone (removal of progesterone implants) to synchronize onset of the follicular phase. During the nonbreeding season, another two groups (n = 5) were sampled either in the absence of hormonal treatments or following withdrawal of progesterone. Pituitary portal and jugular blood for measurement of GnRH and LH, respectively, were sampled every 10 min for 6 h during the breeding season or for 12 h in anestrus. During the breeding season, mean frequency of episodic GnRH release was 1.4 pulses/6 h in luteal-phase ewes; frequency increased to 7.8 pulses/6 h during the follicular phase (following progesterone withdrawal). In marked contrast, GnRH pulse frequency was low (mean less than 1 pulse/6 h) in both groups of anestrous ewes (untreated and following progesterone withdrawal), but GnRH pulse amplitude exceeded that in both luteal and follicular phases of the estrous cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Pulsatile secretion of progesterone has been observed during the late luteal phase of the menstrual cycle in the rhesus monkey and human. As the luteal phase progresses in each of these species, there is a pattern of decreased frequency and increased amplitude of progesterone pulses. The present study was designed to determine the pattern of progesterone secretion during the late luteal phase (Days 10-16) of the normal ovine estrous cycle. Five unanesthetized ewes, each bearing an indwelling cannula in the utero-ovarian vein, were bled every 15 min from 0800 h on Day 10 through 0800 h on Day 16 of the estrous cycle. With the computer program PULSAR, it was determined that progesterone secretion was episodic, with pulsations observed on all days. Analysis of variance was used to determine differences in frequency, amplitude, and interpeak interval (IPI) of progesterone pulses among ewes and days. The ewes averaged 8.0 +/- 0.63 pulses of progesterone per 24 h. Mean frequency of pulses was not different between days but showed differences between ewes. Mean amplitude of progesterone pulses was 7.0 +/- 0.27 ng/ml, with no differences observed either between days or between ewes. Mean IPI was 197 +/- 7.1 min, and, like frequency, the IPI was not different between days, but varied between ewes. No consistent temporal relationship was found between progesterone pulses and luteinizing hormone (LH), as determined by bioassay and radioimmunoassay, on Day 14 of the cycle in one ewe. The results indicate that progesterone secretion is episodic during the luteal phase of the ovine estrous cycle and is independent of LH pulses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Opioid modulation of LH secretion in the ewe   总被引:2,自引:0,他引:2  
Administration of opioid agonists and antagonists and measurement of resulting hormone changes were used to study the possible effects of opioids on reproductive function in the ewe. Intravenous administration of the long-acting methionine-enkephalin analogue FK33-824 (250 micrograms/h for 12 h) to 3 ewes during the follicular phase of the oestrous cycle depressed episodic LH secretion. This effect was reversed by administration of the opiate antagonist naloxone (25 mg/h) in combination with the FK33-824 treatment; in fact LH secretion was enhanced by the combined regimen. Naloxone (25 mg/h for 12 h) administered alone to 3 ewes in the follicular phase also enhanced LH secretion. In 3 animals treated with FK33-824 during the follicular phase, progesterone remained basal for 14 days after treatment, suggesting that ovulation was blocked. Jugular venous infusion of naloxone (25, 50 or 100 mg/h for 8h) into 5 ewes during the early and mid-luteal phase of the cycle resulted overall in a significant increase in mean plasma LH concentrations and LH episode frequency. To investigate whether endogenous opioids suppress LH release in seasonally anoestrous sheep, naloxone was infused intravenously into mature (25, 50 or 100 mg/h for 8 h) and yearling ewes (12 . 5, 25 or 50 mg/h for 8 h) during early, mid- and late anoestrus and plasma LH concentrations were measured. In the mature ewes, there was a trend for naloxone to increase LH values during the early anoestrous period but naloxone was without effect during mid- and late anoestrus. In the yearlings, naloxone infusion consistently increased plasma LH concentrations as a result of a significant increase in LH episode frequency. These experiments indicate that endogenous opioid peptides probably modulate gonadotrophin secretion during both the follicular and luteal phases of the oestrous cycle. However, the follicular phase of the sheep cycle is of short duration, and there may be residual effects of luteal-phase progesterone during this period. Secondly, there may be an age-dependent effect of naloxone on LH secretion during seasonal anoestrus in the ewe, with opioids playing a part in the suppression of LH in young but not in mature animals.  相似文献   

5.
Doses of 100 or 200 micrograms of a novel GnRH antagonist ([N-acetyl-D beta Na11-D-pCl-Phe2-D-Phe3-D-Arg6-Phe7-Arg8-D-Ala10]NH2 GnRH) (4 animals/dose) were administered on Days 10/11 of the luteal phase and induced a marked suppression of circulating bioactive LH and progesterone concentrations within 1 day of treatment (P less than 0.01). Thereafter, progesterone concentrations remained low or undetectable until after the next ovulation. Similar results were obtained when 200 micrograms antagonist were given on Days 5/6 of the luteal phase (N = 4). The interval from injection of antagonist (200 micrograms but not 100 micrograms) to ovulation (based on a rise in progesterone above 10 ng/ml) was significantly longer than that from prostaglandin-induced luteal regression to ovulation in control cycles (N = 4/treatment) (range, 13-15 days after antagonist vs 8-10 days after prostaglandin, P less than 0.01). This delay of 4-5 days was equivalent to the duration for which LH concentrations were significantly suppressed by 200 micrograms antagonist when administered to ovariectomized animals (N = 3). Corpus luteum function during the cycle after GnRH antagonist treatment appeared normal according to the pattern of circulating progesterone. These results show that corpus luteum function and preovulatory follicular development in the marmoset monkey are dependent on pituitary gonadotrophin secretion.  相似文献   

6.
Ovariectomized ewes (n = 24) were treated with implants that resulted in circulating concentrations of progesterone and 17β-oestradiol similar to those seen in intact ewes in the luteal phase of an oestrous cycle. Progesterone implants were left in for 10 days, and 17β-oestradiol implants for 14 days. Twelve of these ewes received daily injections of 17β-oestradiol in oil (i.m.) at doses sufficient to cause a surge release of luteinizing hormone (LH) in the absence of progesterone. The other 12 ewes were treated daily with vehicle (oil). Following progesterone withdrawal on Day 10, each group of 12 ewes was divided into three subgroups. Ewes in each subgroup of the groups treated daily with 17β-oestradiol or vehicle, received an injection of either 17β-oestradiol (oil i.m.), gonadotrophin-releasing hormone (GnRH) (saline, i.v.) or vehicle, 24 h after progesterone withdrawal. Following progesterone withdrawal, no LH surge was detected in ewes treated with vehicle. Surge secretion of LH was detected in ewes of all other groups. The data suggested that in progesterone-treated ewes, daily exposure to stimulatory doses of 17β-oestradiol did not desensitize the hypothalamic pituitary axis to the positive feedback effects of 17β-oestradiol. Daily exposure to 17β-oestradiol did not suppress pituitary responsiveness to GnRH. It was concluded that circulating concentrations of progesterone, similar to those seen during the luteal phase of an oestrous cycle in intact ewes, may prevent all necessary components of the LH surge secretory mechanism from responding to 17β-oestradiol.  相似文献   

7.
LH regulates luteal progesterone secretion during the estrous cycle in ewes and cows. However, PGE, not LH, stimulated ovine luteal progesterone secretion in vitro at day 90 of pregnancy and at day 200 in cows. The hypophysis is not obligatory after day 50 nor the ovaries after day 55 to maintain pregnancy in ewes. LH has been reported to regulate ovine placental PGE secretion up to day 50 of pregnancy and by pregnancy-specific protein B (PSPB) after day 50 of pregnancy. The objective of this experiment was to determine if and when a switch from LH to PGE occurred as the luteotropin regulating luteal progesterone secretion during pregnancy in ewes. Ovine luteal tissue slices of the estrous cycle (days 8, 11, 13, and 15) or pregnancy (days 8, 11, 13, 15, 20, 30, 40, 50, 60, and 90) were incubated in vitro with vehicle, LH, AA (precursor to PGE(2) and PGF(2alpha) synthesis), or PSPB in M199 for 4 h and 8 h. Concentrations of progesterone in jugular venous plasma of bred ewes increased (P< or =0.05) after day 50 and continued to increase through day 90. Secretion of progesterone by luteal tissue of non-bred ewes on days 8, 11, 13 and 15 and by bred ewes on days 8, 11, 13, 15, 20, 30, 40, and 50 was increased (P< or =0.05) by LH, but not by luteal tissue from pregnant ewes after day 50 (P> or =0.05). LH-stimulated progesterone secretion by luteal tissue from day 15 bred ewes was greater (P< or =0.05) than day 15 luteal tissue from non-bred ewes. Concentrations of progesterone in media were increased (P< or =0.05) when luteal tissue from pregnant ewes on day 50, 60, or 90 were incubated with AA or PSPB. Concentrations of PGE in media of non-bred ewes on days 8, 11, 13, or 15 and bred ewes on days 8 and 11 did not differ (P> or =0.05). Concentrations of PGE were increased (P< or =0.05) in media by luteal slices from bred ewes on days 13, 15, 20, 30, 40, 50, 60, and 90 of vehicle, LH, AA or PSPB-treated ewes. In addition, PSPB increased (P< or =0.05) PGE in media by luteal slices from pregnant ewes only on days 40, 50, 60, and 90. Concentrations of PGF(2alpha) were increased in media (P<0.05) of vehicle, AA, LH, or PSPB-treated luteal tissue from non-bred ewes and bred ewes on day 15 and by luteal tissue from bred ewes on days 20 and 30 after which concentrations of PGF(2alpha) in media declined (P< or =0.05) and did not differ (P> or =0.05) from non-bred or bred ewes on days 8, 11, or 13. It is concluded that LH regulates luteal progesterone secretion during the estrous cycle of non-bred ewes and up to day 50 of pregnancy, while only PGE regulates luteal progresterone secretion by ovine corpora lutea from days 50 to 90 of pregnancy. In addition, PSPB appears to regulate luteal secretion of progesterone from days 50 to 90 of pregnancy through stimulation of PGE secretion by ovine luteal tissue.  相似文献   

8.
The long-term negative feedback effects of sustained elevations in circulating estradiol and progesterone on the pulsatile secretion of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) were evaluated in the ewe following ovariectomy during the mid-late anestrous and early breeding seasons. GnRH secretion was monitored in serial samples of hypophyseal portal blood. Steroids were administered from the time of ovariectomy by s.c. Silastic implants, which maintained plasma concentrations of estradiol and progesterone at levels resembling those that circulate during the mid-luteal phase of the estrous cycle; control ewes did not receive steroidal replacement. Analysis of hormonal pulse patterns in serial samples during 6-h periods on Days 8-10 after ovariectomy disclosed discrete, concurrent pulses of GnRH in hypothalamo-hypophyseal portal blood and LH in peripheral blood of untreated ovariectomized ewes. These pulses occurred every 97 min on the average. Treatment with either estradiol or progesterone greatly diminished or abolished detectable pulsatile secretion of GnRH and LH, infrequent pulses being evident in only 3 of 19 steroid-treated ewes. No major seasonal difference was observed in GnRH or LH pulse patterns in any group of ewes. Our findings in the ovariectomized ewe provide direct support for the conclusion that the negative-feedback effects of estradiol and progesterone on gonadotropin secretion in the ewe include an action on the brain and a consequent inhibition of pulsatile GnRH secretion.  相似文献   

9.
Oxytocin infusions were initiated on day 10 of the oestrous cycle in ewes, and luteal regression was induced by injection of 100 micrograms cloprostenol on day 12. Blood samples were collected at frequent intervals via an indwelling jugular vein cannula to measure concentrations of progesterone and luteinizing hormone (LH) during the luteal and follicular phases in saline (n = 6) and oxytocin (n = 5) infused animals. The oxytocin infusion maintained peripheral plasma concentrations of 53 +/- 3.2 pg oxytocin ml-1 (mean +/- SEM) compared with values of about 1 pg ml-1 during oestrus in control ewes. Oxytocin infusion had no effect on luteal phase progesterone concentrations, the timing of luteolysis, basal luteinizing hormone (LH) secretion, LH pulse frequency, or the timing or height of the LH surge. Treated ewes came into oestrus significantly earlier than controls (P < 0.05) but ovulated normally. Uterine samples collected 96 h after cloprostenol injection (approximately day 2 of the cycle) showed that oxytocin receptor concentrations were significantly higher in the endometrium in ewes that had been given a 5 day oxytocin infusion than in control animals (556 and 262 fmol mg-1 protein, respectively: geometric means from ANOVA, P < 0.001), whereas myometrial receptor concentrations were not affected (113 and 162 fmol mg-1 protein, respectively). We conclude that the previously reported delay in luteal development caused by oxytocin infusion (Wathes et al., 1991) is not due to the inhibition or delay of ovulation, but must instead occur via a direct influence on the developing corpus luteum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
An increase in episodic release of LH is putatively the initial event leading to the onset of postpartum ovarian cyclicity in ewes. This experiment was conducted to determine the relationship between hypothalamic release of GnRH and onset of pulsatile secretion of LH during postpartum anestrus. Control ewes (n = 7) were monitored during the postpartum period to determine when normal estrous cycles resumed. In controls, the mean interval from parturition to the first postpartum estrus as indicated by a rise in serum progesterone greater than 1 ng/mg was 25.8 +/- 0.6 days. Additional ewes (n = 4-5) at 3, 7, 14, and 21 days postpartum (+/- 1 day) were surgically fitted with cannula for collection of hypophyseal-portal blood. Hypophyseal-portal and jugular blood samples were collected over a 6- to 7-h period at 10-min intervals. The number of GnRH pulses/6 h increased (p less than 0.05) from Day 3 postpartum (2.2 +/- 0.5) to Days 7 and 14 (3.6 +/- 0.2 and 3.9 +/- 0.4, respectively). A further increase (p less than 0.05) in GnRH pulse frequency was observed at Day 21 postpartum (6.4 +/- 0.4 pulses/6 h). Changes in pulsatile LH release paralleled changes observed in pulsatile GnRH release over Days 3, 7, 14, and 21 postpartum (0.83 +/- 0.3, 2.8 +/- 0.4, 2.9 +/- 0.6, and 4.0 +/- 1.1 pulses/6 h, respectively). GnRH pulse amplitude was higher at Day 21 than at Days 3, 7, or 14 postpartum. These findings suggest that an increase in the frequency of GnRH release promotes the onset of pulsatile LH release during postpartum anestrus in ewes.  相似文献   

11.
Slices of porcine endometrium and corpus luteum tissue obtained from mature sows throughout the luteal phase of the oestrous cycle were incubated in culture medium which was analysed at regular intervals over a period of 8 hours for prostaglandin F and progesterone. Prostaglandin F secretion was greatest by endometrium obtained during the mid III to late I luteal stage of the cycle and the increased levels secreted by this tissue were paralleled by high levels of secretion from corpus luteum tissue. The addition of indomethacin (10 μg/ml) to the culture medium completely abolished prostaglandin F secretion by both endometrium and luteal tissue indicating that the high levels of the prostaglandin were due to synthesis. Progesterone secretion by the corpus luteum was maximal from early luteal tissue and had declined to considerably lower levels by late stage tissue when prostaglandin secretion was greatest. The possible physiological significance of luteal prostaglandin F secretion is discussed.  相似文献   

12.
Thirty to forty percent of ruminant pregnancies are lost during the first third of gestation due to inadequate progesterone secretion. During the estrous cycle, luteinizing hormone (LH) regulates progesterone secretion by small luteal cells (SLC). Loss of luteal progesterone secretion during the estrous cycle is increased via uterine secretion of prostaglandin F(2α) (PGF(2α)) starting on days 12-13 post-estrus in ewes with up to 4-6 pulses per day. Prostaglandin F(2α) is synthesized from arachidonic acid, which is released from phospholipids by phospholipase A2. Endocannabinoids are also derived from phospholipids and are associated with infertility. Endocannabinoid-induced infertility has been postulated to occur primarily via negative effects on implantation. Cannabinoid (CB) type 1 (CB1) or type 2 (CB2) receptor agonists and an inhibitor of the enzyme fatty acid amide hydrolase, which catabolizes endocannabinoids, decreased luteal progesterone, prostaglandin E (PGE), and prostaglandin F(2α) (PGF(2α)) secretion by the bovine corpus luteum in vitro by 30 percent. The objective of the experiment described herein was to determine whether CB1 or CB2 receptor agonists given in vivo affect circulating progesterone, luteal weights, luteal mRNA for LH receptors, and luteal occupied and unoccupied LH receptors during the estrous cycle of ewes. Treatments were: Vehicle, Methanandamide (CB1 agonist; METH), or 1-(4-chlorobenzoyl)-5-methoxy-1H-indole-3-acetic acid morpholineamide (CB2 agonist; IMMA). Ewes received randomized treatments on day 10 post-estrus. A single treatment (500 μg; N=5/treatment group) in a volume of 1 ml was given into the interstitial tissue of the ovarian vascular pedicle adjacent to the luteal-containing ovary. Jugular venous blood was collected at 0 h and every 6-48 h for the analysis of progesterone by radioimmunoassay (RIA). Corpora lutea were collected at 48 h, weighed, bisected, and frozen in liquid nitrogen until analysis of unoccupied and occupied LH receptors and mRNA for LH receptors. Profiles of jugular venous progesterone, luteal weights, luteal mRNA for LH receptors, and luteal occupied and unoccupied LH receptors were decreased (P≤0.05) by CB1 or CB2 receptor agonists when compared to Vehicle controls. Progesterone in 80 percent of CB1 or CB2 receptor agonist-treated ewes was decreased (P≤0.05) below 1 ng/ml by 48 h post-treatment. It is concluded that the stimulation of either CB1 or CB2 receptors in vivo affected negatively luteal progesterone secretion by decreasing luteal mRNA for LH receptors and also decreasing occupied and unoccupied receptors for LH on luteal membranes. The corpus luteum may be an important site for endocannabinoids to decrease fertility as well as negatively affect implantation, since progesterone is required for implantation.  相似文献   

13.
In ewes during the breeding season, estradiol (E) and progesterone (P) synergistically regulate pulsatile luteinizing hormone (LH) secretion. E primarily inhibits LH pulse amplitude and P inhibits LH pulse frequency. To determine if endogenous opioid peptides (EOP) mediate these negative feedback effects, we administered the long-acting opioid antagonist WIN 44,441-3 (WIN) to intact ewes during the luteal and follicular phases of the estrous cycle and to ovariectomized ewes treated with no steroids, E, P, or E plus P. Steroid levels were maintained at levels seen during the estrous cycle by Silastic implants placed shortly after surgery. WIN increased LH pulse frequency, but not amplitude, in luteal phase ewes. In contrast, during the follicular phase, LH pulse amplitude was increased by WIN and pulse frequency was unchanged. Neither LH pulse frequency nor pulse amplitude was affected by WIN in long-term ovariectomized ewes untreated with steroids. In contrast, WIN slightly increased LH pulse frequency in short-term ovariectomized ewes. WIN also increased LH pulse frequency in ovariectomized ewes treated with P or E plus P. WIN did not affect pulse frequency but did increase LH pulse amplitude in E-treated ewes. These results support the hypothesis that EOP participate in the negative feedback effects of E and P on pulsatile LH secretion during the breeding season and that the inhibitory effects of EOP may persist for some time after ovariectomy.  相似文献   

14.
Bilaterally ovariectomized ewes were used to investigate the effect of systemic administration (i.v.) of charcoal-treated aqueous luteal extracts from ovine corpora lutea on plasma concentrations of pituitary gonadotrophins. Jugular blood samples were taken every 15 min at least 5 h before (control period) and 5 h after (treatment period) injection. In Expt 1, the administration of luteal extract from corpora lutea of days 70-76 of pregnancy, but not of the extract prepared from muscular tissue, resulted in a significant decrease of mean concentrations of luteinizing hormone (LH) (P < 0.02) and frequency of LH pulses (P < 0.01). Plasma follicle-stimulating hormone (FSH) concentrations were not affected by injections of either extract. These findings provide the first demonstration of the presence of a nonsteroidal factor in the corpus luteum of midpregnancy that selectively suppresses the secretion of LH. In Expt 2, mean concentrations of LH and FSH and frequency of LH pulses were unaffected by injections of luteal extracts from ovine corpora lutea of days 10-12 of the oestrous cycle or day 15 of pregnancy. These data suggest that some factor(s), probably from the fetoplacental endocrine unit, is required to ensure the production of a significant quantity of the luteal LH-inhibiting factor after day 15 of pregnancy. In Expt 3, treatment of luteal extract from corpora lutea of day 70 of pregnancy with proteolytic enzymes destroyed the LH-inhibiting activity, suggesting the proteic nature of the luteal LH-inhibiting factor. In Expt 4, plasma concentrations of LH were not affected by injection of charcoal-treated extract prepared from fetal cotyledonary tissue of days 110-120 of pregnancy suggesting that the LH-inhibiting factor exclusively originates from the corpus luteum during pregnancy. These experiments provide the first direct evidence for the existence of a potent nonsteroidal factor of luteal origin that specifically inhibits pulsatile secretion of LH, without influencing FSH release in female animals. We propose the term LH-release-inhibiting factor (LH-RIF) to describe this activity.  相似文献   

15.
In Experiment 1, an osmotic minipump containing oxytocin was implanted s.c. in ewes for 12 days beginning on Day 10 of the oestrous cycle, producing approximately 100 pg oxytocin/ml in the plasma. Two days after the start of infusion, all ewes were injected with 100 micrograms cloprostenol and placed with a fertile ram. At slaughter 22 days later, 9 (75%) of the 12 control (saline-infused) ewes were pregnant compared with 1 (11%) of the 9 ewes infused with oxytocin. In the control group, midcycle plasma concentrations of oxytocin were significantly higher in nonpregnant than in pregnant ewes. In Experiment 2, an infertile ram was used throughout to avoid any possible effects of pregnancy and oxytocin infusions were given at different stages of the oestrous cycle. Otherwise the protocol was similar to that in Exp. 1. Oxytocin infusion during luteolysis and the early follicular phase had no effect on the subsequent progesterone secretion pattern, but infusions beginning the day before cloprostenol-induced luteolysis and lasting for 7 or 12 days and infusions beginning on the day of oestrus for 4 days all delayed the subsequent rise in plasma progesterone by approximately 3-4 days. In these animals, the cycle tended to be longer. It was concluded that an appropriate oxytocin secretion pattern may be necessary for the establishment of pregnancy in ewes and that a high circulating oxytocin concentration during the early luteal phase delays the development of the young corpus luteum.  相似文献   

16.
The role of LH in luteal function in pregnant dogs was investigated at two different periods during pregnancy: (i) the transitional period from apparent total independence of the corpus luteum to relative hormonal dependence (days 20-35); and (ii) the period of full hormonal dependence (days 35-40). At both periods, LH neutralization, LH inhibition and LH administration studies were conducted. At both periods LH immunoneutralization had no significant effect on the secretion pattern of progesterone or prolactin. GnRH antagonist treatment (Nal-Glu) decreased plasma LH below the detection limit in all treatment periods. Nal-Glu had no effect on prolactin. When GnRH antagonist osmotic pumps were implanted, a transient decrease in plasma progesterone concentrations occurred on days 21-22 but not during the remaining implantation period. When GnRH antagonist was injected, plasma progesterone temporarily decreased (24 h) after the beginning of treatment starting on day 20, but decreased for 5 days when the treatment started on day 35. When purified pig LH was injected i.v. twice a day for 2 consecutive days either from day 30 or from day 40, plasma progesterone concentrations remained constant during treatment. However, on days 40 and 41, an increase in prolactin was observed. These results indicate that LH immunoneutralization may not impair corpus luteum function. In addition, GnRH antagonist induces dose- and time-dependent effects. Only high doses resulted in a decrease in progesterone, the duration of which increased as pregnancy progressed. Continuous GnRH antagonist administration, even when associated with complete LH inhibition, was not associated with detectable effects on progesterone. Finally, LH administration does not stimulate progesterone but may modify prolactin in the last third of pregnancy. Other studies indicated a corpus luteum prolactin dependency. The present study indicates that, in pregnant bitches, LH may not be necessary to sustain progesterone synthesis but that its role may vary in a time-dependent manner.  相似文献   

17.
Jugular vein blood was collected daily from four mature ewes throughout anoestrus and the first oestrous cycle of the breeding season until 4 days after the second oestrus. The levels of oestrogen, progesterone and LH were determined by radioimmunoassay. There were fluctuations in the LH level throughout most of the observed anoestrous period with a mean plus or minus S.E. value of 2-3 plus or minus 0-9 ng/ml. High LH values of 20-0, 41-2 and 137-5 ng/ml were observed in three ewes on Day - 24 of anoestrus. A brief minor rise in progesterone level was also observed around this period. Progesterone levels were consistently low (0.11 plus or minus 0-01 ng/ml) before Day - 25 of anoestrus. A major rise occurred on Day - 12 of anoestrous and this was followed by patterns similar to those that have been previously reported for the oestrous cycle of the ewe. Random fluctuations of oestrogens deviating from a mean level of 4-40 plus or minus 0-1 pg/ml were observed during anoestrus and the mean level during the period from the first to the second oestrus was 5-2 plus or minus 0-3 pg/ml. A well-defined peak of 13-3 plus or minus 0-7 pg/ml was seen in all ewes on the day of the second oestrus. Results of the present study suggest that episodic releases of LH occur during anoestrus and periods of low luteal activity. The fluctuations in LH levels, as observed during the period of low luteal activity, i.e. before Day - 25 of anoestrus, were less pronounced during the periods of high luteal activity. The view that luteal activity precedes the first behavioural oestrus of the breeding season is supported.  相似文献   

18.
Application of the ram effect during the breeding season has been previously disregarded because the ewe reproductive axis is powerfully inhibited by luteal phase progesterone concentrations. However, anovulatory ewes treated with exogenous progestagens respond to ram introduction with an increase in LH concentrations. We therefore tested whether cyclic ewes would respond to ram introduction with an increase in pulsatile LH secretion at all stages of the estrous cycle. We did two experiments using genotypes native to temperate or Mediterranean regions. In Experiment 1 (UK), 12 randomly cycling, North of England Mule ewes were introduced to rams midway through a frequent blood-sampling regime. Ewes in the early (EL; n=3) [corrected] and late luteal (LL; n=6) phase responded to ram introduction with an increase in LH pulse frequency and mean and basal concentration [corrected] of LH (at least P<0.05). In Experiment 2 (Australia), the cycles of 32 Merino ewes were synchronised using intravaginal progestagen pessaries. Pessary insertion was staggered to produce eight ewes at each stage of the estrous cycle: follicular (F), early luteal (EL), mid-luteal (ML) and late luteal (LL). In all stages of the cycle, ewes responded to ram introduction with an increase in LH pulse frequency (P<0.01); EL, ML and LL ewes also had an increase in mean LH concentration (P<0.05). In conclusion, ram introduction to cyclic ewes stimulated an increase in pulsatile LH secretion, independent of ewe genotype or stage of the estrous cycle.  相似文献   

19.
We recently demonstrated that progesterone and estradiol inhibit pituitary LH secretion in a synergistic fashion. This study examines the direct feedback of progesterone on the estradiol-primed pituitary. Nine ovariectomized (OVX) ewes underwent hypothalamic-pituitary disconnection (HPD) and were infused with 400 ng GnRH every 2 h throughout the experiment. After 7 days of infusion, estradiol was implanted s.c. Four days later, estradiol implants were exchanged for blank implants in 4 ewes and for progesterone implants in 5 ewes. These implants remained in place for another 4 days. Blood samples were collected around exogenous GnRH pulses before and 0.5 to 96 h after implant insertion and exchange. Serum LH and progesterone concentrations were determined through RIA. One month later, 4 of the HPD-OVX ewes previously implanted with steroids were reinfused with GnRH and the implantation protocol was repeated using blank implants only. In estradiol-primed ewes, progesterone significantly lowered LH secretion after 12 h of implantation and LH secretion remained inhibited while progesterone implants were in place (p less than 0.05). Removing estradiol transiently lowered LH secretion, and this effect was significant only 24 h after estradiol withdrawal (p less than 0.05). These data suggest that progesterone has a direct, estradiol-dependent inhibitory effect on pituitary LH release and that estradiol may sustain pituitary gonadotrope response to GnRH.  相似文献   

20.
Ovariectomized ewes received injections designed to mimic to some extent oestradiol and progesterone secretion during early pregnancy (maintenance progesterone), during oestrus (oestrous oestradiol) and during the luteal phase of the previous cycle (priming progesterone). The animals were killed at times equivalent to 1, 4 or 7 days after oestrus in those animals which had received oestrous oestradiol. The level of soluble oestradiol and progesterone receptors in whole uterus, and [3H]oestradiol and [3H]progesterone metabolism by uterus minces were measured. Oestradiol receptor level was highest on day 1 in those animals receiving oestrous oestradiol with no significant effect at any stage of the inclusion or omission of priming or maintenance progesterone. Progesterone receptor level was also high on day 1 in those animals receiving oestrous oestradiol with high levels maintained to day 4. Again, inclusion of priming or maintenance progesterone was without effect. In animals not receiving oestrous oestradiol the level of both receptors was uniformly low. Metabolism of [3H]oestradiol was low and not affected by treatment. [3H]Progesterone metabolism, although more variable, was also low and not affected by treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号